专题四 多边形与三角形

合集下载

三角形与多边形

三角形与多边形

多边形1.多边形及其有关概念(1)多边形定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形. 多边形按组成它的线段的条数分为三角形、四边形、五边形、六边形、……由n 条线段组成的多边形就叫做n 边形.如图,是一个五边形,可表示为五边形ABCDE .三角形是最简单,边数最少的多边形.(2)多边形的边:组成多边形的线段叫做多边形的边.(3)多边形的内角、外角:多边形相邻两边组成的角叫做多边形的内角,也称为多边形的角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图,∠B ,∠C ,∠D ,…是五边形的内角,∠1是五边形的外角.谈重点 多边形外角的理解 多边形每一个顶点处有两个外角,并且同顶点的外角与内角互为邻补角.(4)多边形的对角线: ①定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图,AC ,AD 就是五边形ABCDE 中的两条对角线.②拓展理解:一个n 边形从一个顶点可以引(n -3)条对角线,把n 边形分成(n -2)个三角形.一个n边形一共有n (n -3)2条对角线. 析规律 多边形的对角线条数与顶点数的关系 ①从多边形一个顶点引出的对角线能将多边形分割成不同的三角形,这就把多边形问题转化为三角形问题来研究;②所有的四边形都有2条对角线,五边形有5条对角线,也就是说一个边数一定的多边形的对角线的条数是一定的.(5)凸多边形和凹多边形:①在图(1)中,画出四边形ABCD 的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;②在图(2)中,画出DC (或BC )所在直线,整个四边形不都在这条直线的同一侧,我们称这个四边形为凹四边形,像这样的多边形称为凹多边形.【例1】 填空:(1)十边形有________个顶点,________个内角,________个外角,从一个顶点出发可画________条对角线,它共有________条对角线.(2)从多边形一个顶点出发画对角线将它分成了四个三角形,这个多边形是________边形.解析:(1)一个n 边形有n 个顶点,n 个角,2n 个外角,从一个顶点能画出(n -3)条对角线,共有n (n -3)2条对角线; (2)一个n 边形从一个顶点可以引(n -3)条对角线,把n 边形分成(n -2)个三角形,所以n -2=4,n =6,这个多边形是六边形.答案:(1)10 10 20 7 35(2)六2.正多边形(1)定义:各个角都相等,各条边都相等的多边形叫做正多边形.如等边三角形、正方形等.(2)特点:不仅边都相等,角也都相等,两个条件必须同时具备才是正多边形.如长方形四个角都是直角,都相等,但边不等,所以不是正多边形.析规律 正多边形外角的特征 因为边数相同的正多边形各个内角都相等,同顶点的内角与外角互为邻补角,所以边数相同的正多边形的各个外角也相等.【例2】 下列说法正确的个数有( ).(1)由四条线段首尾顺次相接组成的图形是四边形;(2)各边都相等的多边形是正多边形;(3)各角都相等的多边形一定是正多边形;(4)正多边形的各个外角都相等.A .1B .2C .3D .4解析:(1)不正确,一是要在同一平面内,二是不能在同一条直线上;(2)不正确,各边都相等,各角也都相等的多边形才是正多边形,这两个条件必须同时具备,如菱形虽然四边都相等,但它不是正多边形;(3)不正确,如长方形四个角都是直角,都相等,但边不一定相等,所以不是正多边形;(4)正确,因为边数相同的正多边形各个内角都相等,同顶点的内角与外角互为邻补角,所以边数相同的正多边形的各个外角也相等.故选A.答案:A3.多边形的内角和(1)公式:n 边形内角和等于(n -2)×180°.(2)探究过程:如图,以五边形、六边形为例.①从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形,五边形的内角和等于180°×3=540°;②从六边形的一个顶点出发,可以画3条对角线,它们将六边形分成4个三角形,六边形的内角和等于180°×4=720°;③从n 边形的一个顶点出发,可以画(n -3)条对角线,它们将n 边形分成(n -2)个三角形,n 边形的内角和等于180°×(n -2).所以多边形内角和等于(n -2)×180°.析规律 多边形内角和公式的推导 推导多边形内角和公式的方法很多,但都是将多边形内角和转化为三角形内角和进行推导的,这也是研究问题的一种思路方法,将多边形问题转化为三角形问题解决.(3)应用:①运用多边形内角和公式可以求出任何边数的多边形的内角和;②由多边形内角和公式可知,边数相同的多边形内角和也相等,因此已知多边形内角和也能求出边数.【例3】 选择:(1)十边形的内角和为( ).A .1 260°B .1 440°C .1 620°D .1 800°(2)一个多边形的内角和为720°,那么这个多边形的对角线共有( ).A .6条B .7条C .8条D .9条解析:(1)运用多边形内角和公式计算:180°×(10-2)=1 440°,故选B ;(2)一个多边形的内角和为720°,即180°×(n -2)=720°,解得n =6,所以该多边形是六边形,六边形有6×(6-3)2=9条对角线,故选D. 答案:(1)B (2)D4.多边形的外角和(1)公式:多边形的外角和等于360°.(2)探究过程:如图,以六边形为例.①外角和:在每个顶点处各取一个外角,即∠1,∠2,∠3,∠4,∠5,∠6,它们的和为外角和.②因为同顶点处的一个内角和外角互为邻补角,所以六边形内、外角和等于180°×6=1 080°,所以∠1+∠2+∠3+∠4+∠5+∠6=1 080°-180°×(6-2)=360°.③n 边形外角和=n ×180°-(n -2)×180°=360°.(3)拓展理解:①多边形的外角和是一个恒值,即任何多边形的外角和都是360°,与边数无关.②多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处取一个外角的和.解技巧 多边形的内角与相邻外角的关系的运用 同顶点的每一个内角和外角互为邻补角是解决含内、外角问题的关键,是内、外角转换的纽带.【例4】 填空:(1)一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是__________度,外角和是__________度;(2)多边形边数每增加一条,它的内角和会增加__________,外角和增加__________. 