八年级上三角形与多边形测试题

合集下载

人教版八年级上册数学《三角形》测试卷(含答案)

人教版八年级上册数学《三角形》测试卷(含答案)

人教版八年级上册数学《三角形》测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图所示,∠BAC 的对边是( )A 、BDB 、DCC 、BCD 、AD2.已知三角形的三边长分别为4、5、x ,则x 不可能是( )A .3B .5C .7D .9 3.在下列长度的线段中,能组成三角形的是( ).A .2,2,4B .2,3,5C .2,3,6D .4,4,7 4.张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是( )A 、B 、C 、D 、5.已知三角形三边的长均为整数,其中某两条边长之差为5,若此三角形周长为奇数,则第三边长的最小值为( ). A .8 B .7 C .6 D .46.已知ABC ∆的三个内角为A ∠,B ∠,C ∠,令B C α∠=∠+∠,C A β∠=∠+∠,A B γ∠=∠+∠,则α∠,β∠,γ∠中锐角的个数至多为( )A .1个B .2个C .3个D .0个 7.在凸多边形中,小于108︒的角最多可以有( )A .3个B .4个C .5个D .6个8.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中第1个黑DCBA色形由3个正方形组成,第2个黑色形由7个正方形组成,…那么组成第6个黑色形的正方形个数是( )A .22B .23C .24D .259.为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是( )A 、19.5B 、20.5C 、21.5D 、25.5 10.如图,()A B C D E F G ∠+∠+∠+∠+∠+∠+∠=A .100︒B .120︒C .150︒D .180︒二 、填空题(本大题共5小题,每小题3分,共15分)11.如图,A B C D E F G ∠+∠+∠+∠+∠+∠+∠= .11 6.55.59678854电厂DCBAGFEDCBAGFED CB A12.如图,ABC △中,ABC DBE EBC ACD DCE ECB ∠=∠=∠∠=∠=∠,,若145BEC ∠=︒,则BDC ∠等于 .13.在凸10边形的所有内角中,锐角的个数最多是 . 14.如图,求A B C D E F G ∠+∠+∠+∠+∠+∠+∠的值为 度15.如图,ABC △中,90C ∠=︒,13BAD BAE ∠=∠,13ABD ABF ∠=∠,则D ∠= .三 、解答题(本大题共8小题,共55分)16.如图,四边形ABCD 中,已知AB CD AD BC AE BC ⊥∥,∥,于E ,AF CD ⊥于F ,求证:180BAD EAF ∠+∠=︒17.在四边形ABCD 中,60D ∠=︒,B ∠比A ∠大20︒,C ∠是A ∠的2倍,求A ∠,B ∠,C ∠的大小.18.如图,已知90130100AB ED C B E D F ∠=︒∠=∠∠=︒∠=︒∥,,,,,求A ∠的大小.ED CBA G F ED CBA FE DCB AFEDCBA19.如图,127.5∠=︒,295∠=︒,338.5∠=︒,求4∠的大小.20.如图,在三角形ABC 中,42A ∠=︒,ABC ∠和ACB ∠的三等分线分别交于D 、E ,求BDC ∠的度数.21.已知一个多边形的对角线的条数为边数的2倍,求该多边形的边数. 22.把一副学生用的三角板,如图(1)放置在平面直角坐标系中,点A 在y 轴正半轴上,直角边AC 与y 轴重合,斜边AD 与y 轴重合,直角边AE 交x 轴于F ,斜边AB 交x 轴于G ,O 是AC 中点,8AC =.(1)把图1中的Rt AED △绕A 点顺时针旋转α度得图2,此时AGH △的面积是10,AHF △的面积是8,分别求F H B 、、三点的坐标.(2)如图3,设AHF ∠的平分线和AGH ∠的平分线交于点M ,EFH ∠的平分线和FOC ∠的平分线交与点N ,当AED △绕A 点转动时,N M ∠+∠的值是否会改变,若改变,请说明理由,若不改变,请求出其值.FE DCBA3421EDCBA23.已知,如图,P Q ,为三角形ABC 内两点,B P Q C ,,,构成凸四边形,求证:AB AC BP PQ QC +>++.QPCBA人教版八年级上册数学《三角形》测试卷答案解析一、选择题1.C2.D3.D4.C;∵能够铺满地面的图形是内角能凑成360°,∵正三角形一个内角60°,正方形一个内角90°,正五边形一个内角108°,正六边形一个内角120°,只有正五边形无法凑成360°.5.C;设5a b-=,由已知可得a b c++为奇数,所以c为偶数,且c a b>-,所以c的最小值为6.6.A;实际是问至多有几个顶点所对应的外角是锐角,即至多有几个内角是钝角.总结:一个三角形的内角至多有311⎧⎪⎨⎪⎩锐角个直角个钝角个;至少有2个锐角.7.B设凸n边形中,小于108︒的角有x个.当多边形的一个内角小于108︒,则它的外角大于72︒,而任意多边形的外角和等于72︒,故有72360x<解得5x<,故小于108︒的角可以有4个,故选B8.B;由图中可以看出:第1个黑色形由3个正方形组成,第2个黑色形由3+1×4=7个正方形组成,第3个黑色形由3+2×4=11个正方形组成,…那么第6个黑色形由3+5×4=23个正方形组成.9.B;如图,最短总长度应该是5+4+5.5+6=20.5cm.故选B.10.D;如图,连接EF AC,,则有G D GAD GCA∠+∠=∠+∠,()()EFC AEF EAC ACF EAD CAD GCF GCA∠+∠=∠+∠=∠+∠+∠+∠()()()()EAD GCF CAD GCA EAD GCF G D =∠+∠+∠+∠=∠+∠+∠+∠所以A B C D E F G ∠+∠+∠+∠+∠+∠+∠()()()EAD GCF G D B AEB CFB =∠+∠+∠+∠+∠+∠+∠ ()()EFC AEF B AEB CFB =∠+∠+∠+∠+∠()()180EFC CFB AEB AEF B EFB FEB B =∠+∠+∠+∠+∠=∠+∠+∠=︒二 、填空题11.540︒;连接CE BF 、,出现一个对顶八字形,故所有角度之和为一个四边形AGFB 加上一个△DEC12.110︒;根据燕尾形,故E A ABE ACE ∠=∠+∠+∠,2A E D ∠+∠=∠,35x y +=︒13.3;考虑外角,外角是钝角的个数不能超过3个,故锐角个数最多是3个 14.540︒;如图,转化为五边形ABCFG 的内角和,为540︒15.90︒;()()1118018033DAB ABD BAE ABD CAB ABC ∠+∠=∠+∠=︒-∠+︒-∠,GFEDCBAGFEDCBA yxED CBA A BCD EF G90CAB ABC ∠+∠=︒三 、解答题16.180180ABC BCD BAD ABC ∠+∠=︒∠+∠=︒,,BAD BCD∠=∠,又180EAF BCD ∠+∠=︒∴180BAD EAF ∠+∠=︒17.设(度),则,.根据四边形内角和定理得,. 解得,,∴,,. 18.120︒【解析】如图,延长DC AB ,交于点G . ∵130ED AB D ∠=︒∥,,所以50G ∠=︒.又∵90BCD BCD G CBG ∠=︒∠=∠+∠,,∴40CBG ∠=︒. ∴140ABC ∠=︒,140E ∠=︒,因为内角和为720︒,120A ∠=︒.19.23ADC ∠=∠+∠, 14180ADC ∠+∠+∠=︒,2314180∠+∠+∠+∠=︒, 9538.527.54180︒+︒+︒+∠=︒, 419∠=︒.20.设ABC ∠的三分之一为x ,ACB ∠的三分之一为y ,因为三角形内角和为180︒, 所以有:3342180x y ++=︒, 即180423x y ︒-︒+=,所以180421802883BDC ︒-︒∠=︒-⨯=︒. 21.7;提示:设边数为x ,则()322x xx -=.22.(1)()50F -,,()10H -,,()84B -,(2)97.5M N ∠+∠=︒ 【解析】(1)∵O 是AC 中点,x A =∠20+=∠x B x C 2=∠360602)20(=++++x x x 70=x ︒=∠70A ︒=∠90B ︒=∠140C GFEDCBA∴∴∴4AO OG ==,10AGH S =△,5GH =,8AHG S =△,4FH =(2)12M HAG ∠=∠()1452DAO =∠+︒,90N ∠=︒-12FAO ∠=()190302DAO ︒-∠+︒ 23.作直线PQ ,分别与AB AC ,交于点M N ,由三角形的三边关系可得AM AN MP PQ QNMP PB BPNQ NC QC +>++⎧⎪+>⎨⎪+>⎩①②③①+②+③得AM AN MP PB NQ NC MP PQ QN BP QC +++++>++++ ∴AM AN PB NC PQ BP QC +++>++即AB AC BP PQ QC +>++NM Q P CBA。

人教版八年级数学上册 三角形与多边形习题集(含答案)

人教版八年级数学上册 三角形与多边形习题集(含答案)

三角形一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是______三角形.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE 的度数为_____ .3.三角形中最大的内角不能小于_____,两个外角的和必大于_____ .4.三角形ABC中,∠A=40°,顶点C处的外角为110°,那么∠B=_____ .5.锐角三角形任意两锐角的和必大于_____.6.三角形的三个外角都大于和它相邻的内角,则这个三角形为 _____ 三角形.7.在三角形ABC中,已知∠A=80°,∠B=50°,那么∠C 的度数是.8.已知∠A=12∠B=3∠C ,则∠A= .9.已知,如图7-1,∠ACD=130°,∠A=∠B,那么∠A的度数是.10.如图7-2,根据图形填空:(1)AD是△ABC中∠BAC的角平分线,则∠=∠=∠.(2)AE是△ABC中线,则==.(3)AF是△ABC的高,则∠=∠=90°.11.如图7-3所示,图中有个三角形,个直角三角形.12.在四边形的四个外角中,最多有个钝角,最多有个锐角,最多有个直角.13.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C=.14.一个多边形的每个外角都为30°,则这个多边形的边数为;一个多边形的每个内角都为135°,则这个多边形的边数为.15.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.16.若一个n边形的边数增加一倍,则内角和将.17.在一个顶点处,若此正n边形的内角和为,则此正多边形可以铺满地面.18.如图7-4,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .图7-1 图7-2 图7-3图7-4 图7-519.如图7-5,由平面上五个点A 、B 、C 、D 、E 连结而成,则∠A +∠B +∠C +∠D +∠E = .20.以长度为5cm 、7cm 、9cm 、13cm 的线段中的三条为边,能够组成三角形的情况有 种,分别是 .二、选择题21.已知三角形ABC 的三个内角满足关系∠B +∠C =3∠A ,则此三角形( ).A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形22.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( ).A .4:3:2B .3:2:4C .5:3:1D .3:1:523.三角形中至少有一个内角大于或等于( ).A .45°B .55°C .60°D .65°24.如图7-6,下列说法中错误的是( ).A .∠1不是三角形ABC 的外角B .∠B <∠1+∠2C .∠ACD 是三角形ABC 的外角D .∠ACD >∠A +∠B25.如图7-7,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F =40°,∠C =20°,则∠FBA 的度数为( ).A .50°B .60°C .70°D .80°26.下列叙述中错误的一项是( ).A .三角形的中线、角平分线、高都是线段.B .三角形的三条高线中至少存在一条在三角形内部.C .只有一条高在三角形内部的三角形一定是钝角三角形.D .三角形的三条角平分线都在三角形内部.27.下列长度的三条线段中,能组成三角形的是( ). A .1,5,7 B .3,4,7 C .7,4,1 D .5,5,528.如果三角形的两边长为3和5,那么第三边长可以是下面的( ).A .1B .9C .3D .1029.三条线段a =5,b =3,c 的值为整数,由a 、b 、c 为边可组成三角形( ).A .1个B .3个C .5个D .无数个30.四边形的四个内角可以都是( ).A .锐角B .直角C .钝角D .以上答案都不对31.下列判断中正确的是( ).图7-6 图7-7A .四边形的外角和大于内角和B .若多边形边数从3增加到n (n 为大于3的自然数),它们外角和的度数不变C .一个多边形的内角中,锐角的个数可以任意多D .一个多边形的内角和为1880°32.一个五边形有三个角是直角,另两个角都等于n ,则n 的值为( ).A .108°B .125°C .135°D .150°33.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( ).A .7条B .8条C .9条D .10条34.如图7-9,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( ).A .高B .角平分线C .中线D .不能确定35.如图7-10,已知∠1=∠2,则AH 必为三角形ABC 的( ).A .角平分线B .中线C .一角的平分线D .角平分线所在射线36.现有长度分别为2cm 、4cm 、6cm 、8cm 的木棒,从中任取三根,能组成三角形的个数为( ).A . 1B . 2C . 3D . 437.如图7-11,三角形ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB 、AD 、AC 及BC 的延长线于点E 、H 、F 、G ,下列四个式子中正确的是( )38.如图7-12,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上的一点,CF ⊥AD 于H .下列判断正确的有( ).(1)AD 是三角形ABE 的角平分线. (2)BE 是三角形ABD 边AD 上的中线.(3)CH 为三角形ACD 边AD 上的高.A .1个B .2个C .3个D .0个三、解答题39.如图,在三角形ABC 中,∠B =∠C ,D 是BC 上一点,且FD ⊥BC ,DE ⊥AB ,∠AFD =140°,你能求出∠EDF 的度数吗?40.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那图7-9 图7-10 图7-11 图7-12么,丁岛分别在甲岛和乙岛的什么方向?41.如图,已知三角形ABC的三个内角平分线交于点I,IH⊥BC于H,试比较∠CIH和∠BID 的大小.42.如图,在三角形ABC中,AD⊥BC,BE⊥AC,CF⊥AB,BC=16,AD=3,BE=4,CF=6,你能求出三角形ABC的周长吗?43.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?44.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.45.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE 与DF平行吗?为什么?46.某同学在计算多边形的内角和时,得到的答案是1125°,老师指出他少加了一个内角的度数,你知道这个同学计算的是几边形的内角和吗?他少加的那个内角的度数是多少?47.把边长为2cm的正方形剪成四个一样的直角三角形,如图所示.请用这四个直角三角形拼成符合下列条件的图形:(1)不是正方形的菱形;(2)不是正方形的长方形;(3)梯形;(4)不是长方形、菱形的的平行四边形.48.下面是数学课堂的一个学习片段,阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题.“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经过片刻的思考与交流后,李明同学举手说: “其余两角是30°和120°”;王华同学说:“其余两角是75°和75°.” 还有一些同学也提出了自己的看法…(1)假如你也在课堂中, 你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受?(用一句话表示)49.如图,凸六边形ABCDEF的六个角都是120°,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?参考解析:一、填空题1.直角2.15°3.60°,180°4.70°5.90°6.锐角7.∠C=180°-80°-50°=50°.8.设∠A的度数为x.则∠B=2x,∠C=x.所以x+2x+x=180°,解得x=54°.所以∠A=54°.9.∠A=∠B=∠ACD=65°.10.(1)BAD,CAD,BAC;(2)BE,CE,BC;(3)AFB,AFC.11.解:有5个三角形,分别是△ABD,△ADE,△CDE,△ADC,△ABC;有4个直角三角形,分别是△ABD,△ADE,△CDE,△ADC.12.3,2,413.120°14.12,815.正三角形和正四边形、正三角形和正六边形、正四边形和正八边形中任选两种即可.16.增加(n-4)×180°17.360°或720°或180°18.解:因为∠BED=∠A+∠D=47°,所以∠B=180°-90°-47°=43°.所以∠BCD=27°+43°=70°.所以∠ACB=180°-70°=110°.19.解:连结BC,如图,则∠DBC+∠ECB=∠D+∠E.所以∠A+∠B+∠C+∠D+∠E=∠A+∠B+∠C+∠DBC+∠ECB=180°.20.解:有3种.分别以长为5cm,7cm,9cm;7cm,9cm13cm;5cm,9cm,13cm的线段为边能组成三角形.二、选择题21.A22.C23.C24.D25.C26.C27.D28.C29.C30.B31.B32.C33.C34.C(点拨:可能会错选A或B.有的同学一看到面积就认为与高相关,故错选A;有的同学认为平分内角必平分三角形的面积,故错选B.其实,因为△ABD与△ACD同高h,又S△ABD=S△ADC,即BD×h=·CD×h,所以,BD=CD,由此可知,AD为三角形ABC中BC边的中线.)35.D(点拨:可能会错选A或选C.错选A的同学,只注重平分内角而忽视了三角形的角平分线为一线段这一条件;而错选C的同学,实质上与错选A的同学犯的是同一个错误,显然这里“角平分线”与“一角的平分线”是一个意思,因为前提条件是说“AH必为三角形ABC 的”.)36.A(点拨:由三角形的三边关系知:若长度分别为2cm、4cm、6cm,不可以组成三角形;若长度分别为4cm、6cm、8cm,则可以组成三角形;若长度分别为2cm、4cm、8cm,则不可以组成三角形;若长度分别为2cm、6cm、8cm,则不可以组成三角形.即分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为1,故应选A.)37.C(点拨:因为EG⊥AD,交点为H,AD平分∠BAC,所以在直角三角形AHE中,∠1=90°-,在三角形ABC中,易知∠BAC=180°-(∠2+∠3),所以∠1=90°-[180°-(∠2+∠3)]=(∠3+∠2).又因为∠1是三角形EBG的外角,所以∠1=∠2+∠G.所以∠G=∠1-∠2=(∠3+∠2)-∠2=(∠3-∠2).)38.A(点拨:由∠1=∠2,知AD平分∠BAE,但AD不是三角形ABE内的线段,所以(1)不正确;同理,BE虽然经过三角形ABD边AD的中点G,但BE不是三角形ABD内的线段,故(2)不正确;由于CH⊥AD于H,故CH是三角形ACD边AD上的高,(3)正确.应选A.)三、解答题39.解析:要想求∠EDF的度数,我们可以利用平角定义,只要能求出∠EDB即可.而∠EDB 在三角形BDE中,只要能求出∠B就可以利用三角形内角和求∠EDB.而∠B又等于∠C,题中告诉了三角形DFC的一个外角∠AFD=140°,所以我们能得出∠C的度数.解:因为∠AFD是三角形DCF的一个外角.所以∠AFD=∠C+∠FDC.即140°=∠C+90°.解得∠C=50°.所以∠B=∠C=50°.所以∠EDB=180°-90°-50°=40°.所以∠FDE=180°-90°-40°=50°.40.解析:我们可以用字母代替甲、乙、丙、丁,用角度代表方向.把题中数据与图形一一对应,利用各方向的关系可求出丁岛分别在甲岛和乙岛的方向.解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.如图:因为丁岛在丙岛的正北方,所以CD⊥AB.因为甲岛在丁岛的南偏西52°方向,所以∠ACD=52°.所以∠CAD=180°-90°-52°=38°.所以丁岛在甲岛的东偏北38°方向.因为乙岛在丁岛的南偏东40°方向,所以∠BCD=40°.