解析:(1)因为每个外角都是60°,所以360°÷60°=6,所以是六边形.根据内角和公式计算出内角和是720°,外角和是恒值为360°(也可以由每个外角都是60°,得每个内角都是120°,进而得到内角和是720°);(2)多边形边数每增加一条,它的内角和会增加180°,但外角和不变.答案:(1)六720 360 (2)180°0°5.多边形内角和公式的应用多边形内角和只与边数有关,因此当一个多边形的边数确定时,多边形的内角和就是一定的,所以多边形内角和公式就有两个作用:(1)已知多边形边数(顶点数、内角个数)就可以求出多边形内角和度数,方法是直接将边数n代入公式(n-2)×180°求出.(2)已知多边形内角和求多边形边数,只要根据多边形内角和公式列出以n为未知数的方程,解方程,求出n即可得到边数.破疑点多边形内角和的理解①用内角和除以180°得到的是n-2的值,不是边数,边数是n,这点要注意.②熟记多边形内角和公式是这部分内容应用的关键.【例5-1】若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为__________.解析:设每一份为x°,那么四个角分别为3x°,4x°,5x°,6x°.根据四边形内角和是360°,列出方程3x+4x+5x+6x=360,解得x=20,然后求出各角;也可以用360°÷18=20°,每一份是20°,然后求解.答案:60°,80°,100°,120°【例5-2】一个多边形的内角和等于1 440°,则它的边数为__________.解析:根据多边形内角和公式列出以n为未知数的方程(n-2)×180=1 440,解方程得n=10.所以这个多边形为十边形.答案:10【例5-3】一个多边形的内角和不可能是( ).A.1 800°B.540°C.720°D.810°解析:因为边数只能是整数,所以多边形的内角和必须是180°的整数倍,故选D.答案:D6.多边形外角、外角和公式的应用多边形外角和是360°,它是一个恒值,不论多边形是几边形,它的外角和都是360°,与边数无关,所以对于普通多边形,根据多边形外角和无法判断多边形的边数,因此多边形外角很少单独考查,它一般应用于正多边形中或各角都相等时的情况,因为正多边形的每一个内角都相等,所以正多边形的每一个外角也都相等,因此只要知道正多边形中任一个外角的度数就能求出边数,或知道外角的个数也能求出每一个外角的度数,进而能求出内角度数和内角和的度数.同顶点的外角和内角互为邻补角,所以多边形外角和内角又是相互联系的,知道内角能求外角,知道外角也能求内角,它们之间能相互转换.破疑点多边形外角和与外角的关系多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处各取一个外角的和,是360°,而多边形所有外角的和是360°的2倍,是720°,这点要注意.【例6-1】如图所示,已知∠ABE=138°,∠BCF=98°,∠CDG=69°,则∠DAB=__________.解析:方法一:根据同顶点的外角和内角互为邻补角,求出已知角的邻补角.根据四边形内角和为360°,求出∠A;方法二:根据四边形外角和为360°,求出与∠A同顶点的邻补角(A点处的外角),再求出∠A.答案:125°【例6-2】如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于( ).A.140°B.40°C.260°D.不能确定解析:方法一:因为四边形内角和是360°,且∠B+∠ADC=140°,所以∠DAB+∠DCB =220°,∠1+∠2+∠DAB+∠DCB=180°×2,所以∠1+∠2=360°-220°=140°;方法二:可求出与∠B,∠ADC同顶点的两外角和为220°,根据四边形外角和是360°,得出∠1+∠2=360°-220°=140°;方法三:连接BD,根据三角形一个外角等于和它不相邻的两内角和,求出∠1+∠2的度数.答案:A7.正多边形知识的应用正多边形是特殊的多边形,它特殊在每一个内角、外角、每一条边都相等,所以在正多边形中,只要知道一个角的度数,就能知道所有角的度数,包括每一个外角的度数.知道一边的长度,就能知道每一边的长度.因此它的应用主要包括两个方面:(1)已知内角(或外角)能求边数、内角和;已知边数能求每一个外角(或内角)的度数及内角和,即在内角和、边数、内角度数、外角度数四个量中知道一个量就能求出其他三个量.(2)因为正多边形每一条边都相等,所以知道周长能求边长,知道边长能求周长(因较简单所以考查较少).解技巧利用方程思想求多边形的边数正多边形中已知一个内角的度数求边数时,一是将内角根据“同顶点的内、外角互补”转化为外角,再根据外角和是360°,由360°除以一个外角的度数得到边数;二是根据内角和公式和每个角度数都相等列方程解出边数n.【例7-1】若八边形的每个内角都相等,则其每个内角的度数是__________.解析:由多边形内角和定理知,八边形的内角和是1 080°,每个内角都相等,所以1 080°÷8=135°.答案:135°【例7-2】一个多边形的每一个外角都等于30°,这个多边形的边数是__________,它的内角和是__________.解析:多边形的外角和是360°,每个外角都是30°,所以360°÷30°=12,所以该多边形是十二边形,内角和是1 800°,本题也可根据共顶点的内、外角互补,求出内角和.答案:12 1 800°【例7-3】一个多边形的每一个内角都等于144°,求这个多边形的边数.分析:方法一:可设这个多边形的边数为n,那么内角和就是(n-2)×180°,因为每一个内角都是144°,所以内角和为144°×n,根据“表示同一个量的两个式子相等”列方程解出;方法二:因为每一个内角都等于144°,所以每一个外角都是36°.根据多边形外角和为360°,用360°÷36°=10,也可以得出这个多边形为十边形.解:设这个多边形的边数为n,则(n-2)×180°=n×144°,解得n=10.答:这个多边形的边数为10.8.边数、顶点数、内角和、对角线条数之间关系的综合应用在多边形问题中,当多边形的边数n一定时,不论多边形形状如何,多边形的内角和也是一定的,是(n -2)×180°,多边形对角线的条数也是一定的,是n (n -3)2,并且从一个顶点引出的对角线的条数也是一定的,是(n -3)条,所以在多边形问题中,在这些量中,只要知道其中一个量,就可以求出所有的量.