所以∠CBD=180°-90°-40°=50°.所以丁岛在乙岛的西偏北50°方向.41.解析:利用角平分线的性质解.解:因为AI、BI、CI为三角形ABC的角平分线,所以∠BAD=∠BAC,∠ABI=∠ABC,∠HCI=∠ACB.所以∠BAD+∠ABI+∠HCI=∠BAC+∠ABC+∠ACB=(∠BAC+∠ABC+∠ACB)=×180°=90°.所以∠BAD+∠ABI=90°-∠HCI.又因为∠BAD+∠ABI=∠BID,90°-∠HCI=∠CIH,所以∠BID=∠CIH.所以∠BID和∠CIH是相等的关系.42.解析:本题已知一边长和三条高,我们可以利用三角形的面积公式求得另外两边长,三边相加即可得到三角形的周长.解:由三角形面积公式可得S△ABC=BC×AD=AC×BE,即16×3=4×AC,所以AC=12.由三角形面积公式可得S△ABC=BC×AD=AB×CF,即16×3=6×AB.所以AB=8.所以三角形ABC的周长为16+12+8=36.43.解析:本题要求AC与AB的边长的差,且AC与AB的长度都不知道,不少同学感到无从下手.其实,只要我们仔细分析分析题中条件:三角形ABD的周长比三角形ACD的周长小5,即AC-AB+CD-BD=5,又AD是BC边上的中线,所以BD=CD.所以AC-AB=5.解:AC-AB=5.44.解析:在第(1)和第(2)问中,没有说明所给边长是腰长还是底边长,因此我们要进行分类讨论.在第(3)问中,只给出了三边长都是整数,而此三角形又是等腰三角形,所以其最长边小于8cm,我们可以用列表法一一列出各组边长.解:(1)如果腰长为4cm,则底边长为16-4-4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.所以应该是底边长为4cm.所以腰长为(16-4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm.(2)如果腰长为6cm,则底边长为16-6-6=4cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理.所以另外两边长分别为6cm和4cm.如果底边长为6cm,则腰长为(16-6)÷2=5cm.三边长为6cm,5cm,5cm,符合三角形三边关系定理,所以另外两边长都为5cm.(3)因为周长为16cm,且三边都是整数,所以三角形的最长边不会超过8cm且是等腰三角形,我们可用列表法,求出其各边长如下:7cm,7cm,2cm;6cm,5cm,5cm;6cm,6cm,4cm,共有这三种情况.45.解析:要想BE与DF平行,就要找平行的条件.题中只给出了∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.那么我们是利用同位角相等呢还是利用同旁内角互补?经过仔细观察图形我们知道∠BFD是三角形ADF的外角,则∠BFD=∠A+∠ADF.而∠ADF是∠ADC的一半,∠ABE是∠ABC的一半,所以我们选择用同旁内角互补来证平行.解:BE与DF平行.理由如下:由n边形内角和公式可得四边形内角和为(4-2)×180°=360°.因为∠A=∠C=90°,所以∠ADC+∠ABC=180°.因为BE平分∠ABC,DF平分∠ADC,所以∠ADF=∠ADC,∠ABE=∠ABC.因为∠BFD是三角形ADF的外角,所以∠BFD=∠A+∠ADF.所以∠BFD+∠ABE=∠A+∠ADC+∠ABC=∠A+(∠ADC+∠ABC)=90°+90°=180°.所以BE与DF平行.46.解析:我们发现1125°不能被180°整除,所以老师说少加了一个角的度数.我们可设少加的度数为x,利用整除求解.解:设少加的度数为x.则1125°=180°×7-135°.因为0°<x<180°,所以x=135°.所以此多边形的内角和为1125°+135°=1260°.设多边形的边数为n,则(n-2)×180°=1260°,解得n=9.所以此多边形是九边形,少加的那个内角的度数是135°.47.解析:题中告诉了我们按要求拼成.解:如图:48.解析:本题首先要求考生在阅读数学课堂的一个学习片断后,对两名学生的说法提出自己的看法,这时考生应抓住题中条件“等腰三角形ABC的角A等于30°”这个不确定条件进行分析研究.当∠A是顶角时,设底角是α,∴30°+α+α=180°,α=75°,∴其余两底角是75°和75°.当∠A是底角时,设顶角是β,∴30°+30°+β=180°,β=120°,∴其余两角是30°和120°.由此说明李明和王华两同学都犯了以偏概全的答题的错误.对于第(2)问应在第(1)问的解答的基础上,可总结出“根据图形位置关系,实施分类讨论思想方法解多解型问题”,“考虑问题要全面”等.小结:三角形的中线、角平分线、高(线)是三角形中三条十分重要的线段,初学者常因不能准确理解其概念的实质内涵,而出现这样或那样的错误,现举例分析如下,以达到亡羊补牢或未雨绸缪的目的.49.解析:要求六边形的周长,必须先求出边EF和AF的长.由六边形ABCDEF的六个角都是120°,可知六边形的每一个外角的度数都是60°,如图4,如果延长BA,得到的∠PAF=60°,延长EF,得到的∠PFA=60°,两条直线相交形成三角形APF,在三角形APF 中,∠P的度数为180°-60°-60°=60°,因此三角形APF是等边三角形.同样的道理,我们分别延长AB、DC,交于点G,那么三角形BGC为等边三角形.分别延长FE、CD交于点H,则三角形DHE也是等边三角形.所以∠P=∠G=∠H=60°.所以三角形GHP也是等边三角形.于是我们得到三角形APF、三角形BGC、三角形DHE、三角形GHP四个等边三角形.于是就把多边形的问题转化为和等边三角形有关的问题.利用等边三角形的三边相等的性质,可以轻松的求出AF和EF的长,从而求出六边形ABCDEF的周长.解:如图4,分别作直线AB、CD、EF的延长线使它们交于点G、H、P.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以三角形APF、三角形BGC、三角形DHE、三角形GHP都是等边三角形.所以GC=BC=8cm,DH=DE=6cm.所以GH=8+11+6=25cm,FA=PA=PG-AB-BG=25-2-8=15cm,EF=PH-PF-EH=25-15-6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.多边形及其内角和一、选择题:(每小题3分,共24分)1.一个多边形的外角中,钝角的个数不可能是( )A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是( )A.120°B.(12847)° C.144° D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )A.2:1B.1:1C.5:2D.5:44.一个多边形的内角中,锐角的个数最多有( )A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角6.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形7.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形8.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )A.90°B.105°C.130°D.120°二、填空题:(每小题3分,共15分)1.多边形的内角中,最多有________个直角.2.从n边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形.3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________.4.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为_________.5.每个内角都为144°的多边形为_________边形.三、基础训练:(每小题12分,共24分)1.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(n=20)时,需要多少根火柴?2.一个多边形的每一个外角都等于24°,求这个多边形的边数.四、提高训练:(共15分)一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.五、探索发现:(共18分)从n边形的一个顶点出发,最多可以引多少条条对角线?请你总结一下n边形共有多少条对角线.六、中考题与竞赛题:(共4分)若一个多边形的内角和等于1080°,则这个多边形的边数是( )A.9B.8C.7D.6答案:一、1.D 2.D 3.D 4.A 5.C 6.A 7.B 8.C二、1.4 2.(n-3) (n-2) 3.9 4.11 5.十三、1.630根 2.15四、边数为2()m nn+,n=1或2.五、(n-3)(3)2n n-条六、B.多边形练习题一、判断题.1.当多边形边数增加时,它的内角和也随着增加.()n=3 n=2n=12.当多边形边数增加时.它的外角和也随着增加.()3.三角形的外角和与一多边形的外角和相等.()4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.()5.四边形的四个内角至少有一个角不小于直角.()二、填空题.1.一个多边形的每一个外角都等于30°,则这个多边形为边形.2.一个多边形的每个内角都等于135°,则这个多边形为边形.3.内角和等于外角和的多边形是边形.4.内角和为1440°的多边形是.5.一个多边形的内角的度数从小到大排列时,恰好依次增加相同的度数,其中最小角为100°,最大的是140°,那么这个多边形是边形.6.若多边形内角和等于外角和的3倍,则这个多边形是边形.7.五边形的对角线有条,它们内角和为.8.一个多边形的内角和为4320°,则它的边数为.9.多边形每个内角都相等,内角和为720°,则它的每一个外角为.10.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D= .11.四边形的四个内角中,直角最多有个,钝角最多有个,锐角最多有个.12.如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.三、选择题.1.多边形的每个外角与它相邻内角的关系是()A.互为余角 B.互为邻补角 C.两个角相等 D.外角大于内角2.若n边形每个内角都等于150°,那么这个n边形是()A.九边形 B.十边形 C.十一边形 D.十二边形3.一个多边形的内角和为720°,那么这个多边形的对角线条数为()A.6条 B.7条 C.8条 D.9条4.随着多边形的边数n的增加,它的外角和()A.增加 B.减小 C.不变 D.不定5.若多边形的外角和等于内角和的和,它的边数是()A.3 B.4 C.5 D.76.一个多边形的内角和是1800°,那么这个多边形是()A.五边形 B.八边形 C.十边形 D.十二边形7.一个多边形每个内角为108°,则这个多边形()A.四边形 B,五边形 C.六边形 D.七边形8,一个多边形每个外角都是60°,这个多边形的外角和为()A.180° B.360° C.720° D.1080°9.n边形的n个内角中锐角最多有()个.A.1个 B.2个 C.3个 D.4个10.多边形的内角和为它的外角和的4倍,这个多边形是()A.八边形 B.九边形 C.十边形 D,十一边形四、解答题.1.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.2.一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n 边形呢?3.已知多边形的内角和为其外角和的5倍,求这个多边形的边数.4.若一个多边形每个外角都等于它相邻的内角的21,求这个多边形的边数.5.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数.6.n 边形的内角和与外角和互比为13:2,求n .7.五边形ABCDE 的各内角都相等,且AE =DE ,AD ∥CB 吗?8.将五边形砍去一个角,得到的是怎样的图形?9.四边形ABCD 中,∠A+∠B=210°,∠C =4∠D .求:∠C 或∠D 的度数.10.在四边形ABCD 中,AB =AC =AD ,∠DAC =2∠BAC .求证:∠DBC =2∠BDC .。

八年级数学上册第十一章《三角形》单元测试题附答案

八年级数学上册第十一章《三角形》单元测试题附答案

八年级数学上册第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.下列说法正确的是()A.三角形分为等边三角形和三边不相等的三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形,直角三角形,钝角三角形2.如图,△ABC中,△ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若△A=24°,则△BDC等于()A. 42°B. 66°C. 69°D. 77°3.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A. 7B. 8C. 9D. 104.如图,在△BDF和△ABC中,它们相同的角是()A. △AB. △CC. △ABCD. △ACB5.如图,AB△CD,AD与BC相交于点O,已知角α、β,则用角α、β表示△AOC,则△AOC=()A.α+βB. 180°-α+βC. 2α-βD. 180°+α-β6.若三角形的三边长分别为3,4,x,则x的值可能是()A. 1B. 6C. 7D. 107.如图所示的图形中,属于多边形的有()个.A. 3个B. 4个C. 5个D. 6个8.如图,△ABC中,△1=△2,△3=△4,若△D=25°,则△A=()A. 25°B. 65°C. 50°D. 75°9.适合条件△A=△B=△C的三角形一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形10.八边形的内角和是()A. 1440°B. 1080°C. 900°D. 720°11.如图,点D在BC的延长线上,连接AD,则△EAD是()的外角.A. △ABCB.△ACDC. △ABDD.以上都不对12.如图,在△ABC中,EF△AC,BD△AC,BD交EF于G,则下面说法中错误的是()A.BD是△BDC的高B.CD是△BCD的高C.EG是△BEF的高D.BE是△BEF的高二、填空题13.一副三角板,如图所示叠放在一起,则图中△α的度数是.14.如图,点D、E为△ABC边BC、AC上的两点,将△ABC沿线段DE折叠,点C落在BD上的C′处,若△C=30°,则△AEC′=.15.如图,写出△ADE的外角.16.在图中过点P任意画一条直线,最多可以得到____________个三角形.17.如图,已知△A=30°,△B=40°,△C=50°,那么△AOB=度.三、解答题18.如图,点D是△ABC的边BC上的一点,△B=△BAD=△C,△ADC=72°.试求△DAC的度数.19.如图,已知AB△CD,EF与AB、CD分别相交于点E、F,△BEF与△EFD的平分线相交于点P,求证:△EPF为直角三角形.20.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)•180°.例如:如图四边形ABCD的内角和:N=△A+△B+△C+△D=(4-2)×180°=360°问:(1)利用这个关系式计算五边形的内角和;(2)当一个多边形的内角和N=720°时,求其边数n.21.已知:在△ABC中,△BAC=90°,AD△BC于点D,△ABC的平分线BE交AD于F,试说明△AEF=△AFE.22.已知凸四边形ABCD中,△A=△C=90°.(1)如图1,若DE平分△ADC,BF平分△ABC的邻补角,判断DE与BF位置关系并证明;(2)如图2,若BF、DE分别平分△ABC、△ADC的邻补角,判断DE与BF位置关系并证明.答案解析1.【答案】D【解析】A.三角形分为等腰三角形和三边不相等的三角形,故本选项错误,B.等边三角形是等腰三角形,故本选项错误,C.等腰三角形不一定是等边三角形,故本选项错误,D.三角形分为锐角三角形,直角三角形,钝角三角形,故本选项正确,故选D.2.【答案】C【解析】在△ABC中,△ACB=90°,△A=24°,△△B=90°-△A=66°.由折叠的性质可得:△BCD=△ACB=45°,△△BDC=180°-△BC D-△B=69°.故选C.3.【答案】A【解析】设这个多边形的边数为n,根据题意得,(n-2)•180°=360°×2+180°,解得n=7.故选A.4.【答案】C【解析】△BDF的角有△D,△DBF,△DFB;△ABC的角有△A,△ACB,△ABC;它们相同的角是△ABC.5.【答案】A【解析】△AB△CD,△△ABO=β.在△AOB中,利用三角形的外角性质得到△AOC=△A+△ABO=α+β.故选A.6.【答案】B【解析】△4﹣3=1,4+3=7,△1<x<7,△x的值可能是6.故选B.7.【答案】A【解析】根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫多边形.显然只有第一个、第二个、第五个.故选A8.【答案】C【解析】△BD是△ABC的平分线,△△DBC=△ABC,△CD是△ABC的外角平分线,△△ACD=(△A+△ABC),△△D+△DBC+△ACB+△ACD=180°,即△ABC+△ACB+(△A+△ABC)=155°△,△A+△ABC+△ACB=180°△,△△ABC+△ACB=130°,△△A=50°.故选C.9.【答案】B【解析】设△A=x°,则△B=x°,△C=3x°.根据三角形的内角和定理,得x+x+3x=180,x=36.则△C=108°.则该三角形是钝角三角形.故选B.10.【答案】B【解析】由题意得:180°(8-2)=1080°,故选B.11.【答案】C【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中△EAD是△ABD的外角,所以正确的选项是C.12.【答案】D【解析】A.BD△AC,则BD是△BDC的高,故命题正确;B.CD△BD,则CD是△BCD的高,故命题正确;C.EG△BG,则EG是△BEF的高,故命题正确;D.错误;13.【答案】75°【解析】如图,△1=45°-30°=15°, △α=90°-△1=90°-15°=75°.故答案为:75°14.【答案】60°【解析】根据折叠可得:EC=EC′, △△EC′D=△C,△△C=30°, △△EC′D=30°,△△AEC′=30°+30°=60°,故答案为:60°.15.【答案】△BDF、△DEC和△AEF【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中符合条件的角是△BDF、△DEC和△AEF.16.【答案】6【解析】如图1,有2个三角形;如图2,有4个三角形;如图3,有4个三角形;如图4,有5个三角形;如图5,有6个三角形.综上所述,最多有6个三角形.17.【答案】120【解析】延长BO交AC于D, △△B=40°,△C=50°,△△ADO=40°+50°=90°,△△A=30°, △△AOB=30°+90°=120°,故答案为:120.18.【答案】解:△△ADC是△ABD的外角,△ADC=72°,△△ADC=△B+△BAD.又△△B=△BAD,△△B=△BAD=36°.△△B=△BAD=△C,△△C=36°.在△ADC中,△△DAC+△ADC+△C=180°△△DAC=180°-△ADC-△C=180°-72°-36°=72°.【解析】先根据三角形外角的性质得出△ADC=△B+△BAD,再由△B=△BAD可知△B=△BAD=36°,在△ADC中,根据三角形内角和定理即可得出结论.19.【答案】证明:△AB△CD, △△BEF+△EFD=180°,又EP、FP分别是△BEF、△EFD的平分线,△△PEF=△BEF,△EFP=△EFD,△△PEF+△EFP=(△BEF+△EFD)=90°,△△P=180°-(△PEF+△EFP)=180°-90°=90°,△△EPF为直角三角形.【解析】要证△EPF为直角三角形,只要证△PEF+△EFP=90°,由角平分线的性质和平行线的性质可知,△PEF+△EFP=(△BEF+△EFD)=90°.20.【答案】解:(1)N=(5-2)×180°=540°(2)根据题意得:(n-2)×180°=720°解得n=6.【解析】(1)将n=5代入公式,依据公式计算即可;(2)将N=720°代入公式,得到关于n的方程,然后求解即可.21.【答案】证明:△BE平分△ABC,△△CBE=△ABE,△△BAC=90°,△△ABE+△AEF=90°,△DA△BC,△△CBE+△BFD=90°,△△AEF=△BFD,△△BFD=△AFE(对顶角相等),△△AEF=△AFE【解析】根据角平分线的定义求出△ABE=△EBC,再利用△BAC=90°,AD△BC于点D推出△AEF=△AFE.22.【答案】解:(1)DE△BF,延长DE交BF于点G△△A+△ABC+△C+△ADC=360°又△△A=△C=90°,△△ABC+△ADC=180°△△ABC+△MBC=180°△△ADC=△MBC,△DE、BF分别平分△ADC、△MBC△△EDC=△ADC,△EBG=△MBC,△△EDC=△EBG,△△EDC+△DEC+△C=180°△EBG+△BEG+△EGB=180°又△△DEC=△BEG△△EGB=△C=90△DE△BF;(2)DE△BF,连接BD,△DE、BF分别平分△NDC、△MBC△△EDC=△NDC,△FBC=△MBC,△△ADC+△NDC=180°又△△ADC=△MBC△△MBC+△NDC=180°△△EDC+△FBC=90°,△△C=90°△△CDB+△CBD=90°△△EDC+△CDB+△FBC+△CBD=180°即△EDB+△FBD=180°,△DE△BF.【解析】(1)DE△BF,延长DE交BF于G.易证△ADC=△CBM.可得△CDE=△EBF.即可得△EGB=△C=90゜,则可证得DE△BF;(2)DE△BF,连接BD,易证△NDC+△MBC=180゜,则可得△EDC+△CBF=90゜,继而可证得△EDC+△CDB+△CBD+△FBC=180゜,则可得DE△BF.。