在多边形问题的综合应用中,一般是边数、对角线的条数、内角和之间的关系应用较多,有时还与正多边形知识相结合.因知识限制,一般是给出内角和,求边数或对角线条数题目较多,如:已知一个多边形内角和是1 080°,它有几条对角线?根据内角和公式列方程,(n -2)×180=1 080求出边数,再根据对角线公式求出对角线条数.【例8-1】 过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是( ).A .8B .9C .10D .11解析:过多边形一个顶点的所有对角线将一个多边形分成(n -2)个三角形,所以n -2=8,解得n =10,即这个多边形是十边形,故选C.答案:C【例8-2】 多边形的每一个内角都是150°,则此多边形的一个顶点引出的对角线的条数是( ).A .7B .8C .9D .10解析:根据每一个内角都是150°,求出这个多边形是十二边形,它的一个顶点引出的对角线的条数是n -3=12-3=9,故选C.答案:C【例8-3】 一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的内角和. 分析:设边数为n ,根据对角线的条数是边数的4倍,列方程求出边数,再代入多边形内角和公式求出内角和.解:设这个多边形的边数为n ,根据题意,得n (n -3)2=4n ,解得n =11, 所以这个多边形的内角和为:(n -2)×180°=(11-2)×180°=1 620°.9.将多边形截去一个角问题的探讨在多边形问题中,有一类问题是将多边形截去一个角后,探讨多边形边数变化和内角和变化的问题.在这类问题中,因截法不同,会出现不同的变化,现以四边形为例加以说明.如图所示,将正方形的桌面截去一个角,那么余下的多边形的内角和度数将怎样变化?因截法有三种情况,所以内角和也就有三种情况:(1)当是图①所示情况时,不过任何一个顶点,四边形变为五边形,边数增加1,所以内角和为540°.(2)当是图②所示情况时,过一个顶点,四边形边数不变,所以内角和也不变,为360°.(3)当是图③所示情况时,过两个顶点,四边形变为三角形,边数减少1,所以内角和也变为180°.析规律 分类解决问题 对于其他多边形(三角形除外,因为三角形只有两种情况)也有这样的三种情况,并且截法相同,解法也相同.【例9-1】 一个多边形截去一个角后,变为十六边形,则原来的多边形的边数为( ).A .15或17B .16或17C .16或18D .15或16或17解析:因截法不同,所以有三种可能,①当不过任何一个顶点时,截完后边数会增加1,因此原来多边形应为十五边形;②当过一个顶点时,截完后边数不变,所以这种情况下原来的多边形为十六边形;③当过两个顶点时,边数比原来减少1,所以原来就是十七边形,所以原来的多边形的边数为15或16或17,故选D.答案:D【例9-2】一个多边形截去一个角(截线不过顶点)之后,所形成的一个多边形的内角和是2 520°,那么原多边形的边数是( ).A.13 B.15 C.17 D.19解析:一个多边形截去一个角,因截线不过任何顶点,所以新得到的多边形边数比原来的多边形的边数应该增加1.因为新得到的多边形内角和是2 520°,根据多边形内角和公式列方程得(n-2)×180°=2 520°,解得n=16,新多边形为十六边形,所以原多边形为十五边形,故选B.答案:B【例9-3】如果一个多边形的边数增加一倍,它的内角和是2 880°,那么原来的多边形的边数是( ).A.10 B.9 C.8 D.7解析:现在的多边形的内角和是 2 880°,根据多边形内角和公式(n-2)×180°=2 880°,求出n=18,所以原来的多边形的边数就是18÷2=9,因此是九边形,故选B.答案:B10.多边形内角和少算或多算一个角类型题目探索因为多边形的边数只能是整数,由多边形内角和公式(n-2)×180°可知,n-2是正整数,所以多边形的内角和必定是180°的整数倍,因此:①当所给内角和是多计算一个角的情况时,用所给内角和除以180°,因为多加的角大于0°小于180°,所以得到的余数部分就是多加角的度数,得到的整数部分加2就是边数;②当所给内角和是少计算一个角的情况时,因为少加了角,所以得到的整数部分加2比实际的角个数少1,所以用所给内角和除以180°,整数部分加3才是边数,180°减余数部分就是少加的角的度数.破疑点多边形内角和与边数的关系内角和除以180°所得到的整数并不是边数(或角的个数)n,而是n-2的值,所以得到的整数加2才是边数,这是易错点,要注意.【例10-1】一个多边形除了一个内角之外,其余内角之和为2 670°,求这个多边形的边数和少加的内角的大小.分析:因为这个多边形的内角和少加了一个内角,所以内角和实际要大于2 670°,并且加上这个角后就是180°的整数倍,2 670°÷180°=14……150°,所以n-2=14,n =16,因少加一个角,所以实际有16+1=17个角,所以边数是17条,少加的内角是180°-150°=30°.解:因为2 670°÷180°=14……150°,所以n-2=14+1,n=17.所以这个多边形的边数是17.少加的内角是180°-150°=30°.【例10-2】若多边形所有内角与它的一个外角的和为600°,求这个多边形的边数及内角和.分析:由已知可知,600°是多加了一个外角后的内角和,减去多加的角就应是180°的整数倍,因此600°÷180°=3……60°,因此n-2=3,所以n=5,这个多边形为五边形,边数是5,代入多边形内角和公式即可求出内角和.因为多加了一个角,并且多加的角是余数60°,也可以用600°减去余数(60°)得到内角和度数.解:由题意,得600°÷180°=3……60°,所以n-2=3,n=5.所以这个多边形的边数是5.所以这个多边形的内角和为:180°×(5-2)=540°.答:这个多边形的边数是5,内角和是540°.多边形及其内角和习题第1题. 各角都相等的n 边形的一个外角可能取得的值是 ( ) A.(2)180n n -︒ B.360n ︒ C.180n ︒ D.以上都不对第2题. 一个多边形的内角和比它的外角的3倍少180°,则这个多边形的边数是( ) 第3题. 过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是 ( )第4题. 若一个多边形的对角线的条数恰好为边数的3倍,则这个多边形的边数为( ) 第5题. 一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的内角和. 第6题. 图中是三种将多边形(3)n ≥分成三角形的不同方法.第7题 第8题求证:第9题. 多边形的每一个内角都是150°,则此多边形的一个顶点引出的对角线的条数是( )第10题. 如果五边形的五个外角的比是1:3:2:4:5,则五边形中最大的内角与最小的内角的比是 .第11题. 如图,一个顶角为40o的等腰三角形纸片,剪去顶角后,得到一个四边形,则 12∠+∠= 度.第12题. (1)n +边形的内角和比n 边形的内角和大第13题. 正六边形的一个内角的度数是o 1A2A 3A4A 5A n 1A 2A 3A 4 5A n A 1A 2A 3A 45A n A参考答案1答案:B.2答案:73答案:104答案:9.5答案:(3)42n n n -=11n = 1620︒.6答案:2n -,1n -,n .7答案:十,六.8答案:提示:由OB ,OC 是ABC ∠和BCD ∠的平分线,得1180()2BOC ABC BCD ∠=︒-∠+∠ 再由四边形内角和等于360︒,得360()ABC BCD A D ∠+∠=︒-∠+∠代入上式.9答案:9.10答案:13:5.11答案:220;12答案:180o13答案:120;三角形1.三角形(1)定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)构成:如图所示,三角形ABC 有三条边,三个内角,三个顶点.①边:组成三角形的线段叫做三角形的边.②角:相邻两边所组成的角叫做三角形的内角,简称三角形的角.③顶点:相邻两边的公共端点是三角形的顶点.(3)表示:三角形用符号“△”表示,三角形ABC 用符号表示为△ABC .注:顶点A 所对的边BC 用a 表示,顶点B 所对的边AC 用b 表示,顶点C 所对的边AB 用c 表示.(4)分类:①三角形按角分类如下:三角形⎩⎪⎨⎪⎧ 直角三角形锐角三角形钝角三角形②三角形按边的相等关系分类如下:破疑点 等边三角形和等腰三角形的关系 等边三角形是特殊的等腰三角形,即等边三角形是底边和腰相等的等腰三角形.【例1】 如图所示,图中有几个三角形,分别表示出来,并写出它们的边和角.分析:根据三角形的定义及构成得出结论.解:图中有三个三角形,分别是:△ABC ,△ABD ,△ADC .△ABC 的三边是:AB ,BC ,AC ,三个内角分别是:∠BAC ,∠B ,∠C ; △ABD 的三边是:AB ,BD ,AD ,三个内角分别是:∠BAD ,∠B ,∠ADB ; △ADC 的三边是:AD ,DC ,AC ,三个内角分别是:∠ADC ,∠DAC ,∠C .2.三角形的三边关系(1)三边关系:三角形两边的和大于第三边,用字母表示:a +b >c ,c +b >a ,a +c >b . 三角形两边的差小于第三边,用字母表示为:c -b <a ,b -a <c ,c -a <b .(2)作用:①利用三角形的三边关系,在已知两边的三角形中可以确定第三边的取值范围;②根据所给三条线段长度判断这三条线段能否构成三角形.“两点之间线段最短”是三边关系得出的理论依据.破疑点 三角形三边关系的理解 三角形两边之和大于第三边指的是三角形中任意两边之和都大于第三边,即a+b>c,c+b>a,a+c>b三个不等式同时成立.【例2】下列长度的三条线段(单位:厘米)能组成三角形的是().A.1,2,3.5 B.4,5,9C.5,8,15 D.6,8,9解析:选择最短的两条线段,计算它们的和是否大于最长的线段,若大于,则能构成三角形,否则构不成三角形,只有6+8=14>9,所以D能构成三角形.答案:D3.三角形的高(1)定义:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.(2)描述方法:高的描述方法有三种,这三种方法都能得出AD是BC边上的高.如图所示.①AD是△ABC的高;②AD⊥BC,垂足为D;③D在BC上,且∠ADB=∠ADC=90°.(3)性质特点:①因为高是通过作垂线得出的,因而有高一定有垂直和直角.常用关系式为:因为AD是BC边上的高,所以∠ADB=∠ADC=90°.②“三角形的三条高(所在直线)交于一点”,当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部.如图所示.破疑点三角形的高线的理解三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.【例3】三角形的三条高在().A.三角形的内部B.三角形的外部C.三角形的边上D.三角形的内部、外部或边上解析:三角形的三条高交于一点,但有三种情况:当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部,所以只有D正确.答案:D4.三角形的中线(1)定义:三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(2)描述方法:三角形中线的描述方法有两种方式,如图.①直接描述:AD 是BC 边上的中线;②间接描述:D 是BC 边上的中点.(3)性质特点:①由三角形中线定义可知,有中线就有相等的线段,如上图中,因为AD 是BC 边上的中线,所以BD =CD (或BD =12BC ,DC =12BC ). ②如下图所示,一个三角形有三条中线,每条边上各有一条,三角形的三条中线交于一点.不论是锐角三角形、直角三角形,还是钝角三角形,三角形的三条中线都交于三角形内部一点.三角形三条中线的交点叫做三角形的重心.破疑点 三角形的中线的理解 三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.【例4】 如图,AE 是△ABC 的中线,EC =6,DE =2,则BD 的长为( ).A .2B .3C .4D .6解析:因为AE 是△ABC 的中线,所以BE =EC =6.又因为DE =2,所以BD =BE -DE =6-2=4.答案:C5.三角形的角平分线(1)定义:三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.(2)描述方法:角平分线的描述有三种,如图.①直接描述:AD 是△ABC 的角平分线;②在△ABC 中,∠1=∠2,且D 在BC 上;③AD 平分∠BAC ,交BC 于点D.(3)性质特点:①由三角形角平分线的定义可知,有角平分线就有相等的角,如上图中,因为AD 是△ABC 的角平分线,所以∠1=∠2(或∠1=∠2= ∠BAC ,或∠BAC=2∠1=2∠2).②一个三角形有三条角平分线,三角形的三条角平分线交于一点,不论是锐角三角形、。