人教版数学八年级上第11章三角形全章测试含答案

人教版数学八年级上第11章三角形全章测试含答案

第11章 三角形 全章测试一、选择题(每题3分,共30分)1. 以下列各组长度的线段为边,能构成三角形的是 ( )A .7,3,4B .5,6,12C .3,4,5D .1,2,3 2. 等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80 3.一个多边形的每一个外角都等于40°,那么这个多边形的内角和为( )A .1260°B .1080°C .1620°D .360°4.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( ) A.正三角形 B.正方形 C.正六边形 D.正八边形5.下列说法正确的是( )A.三角形的角平分线、中线及高都在三角形内B.直角三角形的高只有一条.C.三角形至少有一条高在形内D.钝角三角形的三条高都在形外. 6.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A .5 B .6 C .7 D .8 7.在下图中,正确画出AC 边上高的是( ).EBAC C A BCA BCA BE EE(A ) (B ) (C ) (D ) 8.如图所示,∠A 、∠1、∠2的大小关系是( ) A. ∠A >∠1>∠2 B. ∠2>∠1>∠A C. ∠A >∠2>∠1 D. ∠2>∠A >∠19. 给出下列命题:⑴三角形的一个外角一定大于它的一个内角.⑵若一个三角形的三个内角之比为1:3:4,它肯定是直角三角形 ⑶三角形的最小内角不能大于60°⑷三角形的一个外角等于和它不相邻的两个内角的和 其中真命题的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个10.如图1,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)E DA CB二、填空题(每题3分,共30分)11.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 . 12.已知等腰三角形的两边长是5cm 和11cm ,则它的周长是 _______13.一个等腰三角形的周长为18,已知一边长为5,则其他两边长为 ____________. 14.已知一个三角形的三条边长为2、7、x ,则x 的取值范围是 _______. 15.如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E 的度数为 . 16.如图,∠A +∠B +∠C +∠D +∠E +∠F= .17.在△ABC 中,在△ABC 中,∠A-∠B=∠B-∠C =15°则∠A 、∠B 、∠C 分别为 .18.如图,在△ABC 中,两条角平分线BD 和CE 相交于点O ,若∠BOC=116°,那么∠A 的度数是_______。

八年级数学上册第十一章三角形测素质多边形及其内角和习题新版新人教版

八年级数学上册第十一章三角形测素质多边形及其内角和习题新版新人教版
成7个三角形,所以这个多边形的边数是7+2=9.九边形
有(9-3)×9÷2=27(条)对角线.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
12. 如图,在正五边形 ABCDE 中,对角线 AC 与 BE 相交于
点 F ,则∠ AFE =
72°
.

(第12题)
1
2
3
4
5
6
7
8
9
10
11
12
点,点 P 是一动点,设∠ DPE =∠α,∠ PDB =∠1,
∠ PEC =∠2.
(1)若点 P 在边 BC 上,如图①,∠α=40°,计算∠1+
∠2的度数;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
【解】∵在△ ABC 中,∠ B =40°,∠ C =36°,
∴∠ A =180°-∠ B -∠ C =104°.
∴∠1-∠α=∠2-∠ A . ∵∠ A =104°,∴∠2-
∠1=104°-∠α.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
∵∠ A =104°,∴∠1+∠2=∠α+104°.
1
2
3
4
5
6
7
8
9

人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

⼈教版初中数学八年级上册第⼗⼀单元《三⾓形》综合测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2023八上·双鸭⼭期中)下列各图中,正确画出△ABC中AC边上的⾼的是( )A.B.C.D.2.(3分)(2023七上·沭阳⽉考)⼀块矩形草坪的⻓比宽多10米,它的周⻓是132米,求宽x所列的⽅程是( )A.x+10=132B.2x+10=132C.22x+10=132D.2x−10=132 3.(3分)(2020七上·庆云⽉考)代数式|x−2|+3的最⼩值是( )A.0B.2C.3D.54.(3分)(2020八上·余⼲⽉考)在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC为( )A.等腰三⾓形B.锐⾓三⾓形C.直⾓三⾓形D.钝⾓三⾓形5.(3分)(2023七下·承德期末)下列四个选项中,∠1与∠2互为邻补⾓的是( )A.B.C.D.6.(3分)(2024八上·合江期末)根据图中的数据,可得∠B的度数为( )A .40°B .50°C .60°D .70°7.(3分)(2022七上·晋州期中)已知射线OC 在∠AOB 的内部,下列4个表述中:①∠AOC =12∠AOB ;②∠AOC =∠BOC ;③∠AOB =2∠BOC ;④∠AOC +∠BOC =∠AOB ,能表⽰射线OC 是∠AOB 的⾓平分线的有( )A .1个B .2个C .3个D .4个8.(3分)(2022八上·港南期中)下列图形具有稳定性的是( )A .B .C .D .9.(3分)(2021九下·曹县期中)如图,在平⾯直⾓坐标系中,点 A 1 , A 2 , A 3 ,…, A n 在 x 轴上,点 B 1 , B 2 ,…, B n 在直线 y 上,若点 A 1 的坐标为 (1,0) ,且 △A 1B 1A 2 , △A 2B 2A 3 ,…, △A n B n A n +1 都是等边三⾓形,从左到右的⼩三⾓形(阴影部分)的⾯积分别记为 S 1 , S 2 ,.., S n ,则 S n 可表⽰为( )A .22B .22n −C .22n −D .22n −10.(3分)(2021八上·诸暨⽉考)如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于G ,若∠BDC =130°,∠BGC =100°,则∠A 的度数为( )A .60°B .70°C .80°D .90°⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)过⼗边形的⼀个顶点可作对⾓线的条数为m,则m的值为 .12.(3分)(2024七下·⽞武期中)如图1,点D在△ABC边BC上,我们知道若BDCD=ab,则S△ABDS△ACD=ab;反之亦然.如图2,BE是△ABC的中线,点F在边AB上,BE、CF相交于点O,若AFBF =m,则OEOB=  .13.(3分)(2024七下·⻄安期中)已知三⾓形两边的⻓分别为1cm,5cm,第三边⻓为整数,则第三边的⻓为 .14.(3分)(2024七下·淮阴期中)如图,在△ABC中,点D是边BC的中点,点E是AC边上⼀点,AD和BE交于点O,CE=14AC,△ABC的⾯积是2024,若把△ABO的⾯积记为S1,把四边形CDOE的⾯积记为S 2,则S1−S2的值为 .15.(3分)(2018八上·武汉⽉考)图中x的值为 .三、解答题(共7题,共65分)(共7题;共65分)16.(10分)(2018八上·潘集期中)某零件如图所⽰,按规定∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=146°,就断定这个零件不合格,你能说出其中的道理吗?17.(5分)(2023八上·鹿寨期中)已知⼀个多边形中,每个内⾓都相等,并且每个外⾓等于与它相,求这个多边形的边数及内⾓和.邻的内⾓的1818.(5分)(2023八上·城厢开学考)已知:△ABC中,图①中∠B、∠C的平分线相交于M,图②中∠B、∠C的外⾓平分线相交于N,(1)(1分)若∠A=80°,∠BMC= °,∠BNC= ° .(2)(1分)若∠A=β,试⽤β表⽰∠BMC和∠BNC19.(11分)(2016八上·肇庆期末)⼀个零件的形状如图所⽰,按规定∠A=90º,∠C=25º,∠B=25º,检验员已量得∠BDC=150º,请问:这个零件合格吗?说明理由。

八年级上册数学三角形测试题

八年级上册数学三角形测试题

八年级上册数学《三角形》测试题(满分:150分,时间:90分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案前的英文字母填在题后括号内)1.(3分)三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是()A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.(3分)以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个3.(3分)下列说法错误的是()A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线4.(3分)给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个5.(3分)如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A.4B.5C.6D.76.(3分)如图,一面小红旗,其中∠A=60°,∠B=30°,则∠BCA=90°.求解的直接依据是()A.三角形内角和定理B.三角形外角和定理C.多边形内角和公式D.多边形外角和公式7.(3分)如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个C.5个D.6个8.(3分)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角9.(3分)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11B.5C.2D.110.(3分)n边形内角和公式是(n﹣2)×180°.则四边形内角和为()A.180°B.360°C.540°D.720°二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上)11.(3分)已知a,b,c是三角形的三边长,化简:|a﹣b+c|﹣|a﹣b﹣c|=.12.(3分)等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.13.(3分)如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是.14.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F=度.15.(3分)如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=度.16.(3分)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.17.(3分)如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是.18.(3分)如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=.19.(3分)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.20.(3分)如图,在△ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.则∠EFD的大小为.三、解答题(共9题,每题10分,满分90分)21.(10分)如图所示,求∠1的大小.22.(10分)如图,把△ABC沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出的规律的正确性.23.(10分)如图所示,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.24.(10分)如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.25.(10分)小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?26.(10分)已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C﹣∠B有何关系?(不必证明)27.(10分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.28.(10分)如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=∠AED,求∠CDE的度数.29.(10分)在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.(1)作出符合本题的几何图形;(2)求证:BE∥DF.八年级上册数学《三角形》测试题参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案前的英文字母填在题后括号内)1.【解答】解:A、∵2+3=5,∴不能组成三角形,故本选项错误;B、∵10﹣5<6<10+5,∴能组成三角形,故本选项正确;C、∵1+1=2<3,∴不能组成三角形,故本选项错误;D、∵3+4=7<9,∴不能组成三角形,故本选项错误.故选:B.2.【解答】解:首先可以组合为13,10,5;13,10,7;13,5,7;10,5,7.再根据三角形的三边关系,发现其中的13,5,7不符合,则可以画出的三角形有3个.故选:C.3.【解答】解:A、解:A、锐角三角形的三条高线、三条角平分线分别交于一点,故本选项说法正确;B、钝角三角形有两条高线在三角形的外部,故本选项说法正确;C、直角三角形也有三条高线,故本选项说法错误;D、任意三角形都有三条高线、中线、角平分线,故本选项说法正确;故选:C.4.【解答】解:三条线段首尾顺次相接组成的图形叫三角形,故①错误;三角形的角平分线是线段,故③错误;三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,故④错误;所以正确的命题是②、⑤、⑥,共3个.故选:C.5.【解答】解:等底同高的三角形的面积相等,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,又△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等.故选:A.6.【解答】解:∵∠A=60°,∠B=30°,∴∠BCA=180°﹣60°﹣30°=90°(三角形内角和定理),故选:A.7.【解答】解:∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,∴∠C=∠BDF=∠BAD,∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,∴∠C=∠ADE,∴图中与∠C(除之C外)相等的角的个数是3,故选:A.8.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=∠ADE,∴∠A+∠ADE=90°,∴∠A和∠ADE互为余角.故选:C.9.【解答】解:根据三角形的三边关系可得:AB﹣BC<AC<AB+BC,∵AB=6,BC=4,∴6﹣4<AC<6+4,即2<AC<10,则边AC的长可能是5.故选:B.10.【解答】解:(4﹣2)×180°=2×180°=360°.故选:B.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上)11.【解答】解:∵a,b,c是三角形的三边长,∴a+c>b,b+c>a,∴a﹣b+c>0,a﹣b﹣c<0,∴|a﹣b+c|﹣|a﹣b﹣c|=(a﹣b+c)﹣(b+c﹣a)=a﹣b+c﹣b﹣c+a=2a﹣2b,故答案为:2a﹣2b.12.【解答】解:①6cm是底边时,腰长(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.13.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.14.【解答】解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.15.【解答】解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C=60°+50°=110°,∴∠1=180°﹣∠ABD﹣∠D=180°﹣110°﹣25°=45°.16.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90﹣72=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.17.【解答】解:因为﹣2<2<5,所以a﹣2<a+2<a+5,所以由三角形三边关系可得a﹣2+a+2>a+5,解得:a>5.则不等式的解集是:a>5.故答案为:a>5.18.【解答】解:∵∠A=100°,∵∠ABC+∠ACB=180°﹣100°=80°,∵BI、CI分别平分∠ABC,∠ACB,∴∠IBC∠ABC,∠ICB∠ACB,∴∠IBC+∠ICB∠ABC∠ACB(∠ABC+∠ACB)80°=40°,∴∠I=180°﹣(∠IBC+∠ICB)=180°﹣40°=140°;∵∠ABC+∠ACB=80°,∴∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB)=360°﹣80°=280°,∵BM、CM分别平分∠ABC,∠ACB的外角平分线,∴∠1∠DBC,∠2ECB,∴∠1+∠2280°=140°,∴∠M=180°﹣∠1﹣∠2=40°.故答案为:140°;40°.19.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.20.【解答】解:∵在△ABC中,∠B=45°,∠C=60°,∴∠A=180°﹣∠B﹣∠C=180°﹣45°﹣60°=75°.∵EF∥AC,DF∥AB,∴四边形AEFD是平行四边形,∴∠EFD=∠A=75°.故答案为:75°.三、解答题(共9题,每题10分,满分90分)21.【解答】解:如图所示,∵∠ACB=180°﹣140°=40°,且∠1是△ABC的外角,∴∠1=∠A+∠ACB=80°+40°=120°.22.【解答】解:2∠A=∠1+∠2,理由是:延长BD和CE交于A′,∵把△ABC沿DE折叠,当点A落在四边形BCDE内部,∴∠ADE=∠A′DE,∠AED=∠A′ED,∴2∠ADE=180°﹣∠1,2∠AED=180°﹣∠2,∴∠ADE=90°∠1,∠AED=90°∠2,∵在△ADE中,∠A=180°﹣(∠AED+∠ADE),∴∠A∠1∠2,即2∠A=∠1+∠2.23.【解答】解:在△ABO中,∵∠AOC=95°,∠B=50°,∴∠A=∠AOC﹣∠B=95°﹣50°=45°;∵AB∥CD,∴∠D=∠A=45°.24.【解答】解:因为BD∥AE,所以∠DBA=∠BAE=57°.所以∠ABC=∠DBC﹣∠DBA=82°﹣57°=25°.在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,所以∠C=180°﹣∠ABC﹣∠BAC=180°﹣25°﹣72°=83°.25.【解答】解:设第三根的长是xm.根据三角形的三边关系,则3<x<13.因为x是整数,因而第三根的长度是大于3m且小于13m的所有整数,共有9个数.答:小颖有9种选法.第三根木棒的长度可以是4m,5m,6m,7m,8m,9m,10m,11m,12m.26.【解答】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°.∵AE是∠BAC的平分线,∴∠BAE=50°.在Rt△ABD中,∠BAD=90°﹣∠B=60°,∴∠DAE=∠BAD﹣∠BAE=60°﹣50=10°;(2)∠C﹣∠B=2∠DAE.27.【解答】解:∵DF⊥AB,∴∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.答:∠ACD的度数为83°.28.【解答】解:设∠DAE=x°,则∠BAC=40°+x°.∵∠B=∠C,∴2∠C=180°﹣∠BAC∴∠C=90°∠BAC=90°(40°+x°)同理∠AED=90°∠DAE=90°x°∴∠CDE=∠AED﹣∠C=(90°x°)﹣[90°(40°+x°)]=20°.29.【解答】(1)解:如图所示:(2)证明:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BE平分∠ABC,DF平分∠CDA,∴∠ADF=∠FDE ADC,∠EBF=∠EBC ABC,∴∠FBE+∠FDE=90°,∵∠A=90°,∴∠AFD+∠ADF=90°,∴∠AFD+∠EDF=90°,∴∠DF A=∠EBF,∴DF∥EB.。