精品 2014年八年级数学上册-三角形初步认识 04 多边形及其内角和

精品 2014年八年级数学上册-三角形初步认识 04 多边形及其内角和

第04课多边形及其内角和知识点:多边形的定义:_______________________________________________________的图形称为n 边形.多边形分为:____多边形和____多边形.画多边形的任何一条边所在直线,整个多边形______这条直线的_________,这样的多边形叫做凸多边形,类似地,画多边形的任何一条边所在直线,整个多边形________这条直线的_________.这样的多边形叫做凹多边形.凸多边形的特征:凸多边形的每个内角可为锐角或直角或钝角.多边形的边,内角,外角.(1)组成多边形的各条线段叫做多边形的边.(2)__________________________________叫做多边形的内角.(3)_________________________________________叫做多边形的外角.多边形的对角线(1)_________________________________________叫做多边形的对角线.(2)多边形的对角线的条数:①从n 边形的一个顶点可以引________条对角线。

将多边形分成________个三角形.②n 边形共有___________条对角线.正多边形:各个角_______,各条边_______的多边形叫正多边形.如正三角形,正四边形,正六边形等等.从n 边形的一个顶点出发,可以引______对角线,它们将n 边形分成______个三角形,n 边形的对角线共有__________n 边形的内角和等于_________多边形的外角和与它的边数_______(填“有”或“无”)关系._________________________________________________________________________________________例1.如图,已知五边形ABCDE,若剪去一个角,求剩下多边形内角和。

专题04 多边形及其多边形内角和(知识点串讲)(解析版)

专题04 多边形及其多边形内角和(知识点串讲)(解析版)

专题04 多边形及其多边形内角和知识网络重难突破知识点一多边形相关知识多边形概念:在平面中,由一些线段首尾顺次相接组成的图形叫做多边形 内角:多边形中相邻两边组成的角叫做它的内角。

外角:多边形的边与它邻边的延长线组成的角叫做外角。

对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

【对角线条数】一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn(重点)凸多边形概念:画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。

正多边形概念:各角相等,各边相等的多边形叫做正多边形。

(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)典例1 (2018春富顺县期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.典例2 (2018秋桥北区期中)过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形的边数是( )A.10 B.11 C.12 D.13【答案】B【详解】设多边形有n条边,n-2=9,则n=11,故答案选B.典例3 (2018春道里区期末)如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( ) A.6 B.9 C.14 D.20【答案】B【详解】由题意可知n=6,所以对角线条数为9知识点二多边形的内角和外角(重点)n边形的内角和定理:n边形的内角和为(n−2)∙180°(重点)n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。

典例1 (2019春安庆市期中)若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒【答案】C【详解】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.故选C.典例2 (2019春南阳市期中)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【答案】B【详解】根据n边形的内角和公式,得:(n-2)•180=360,解得n=4.故选B典例3 (2018春菏泽市期末)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.巩固训练一、单选题(共10小题)1.(2018春龙安区期末)一个多边形切去一个角后,形成的另一个多边形的内角和为540 ,那么原多边形的边数为()A.4 B.4或5 C.5或6 D.4或5或6【答案】D【详解】设新多边形的边数为n,则(n−2)⋅180°=540°,解得n=5,如图所示,截去一个角后,多边形的边数可以增加1、不变、减少1,所以,5−1=4,5+1=6,所以原来多边形的边数为4或5或6.故选:D.此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式.2.(2019春闻喜县期末)下列正多边形中,不能够铺满地面的是()A.正六边形B.正五边形C.正方形D.正三角形【答案】B【详解】A. 正六边形的每个内角是120°,能整除360°,能密铺;B. 正五边形每个内角是180°−360°÷5=108°,不能整除360°,不能密铺;C. 正方形的每个内角是90°,能整除360°,能密铺;D. 正三角形的每个内角是60°,能整除360°,能密铺.故选B.【名师点睛】此题考查平面镶嵌(密铺),解题关键在于掌握计算法则.3.(2018春南昌县期末)已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是A.4 B.5 C.6 D.8【答案】C【详解】设这个多边形是n边形,根据题意,得(n-2)×180°=2×360°,解得:n=6,即这个多边形为六边形,故选C.【名师点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.(2019春道外区期末)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【答案】B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.5.(2018春东坡区期末)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°【答案】C【详解】∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【名师点睛】主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180 (n≥3且n为整数).6.(2018春金安区期中)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米【答案】A【详解】解:∵360÷36=10,∴他需要走10次才会回到原来的起点,即一共走了10×10=100米.故选A.【名师点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360º.7.(2018春小店区期中)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D.8.(2017秋民勤县期中)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:C.【名师点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.9.(2016春荔湾区期中)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10,这个正n边形的所有对角线的条数是:==35,故选C.10.(2018春德州市期末)一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6【答案】B【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=7.则这个正多边形是正七边形.所以,从一点引对角线的条数是:7-3=4.故选:B【名师点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.二、填空题(共5小题)11.(2018春天水市期末)如图,五边形是正五边形,若,则__________.【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.[名师点睛]题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.12.(2019春海淀区期末)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________.【答案】180°或360°或540°【解析】分析: 剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.详解: n边形的内角和是(n-2)•180°,边数增加1,则新的多边形的内角和是(4+1-2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4-2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4-1-2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【名师点睛】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.13.(2018春金东区期末)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.【答案】40°【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为:40°.【名师点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14.(2018春延边市期中)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.【答案】540°【详解】如下图,由三角形的外角性质可知∠6+∠7=∠8,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8,又∵∠1+∠2+∠3+∠10=360°, ∠4+∠5+∠8+∠9=360°,∠10+∠9=180°,∴∠1+∠2+∠3+∠4+∠5+∠8=(∠1+∠2+∠3+∠10)+(∠4+∠5+∠8+∠9)-(∠10+∠9)=540°.【名师点睛】本题考查了三角形的外角和性质,四边形的内角,找到外角与邻补角是解题关键.15.(2019春东阳市期末)若一个多边形的内角和比外角和多900,则该多边形的边数是_____.【答案】9,【解析】分析:根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.详解:设这个多边形的边数是n,则 (n−2)⋅180°−360°=900°,解得n=9.故答案为: 9.【名师点睛】本题考查了多边形的内角和外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.三、解答题(共2小题)16.(2018春云岩区期末)一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.【答案】(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【详解】(1)设内角为x,则外角为,由题意得,x+=180°,解得:x=120°,=60°,这个多边形的边数为:=6,答:这个多边形是六边形,(2)设内角为x,则外角为,由题意得: x+=180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【名师点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.17.(2017春黄岩区期中)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【答案】(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.。