《好题》初中八年级数学上册第十一章《三角形》经典测试卷(含答案)

《好题》初中八年级数学上册第十一章《三角形》经典测试卷(含答案)

一、选择题1.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是( )A .5边形B .6边形C .7边形D .8边形D解析:D【分析】设多边形的边数是n ,根据多边形的外角和是360°,以及多边形的内角和公式列出方程即可求解.【详解】解:设多边形的边数是n ,则180(n ﹣2)=3×360,解得:n =8.故选:D .【点睛】本题考查了多边形的内角和公式以及外角和定理,根据多边形的内角和公式以及外角和定理列出方程是解题关键.2.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD ∠的度数为( )A .25︒B .85︒C .60︒D .95︒D解析:D【分析】 根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵AD 是∠CAE 的平分线,60=︒∠DAC ,∴∠DAC =∠DAE =60°,又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°,∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°.故选:D .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.3.如图,1∠等于( )A .40B .50C .60D .70D解析:D【分析】 根据三角形外角的性质直接可得出答案.【详解】解:由三角形外角的性质,得160=130∠+︒︒11306070∴∠=︒-︒=︒故选D .【点睛】本题考查了三角形外角的性质,比较简单.4.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90°C解析:C【分析】 根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠.【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.5.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52α C .2α D .32αC 解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.6.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒C解析:C【分析】 根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.7.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( )A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm C解析:C【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A 选项错误;∵7+8=15,∴B 选项错误;∵12+13>22,∴C 选项正确;∵10+10=20,∴D 选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.8.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(60B ∠=)的斜边AB 上,两块三角板的直角边交于点M .如果75BDE ∠=,那么AMD ∠的度数是( )A .75°B .80°C .85°D .90°D解析:D【分析】 由题意得:∠A=30°,∠FDE=45°,利用平角等于180°,可得到∠ADF 的度数,在△AMD 中,利用三角形内角和为180°,可以求出∠AMD 的度数.【详解】解:∵∠B=60°,∴∠A=30°,∵∠BDE=75°,∠FDE=45°,∴∠ADF=180°-75°-45°=60°,∴∠AMD=180°-30°-60°=90°,故选D .【点睛】此题主要考查了三角形的内角和定理的应用,题目比较简单,关键是要注意角之间的关系.9.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .0C解析:C【分析】分别利用直线、射线、线段的定义、角的概念和角平分线的定义以及多边形对角线的求法分析得出即可.【详解】解:①把一个角分成两个角的射线叫做这个角的角平分线,故原说法错误;②连接C、D两点的线段的长度叫两点之间的距离,故原说法错误;③两点之间线段最短,故原说法错误;④射线上点的个数与直线上点的个数没有关系,故原说法错误;n-条对角线,这些对角线把⑤n边形从其中一个顶点出发连接其余各顶点,可以画出()3n-个三角形,此说法正确.这个n边形分成了()2所以,正确的说法只有1个,故选:C.【点睛】此题主要考查了直线、射线、线段的定义以及角的概念和角平分线的定义等知识,正确把握相关定义是解题关键.10.如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是()A.两点之间线段最短B.长方形的对称性C.长方形四个角都是直角D.三角形的稳定性D解析:D【分析】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,据此即可判断是利用了三角形的稳定性.【详解】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,利用了三角形的稳定性,D正确.故答案选D.【点睛】本题比较简单主要考查三角形稳定性的实际应用,通常要使一些图形具有稳定的结构,往往是将其转化为三角形而获得.二、填空题11.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.30°90°或40°80°【分析】根据倍角三角形的定义结合三角形的内角和定理分三种情况即可得出结论【详解】在△ABC中不妨设∠A=60①若∠A=2∠C则∠C=30∴∠B=;②若∠C=2∠A则∠C=1解析:30°,90°或40°,80°【分析】根据“倍角三角形”的定义结合三角形的内角和定理分三种情况即可得出结论.【详解】在△ABC中,不妨设∠A=60︒,①若∠A=2∠C,则∠C=30︒,︒-︒-︒=︒;∴∠B=180603090②若∠C=2∠A,则∠C=120︒,︒-︒-︒=︒(不合题意,舍去);∴∠B=180601200=︒-︒=120︒,③若∠B=2∠C,则3∠C18060∴∠C4=0︒,∠B=180604080︒-︒-︒=︒;综上所述,其它两个内角的度数分别是:30︒,90︒或40︒,80︒.【点睛】本题考查了“倍角三角形”的定义以及三角形的内角和等知识,解题的关键是学会用分类讨论的思想解决问题.12.如图,将一副直角三角尺按图③放置,使三角尺①的长直角边与三角尺②的某直角边在同一条直线上,则图③中的∠1=______°.105【分析】利用三角形外角性质求解【详解】如图∵∠2=∠3=∴∠4=∠2+∠3=∴∠1=故答案为:105【点睛】此题考查三角板的角度计算三角形外角的性质观察图形掌握各角度之间的位置关系是解题的关键解析:105【分析】利用三角形外角性质求解.【详解】如图,∵∠2=30,∠3=45︒,∴∠4=∠2+∠3=75︒,︒-∠=︒,∴∠1=1804105故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键.13.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2nθ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A ,同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= ……∴∠A n =2n θ.故答案为:4θ,2nθ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键. 14.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____. 2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ∠D+∠E 再根据邻补角表示出∠CGF 然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2α【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ,∠D+∠E ,再根据邻补角表示出∠CGF ,然后利用三角形的内角和定理列式整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠B,∠2=∠D+∠E,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.15.如图,△ABC的两条中线AD、BE相交于点G,如果S△ABG=2,那么S△ABC=_____.6【分析】根据DE分别是三角形的中点得出G是三角形的重心再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案【详解析:6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:∵△ABC的两条中线AD、BE相交于点G,∴2GD=AG,∵S△ABG=2,∴S△ABD=3,∵AD是△ABC的中线,∴S△ABC=2S△ABD=6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.16.如图所示,△ABC中,∠BAC、∠ABC、∠ACB的四等分线相交于D、E、F(其中∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF),且△DFE的三个内角分别为∠DFE =60°、∠FDE=53°、∠FED=67°,则∠BAC的度数为_________°.72【分析】由∠CAD=3∠BAD∠ABE=3∠CBE∠BCF=3∠ACF易得各角与∠ABC∠ACB∠BAC之间的关系由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论【详解】解:∵∠CAD解析:72【分析】由∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF易得各角与∠ABC、∠ACB、∠BAC之间的关系,由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论.