【精品】第九章 三角形、多边形

【精品】第九章  三角形、多边形

第9章三角形与多边形一、教学目标本章的主要内容是三角形和多边形的有关概念及其边角的性质。

教材先从瓷砖的铺设提出问题,接着研究三角形和多边形的有关边角的性质,最后探究正多边形在拼地板中的运用及其隐含的数学道理。

本章的教学目标是:1.了解三角形的内角、外角及其主要线段(中线、高、角平分线)等概念。

2.会用刻度尺和量角器画出任意三角形的角平分线、中线和高。

3.了解三角形的稳定性。

4.了解几种特殊的三角形与多边形的特征,并能加以简单地识别。

5.探索并掌握三角形的外角性质与外角和。

6.理解并掌握三角形的三边关系。

7.探索、归纳多边形的内角和外角和公式,并能运用于解决计算问题。

8.体验探索、归纳过程,学会合情推理的数学思想方法。

9.在直观感知、操作确认的基础上,体验证明的必要性,初步学会说理.10.欣赏丰富多彩的图案,体验数学美,提高审美情趣.二、教材特点1.本章由“瓷砖的铺设"导入,接着研究三角形和多边形的性质,最后运用三角形和多边形的有关性质探索拼地板的问题,体现了数学来源于实践,又应用于实践的特点。

2.在呈现方式上,改变“结论——例题——练习”的陈述模式,而是采用“问题——探究——发现”的研究模式,并采用多种探究方法:对“三角形的外角性质及外角和”同时采用拼图和数学说理的方法;对“三角形的三边关系"采用画图的方法;对“多边形的内角与外角和”采用计算与归纳说理的方法.3.在直观感知、操作确认的基础上,适当地进行数学说理,将两者有机地结合起来,让学生体验证明的必要性,学会初步说理。

4.渗透计算器的应用,有意识地让学生运用计算器探索多边形的内角和外角和。

5.通过教材的“问题型”呈现和探索性、开放性习题的练习,力图改变学生的学习方式,让学生自主探索、合作学习。

6.第1课时认识三角形(1)教学目的1。

理解三角形、三角形的边、顶点、内角、外角等概念.2。

会将三角形按角分类.3。

理解等腰三角形、等边三角形的概念。

赣榆县一小四年级数学下册 四 巧手小工匠——认识多边形三角形知识点总结1 青岛版六三制

赣榆县一小四年级数学下册 四 巧手小工匠——认识多边形三角形知识点总结1 青岛版六三制

三角形由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

三角形具有稳定性 三角形内角和是180°组成三角形的两个条件: 三角形任意两边之和大于第三边 三角形任意两边之差小于第三边三角形分类 按角来分锐角(0°<A<90°) 直角(90°) 钝角(90°<A<180°) 锐角三角形:三个角都是锐角直角三角形:有一个角是直角(其他两个角一定都是锐角) 钝角三角形:有一个角是钝角(其他两个角一定都是锐角)锐角三角形的三条高(三条虚线)直角三角形的三条高(一条虚线加两条直角顶点边底CBA三角形ABC:A边)钝角三角形的三条高(三条虚线)按边分底直角边CBA直角边CBCBA 底边等边三角形(三条边都相等,每个角都是等腰三角形(两条边相等,两个底角相等)※已知三角形两条边各长a、b(a>=b),求第三边长度c的范围方法:a-b<c<a+b例:已知一个三角形两边分别长5cm和9cm,第三边的长度范围是多少?解:9-5<c<9+5(没有等号) 4<c<14如果第三边长度是整数,那么第三边可能是5、6、7、8、9、10、11、12、13cm例:已知一个三角形两边分别长5cm和5cm,第三边的长度范围是多少?解:5-5<c<5+5(没有等号) 0<c<10如果第三边长度是整数,那么第三边可能是1、2、3、4、5、6、7、8、9cm※已知三条线段的长度,判断能不能组成三角形方法:将最短的两条线段长度相加,如果比最长的那条线段长,那么能组成三角形例:已知三条线段分别是7cm、4cm、2cm,它们能不能组成三角形?2+4<7 不能例:已知三条线段分别是5cm、5cm、5cm,它们能不能组成三角形?5+5>5 能(等边三角形/正三角形)例:已知三条线段分别是10cm、10cm、20cm,它们能不能组成三角形?10+10=20 不能※多边形内角和问题三角形:180°四边形:360°在四边形内部画一条线,将其分成两个三角形,内角和=180°×2=360°五边形:540°在五边形内部画两条线,将其分成三个三角形,内角和=180°×3=540°六边形:720°在六边形内部画三条线,将其分成四个三角形,内角和=180°×4=720°第八单元垂线与平行线1 认识射线和直线项目内容1.生活中有哪些物体可以近似地看成线段、射线、直线?2.笔直的马路给我们( )的形象,绷紧的琴弦可以近似地看作( ),电筒的光柱类似( )。

专题四 三角形模型归纳

专题四  三角形模型归纳

专题四三角形模型归纳
专题四三角形模型归纳
引言
本文将对三角形模型进行归纳总结,包括三角形的定义、分类、性质和应用等方面内容。

三角形的定义
三角形是由三条线段相连而成的多边形,其中每条线段称为一
条边,相邻两条边的交点称为一个顶点。

三角形的顶点总数恰好是
3个。

三角形的分类
根据边长和角度的关系,三角形可以分为以下几类:
1. 等边三角形:三条边的长度相等。

2. 等腰三角形:两条边的长度相等。

3. 直角三角形:其中一个角为直角(90度)。

4. 钝角三角形:其中一个角大于90度。

5. 锐角三角形:其中所有角都小于90度。

三角形的性质
三角形有许多重要的性质,包括:
1. 角的和定理:三角形的三个内角之和等于180度。

2. 外角定理:三角形的一个内角和与它相邻的外角之和等于180度。

3. 相似三角形:具有相同角度的三角形,对应边的比例相等。

4. 三边关系:任意两边之和大于第三边,任意两边之差小于第三边。

三角形的应用
三角形广泛应用于几何学和实际生活中。

它们可以用于测量地理距离、计算航空航天器的轨迹、建筑设计等领域。

结论
通过对三角形的定义、分类、性质和应用的归纳总结,我们更深入地了解了三角形的特点和作用,为进一步研究和应用三角形提供了基础。

请注意,本文的内容仅供参考,具体问题需要根据实际情况进行具体分析和解决。

中考数学全程复习方略第十六讲三角形与多边形课件

中考数学全程复习方略第十六讲三角形与多边形课件

(1)求∠CBE的度数. (2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
第二十页,编辑于星期六:六点 三十五分。
【思路点拨】(1)先根据直角三角形两锐角互余求出
∠ABC=90°-∠A=50°,由邻补角定义得出∠CBD=130°.再根
据角平分线定义即可求出∠CBE.
(2)先根据(1)得出∠CEB,再根据平行线的性质即可求出
(2)区分性质与判定:已知直角三角形可得两锐角互余,此为 性质;已知两锐角互余可得直角三角形,此为判定.
第十八页,编辑于星期六:六点 三十五分。
【核心突破】 例2(2018·宜昌中考)如图,在Rt△ABC中
,∠ACB=90°,∠A=40°,△ABC的外角
∠CBD的平分线BE交AC的延长线于点E.
第十九页,编辑于星期六:六点 三十五分。
第三条线段,那么这三条线段能组成一个三角形,否则不能组 成一个三角形.
第八页,编辑于星期六:六点 三十五分。
2.已知两边求第三边:设三角形的两边长分别为a,b(a>b),则第
三边长c必须满足条件:a-b<c<a+b,由此便可确定第三边长
的范围.
3.证明线段不等关系:若是和的大小关系则采用三角形的两 边之和大于第三边,若是差的大小关系则采用三角形两边 之差小于第三边.
B.有两个不相等的实数根
C.没有实数根
D.无法确定
第十三页,编辑于星期六:六点 三十五分。
3.长度分别为3,4,5,7的四条线段首尾顺次相接,相邻 两线段的夹角可调整,则任意两端点的距离最大值为 ____9____.
第十四页,编辑于星期六:六点 三十五分。
4.(2019·株洲芦淞区一模)已知关于x的不等式组

专题04 多边形及其多边形内角和(专题测试)(解析版)

专题04 多边形及其多边形内角和(专题测试)(解析版)

专题04 多边形及其多边形内角和专题测试学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每题4分,共计48分)1.(2018春黄浦区期中)如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°【答案】D【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【名师点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.2.(2017春东源县期中)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°【答案】C【解析】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.3.(2018春正定县期末)如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则为A.B.C.D.【答案】D【解析】试题解析:正方形的内角为,正五边形的内角为,正六边形的内角为,,故选D.4.(2018春二道区期末)如图,将四边形ABCD去掉一个60°的角得到一个五边形BCDEF,则∠1与∠2的和为()A.60°B.108°C.120°D.240°【详解】∵四边形的内角和为(4−2)×180°=360°,∴∠B+∠C+∠D=360°−60°=300°,∵五边形的内角和为(5−2)×180°=540°,∴∠1+∠2=540°−300°=240°,故选:D.【名师点睛】本题考查多边形的内角和知识,求得∠B+∠C+∠D的度数是解决本题的突破点.5.(2018春呼兰区期末)若一个多边形的内角和为540°,那么这个多边形对角线的条数为()A.5 B.6 C.7 D.8【答案】A【解析】分析: 先根据多边形的内角和公式求出多边形的边数,再根据多边形的对角线的条数与边数的关系求解.详解: 设所求正n边形边数为n,则(n-2)•180°=540°,解得n=5,∴这个多边形的对角线的条数==5.故选:A.6.(2018春官渡区期末)如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,则∠AED的度数是()A.120°B.110°C.115°D.100°【答案】A【解析】详解:∵∠1=∠2=∠3=∠4=75°,∴∠5=360°﹣75°×4=360°﹣300°=60°,∴∠AED=180°﹣∠5=180°﹣60°=120°.7.(2017春南山区期末)过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】C【详解】解:由规律可知,如此操作后得到的三角形数量比该多边形的边数少2,则该多边形的边数为5+2=7,为七边形,故选择C.【名师点睛】本题考查了几何图形中的找规律.8.(2018春金安区期末)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )A.30°B.15°C.18°D.20°【答案】C【详解】∵正五边形的内角的度数是15×(5-2)×180°=108°,正方形的内角是90°,∴∠1=108°-90°=18°.故选:C【名师点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.9.(2018春雨花台区期末)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C【详解】180°-144°=36°,360°÷36°=10,则这个多边形的边数是10.【名师点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.10.(2018春武清区期末)一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有()A.4条B.5条C.6条D.7条【答案】C【详解】根据题意,得(n-2)•180=1260,解得n=9,∴从此多边形一个顶点引出的对角线有9-3=6条,故选C.【名师点睛】本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.11.(2018春白云区期末)小明在计算一个多边形的内角和时,漏掉了一个内角,结果得1000°,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形【答案】C【详解】解:设多边形的边数是n.依题意有(n-2)•180°>1000°,解得:n>759,则多边形的边数n=8;故选:C.【名师点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.12.(2018春泰兴市期中)若一个边形的每一个外角都是36°,则这个边形对角线的条数是()A.30 B.32 C.35 D.38【答案】C【解析】分析:多边形的外角和是固定的360°,依此可以求出多边形的边数,进而求得对角线的条数.详解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.∴对角线的条数是×10×(10-3)=35(条).故选C.【名师点睛】本题主要考查了多边形的外角和定理:多边形的外角和是360°,正确理解n边形的对角线条数是n(n-3)是关键.二、填空题(共5小题,每小题4分,共计20分)13.(2018春新华区期末)如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.【答案】150, 60【解析】分析:回到出发点O点时,所经过的路线正好构成一个外角是30°的正多边形,根据正多边形的性质即可解答.详解:由题意可知小亮的路径是一个正多边形,∵每个外角等于30°,∴每个内角等于150°.∵正多边形的外角和为360°,∴正多边形的边数为360°÷30°=12(边).∴小亮走的周长为5×12=60.14.(2019春南明区期末)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.÷=,【详解】连续左转后形成的正多边形边数为:4559︒÷=︒.则左转的角度是360940故答案是:40︒.【名师点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.15.(2018春三元区期末)小明同学在计算一个多边形(每个内角小于180°)的内角和时,由于粗心少算了一个内角,结果得到的总和是2018°,则少算了这个内角的度数为________.【答案】142°【解析】分析:n边形的内角和是(n−2)•180°,少计算了一个内角,结果得2018°,则内角和是(n−2)•180°与2018°的差一定小于180度,并且大于0度.因而可以解方程(n−2)•180°≥2018°,多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.详解:设多边形的边数是n,依题意有(n−2)•180°≥2018°,解得:n≥,则多边形的边数n=14;多边形的内角和是(14−2)•180=2160°;则未计算的内角的大小为2160°−2018°=142°.故答案为:142°16.(2018春莲都区期末)定义:有三个内角相等的四边形叫三等角四边形三等角四边形ABCD中,,则的取值范围______.【答案】【详解】解:四边形的内角和是,,,又,.故答案是:.【名师点睛】本题考查了多边形的内角和,注意到∠D的范围是解题的关键.17.(2018春长春市期中)如图,一束平行太阳光线照射到正五边形上,则∠1= ______.【答案】30°【解析】∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°.三、解答题(共4小题,每小题8分,共计32分)18.(2018春武义县期中)如图,在六边形ABCDEF中,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的度数.【答案】∠F=134°.【详解】如图,连接AC,∵CD∥AF,∴∠DCA+∠CAF=180°,∵AB⊥BC,∴∠BCA+∠BAC=90°,∴∠BCD+∠BAF=∠BCA+∠DCA+∠BAC+∠CAF=270°,∴∠BAF=270°-∠BCD=270°-124°=146°,∵六边形的内角和=(6-2)×180°=720°.∴∠F=720°-2×146°-90°-124°-80°=134°.【名师点睛】本题是考查多边形的内角和、平行线的性质、直角三角形两锐角互余的性质的综合题,运用整体思想把∠BCD与∠BAF,∠CAF与∠DCA,∠BCA与∠BAC分别看成一个整体是解题的关键. 19.(2018春吴兴区期中)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180.()2将多边形只截去一个角,截后形成的多边形的内角和为2520,求原多边形的边数.【答案】(1)作图见解析;(2)15,16或17.【详解】()1如图所示:()2设新多边形的边数为n,n-⋅=,则()21802520n=,解得16①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,故原多边形的边数可以为15,16或17.【名师点睛】本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.20.(2018春桃城区期中)(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.【答案】(1)150°、120°、90°.(2)12.【详解】(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.【名师点睛】本题考查的知识点是多边形内角和,解题的关键是熟练的掌握多边形内角和.21.(2019春盘龙区期末)如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.【答案】x=85°解:∵AB∥CD,∠C=60°,∴∠B=180°﹣60°=120°,∴(5﹣2)×180°=x+150°+125°+60°+120°,∴x=85°.【名师点睛】本题主要考查了平行线的性质和多边形的内角和知识点,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题四多边形与三角形
多边形内角和与三角形模型
笔记
1.n边形对角线条数:
2.n边形内角和:
3.n边形外角和:
4.三角形模型:
“飞镖”模型“8”字模型
例题训练
例1. (1)一个多边形内角和是1080°,则这个多边形的边数为.
(2)若一个正多边形的外角和是40°,则这个正多边形的边数为.
(3)如果一个多边形的内角和与外角和是1260°,那么这个多边形的边数n= .(4)如果一个五边形的4个内角都是100°,则第5个内角的度数是.
(5)从n边形的一个顶点出发可作4条对角线,则这个n边形的内角和为.
例2. (1)如图1,∠A +∠B +∠C +∠D +∠E = .
(2)如图2,∠A +∠B +∠C +∠D +∠E +∠F = .
例3. (1)如图1,求∠A +∠B +∠C +∠D +∠E +∠F = .
(2)如图1,求∠A +∠B +∠C +∠D = .
(3)如下图,试求∠A +∠B +∠C +∠D +∠E +∠F = .
例4.已知: 如图,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.试解答下列问题:
(1) 在图1中,写出∠A 、∠B 、∠C 、∠D 之间关系为;
图1
C
D E
F
图2
A
B
125°
100°
120°
图1
图2
C D
A
B
(2)如图2,在(1)的结论下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于点M、N.若∠D=40°,∠B=36°,试求∠P的度数.(3)若∠D、∠B为任意角,探究∠P与∠D、∠B之间有何数量关系,并说明理由.
例5. 已知△ABC
(1)将BC边上一点P(点B、C除外)向上移动,使BP平方∠B,CP平方∠C,
探究:∠A与∠P的关系.
(2)将BC边上一点P(点B、C除外)向下移动,使BP平分角B的外角,CP平分角C的外角,探究:∠A与∠P的关系.
(3)将BC边上一点P(点B、C除外)向左移动,使BP平分角B的外角,CP平分角C,探究:∠A与∠P的关系.
(1)(2)(3)
A A
A
B
B
B C C
C
例6. 如图,由图1的△ABC沿DE折叠得到图2,图3,图4.
(1)如图2,猜想∠BDA+∠CEA与∠A的关系,并说明理由;
(2)如图2,猜想∠BDA+∠CEA与∠A的关系,并说明理由;
(3) 如图2,猜想∠BDA+∠CEA与∠A的关系,无需说明理由;
自主练习
1. m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形对角线条数等于边数,则
m+ n+ k = .
2. (1)如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G =n ▪90°,求n 的值.
(2)如图,∠C =30°,则∠B +∠A +∠D +∠E = .
3. 如图,在△ABC 中,BD 、CE 分别是∠ABC 和∠ACB 的角平分线,交于点O .若∠A=70°,
则∠BOC 的度数为 .
4. 如图,把△ABC 纸片沿DE 折叠,点A 落在四边形BCDE 内,已知∠1=46°,∠2=50°,则∠A= .
4. 如图,△ADE 和△ABC 中,∠EAD=∠AED=∠BAC=∠BCA=45°,又有∠BAD=∠BCF . (1) 求∠ECF+∠DAC+∠ECA 的度数; (2) 判断ED 与FC 的位置关系,并加以证明.。

相关文档
最新文档