【详解】解:∵∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF,∴∠CAD=34∠BAC,∠BAD=14∠BAC,∠ABE=34∠ABC,∠CBE=14∠ABC,∠BCF=34∠ACB,∠ACF=14∠ACB.∵∠DFE=60°、∠FDE=53°、∠FED=67°,∴1360 441353441367 44BAC ABCABC ACBACB BAC⎧∠+∠=⎪⎪⎪∠+∠=⎨⎪⎪∠+∠=⎪⎩,解得∠BAC=72°,∠ABC=56°,∠ACB=52°,故答案为:72.【点睛】本题考查了三元一次方程组的应用,以及三角形外角的性质.解题的关键是由外角的性质列出方程组.本题属于中档题,难度不大,但在角的变化上稍显繁琐,一不注意就易失分,做形如此类题型时,牢牢把握等量关系是关键.17.AD为ABC的中线,AE为ABC的高,ABD△的面积为14,7,2AE CE==则DE的长为_________.2或6【分析】利用面积法求出BD即可求得CD再分AE在内部和外部求出DE即可【详解】解:为的高△ABD的面积为14AE=7∴∵为的中线∴CD=BD=4当AE在内部时∵CE=2∴DE=CD-CE=2当解析:2或6利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7, 1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线,∴CD=BD=4, 当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6 【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键. 18.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.120°【分析】先根据三角形内角和定理求出∠A 的度数再根据CF是AB 上的高得出∠ACF 的度数再由三角形外角的性质即可得出结论【详解】解:∵∠ABC=66°∠ACB=54°∴∠A=60°∵CF 是AB 上【分析】先根据三角形内角和定理求出∠A 的度数,再根据CF 是AB 上的高得出∠ACF 的度数,再由三角形外角的性质即可得出结论.【详解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF 是AB 上的高,∴在△ACF 中,∠ACF=180°-∠AFC-∠A=30°,在△CEH 中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案为120°.【点睛】本题考查的是三角形内角和定理及三角形外角的性质、三角形的高线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.如图,△ABC 中,D 为BC 边上的一点,BD :DC=2:3,△ABC 的面积为10,则△ABD 的面积是_________________4【分析】利用面积公式可得出△ABD 与△ABC 等高只需求出BD 与BC 的比值即可求出三角形ABD 的面积【详解】解:∵BD :DC=2:3∴BD=BC △ABD 的面积=BD•h =× BC•h=△ABC 的面积解析:4【分析】利用面积公式可得出△ABD 与△ABC 等高,只需求出BD 与BC 的比值即可求出三角形ABD 的面积.【详解】解:∵BD :DC=2:3,∴BD=25BC . △ABD 的面积=12BD•h =12× 25BC•h=25△ABC 的面积=25×10=4. 故答案为:4.【点睛】本题考查了三角形面积公式以及根据公式计算三角形面积的能力.20.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .【分析】三角形的面积等于任意一条底边乘以该边上的高的积的一半别以BCAC为底写出△ABC的面积的两种表示方法;结合两个面积相等和已知中的数据进行计算即可解答题目【详解】S△ABC=BC·AD=AC·解析:9 2【分析】三角形的面积等于任意一条底边乘以该边上的高的积的一半,别以BC、AC为底,写出△ABC的面积的两种表示方法;结合两个面积相等和已知中的数据,进行计算即可解答题目.【详解】S△ABC=12BC·AD=12AC·BE,将AD=3cm,BC=6cm,AC=4cm代入,得:11364 22BE ⨯⨯=⨯92BE=cm故答案为:9 2【点睛】本题考查三角形等面积法求高,通过三角形面积建立等量关系是解题的关键.三、解答题21.如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.(1)过点A画线段BC的垂线,垂足为E;(2)过点A画线段AB的垂线,交线段CB的延长线于点F;(3)线段BE的长度是点到直线的距离;(4)线段AE、BF、AF的大小关系是.(用“<”连接)解析:(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE ⊥,∴线段BE 的长度是点B 到直线AE 的距离,故答案是:B ,AE ;(4)∵AE 是直角三角形AEF 的直角边,AF 是直角三角形AEF 的斜边,∴AE AF <,∵BF 是直角三角形ABF 的斜边,AF 是直角三角形ABF 的直角边,∴AF BF <,∴AE AF BF <<,故答案是:AE AF BF <<.【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.22.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.解析:(1)55CBE ∠=︒;(2)25F ∠=︒.【分析】(1)利用三角形的外角性质和角的平分线性质求解即可;(2)根据三角形外角的性质和两直线平行,同位角相等求解.【详解】(1)在ABC 中,30A ∠=︒,80ACB ∠=︒,3080110CBD A ACB ∴∠=∠+∠=︒+︒=︒, BE 是CBD ∠的平分线, 111105522CBE CBD ∴∠=∠=⨯︒=︒; (2)80ACB ∠=︒,55CBE ∠=︒,805525CEB ACB CBE ∴∠=∠--︒∠=︒=︒,//DF BE ,25F CEB ∴∠=∠=︒.【点睛】本题考查了运用三角形外角性质,角平分线性质,平行线的性质求角的度数,熟练并灵活运用这些性质是解题的关键.23.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A ′,若∠C =125°,∠A =20°,求∠BD A ′的度数.解析:110°【分析】利用翻折变换的性质以及三角形内角和定理求出∠BDE ,∠A′DE ,即可解决问题.【详解】∵∠A +∠B +∠C =180°,∠A =20°,∠C =125°,∴∠B =35°,∵DE ∥BC ,∴∠ADE =∠B =35°,∠BDE +∠B =180°,∴∠BDE =180−∠B =180°−35°=145°,∵△ADE 沿DE 折叠成△A′DE ,∴∠A′DE=∠ADE=35°,∴∠BDA′=∠BDE−∠A′DE=145°−35°=110°.【点睛】本题考查三角形内角和定理,翻折变换的性质以及平行线的性质,解题的关键是熟练掌握翻折变换的性质,属于中考常考题型.24.如图1,△ABC中,AD是∠BAC的角平分线,AE⊥BC于点E.(1)若∠C=80°,∠B=40°,求∠DAE的度数;(2)若∠C>∠B,试说明∠DAE=12(∠C-∠B);(3)如图2,若将点A在AD上移动到A′处,A′E⊥BC于点E.此时∠DAE变成∠DA′E,请直接回答:(2)中的结论还正确吗?解析:(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求得∠BAD的度数,在△ABE中,利用直角三角形的性质求出∠BAE的度数,从而可得∠DAE的度数.(2)结合第(1)小题的计算过程进行证明即可.(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B和∠C表示出∠A′DE,再根据三角形的内角和定理可证明∠DA′E=12(∠C-∠B).【详解】(1)∵∠C=80°,∠B=40°,∴∠BAC=180°-∠B-∠C =180°-40°-80°=60°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=12∠BAC=30°,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD =20°;(2)理由:∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=12∠BAC=12(180°-∠B-∠C)= 90°-12∠B-12∠C,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=90°-∠B,∴∠DAE=∠BAE-∠BAD=(90°-∠B) -(90°-12∠B-12∠C )=12∠C-12∠B=12(∠C-∠B);(3)(2)中的结论仍正确.∵∠A′DE=∠B+∠BAD=∠B+12∠BAC=∠B+12(180°-∠B-∠C) = 90°+12∠B-12∠C;在△DA′E中,∠DA′E=180°-∠A′ED-∠A′DE=180°-90°-(90°+12∠B-12∠C)=12(∠C-∠B).【点睛】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.25.已知:如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.(1)若∠DCB=48°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.解析:(1)66°;(2)见解析【分析】(1)依据CD是高,∠DCB=48°,即可得到∠B=42°,进而得出∠BAC=48°,再根据AE是角平分线,即可得到∠BAE=12∠BAC=24°,进而得出∠CEF的度数;(2)根据已知条件可得∠ACD=∠B,∠BAE=∠CAE,再根据三角形外角性质,即可得到∠CFE=∠CEF.【详解】(1)∵CD是高,∠DCB=48°,∴∠B=42°,又∵∠ACB=90°,∴∠BAC=48°,又∵AE是角平分线,∴∠BAE=12∠BAC=24°,∴∠CEF=∠B+∠BAE=42°+24°=66°;(2)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BAC=∠B+∠BAC=90°,∴∠ACD=∠B,∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CFE是△ACF的外角,∠CEF是△ABE的外角,∴∠CFE=∠ACD+∠CAE,∠CEF=∠B+∠BAE,∴∠CFE=∠CEF.【点睛】本题主要考查了三角形角平分线的定义,三角形内角和定理以及三角形的外角性质的运用,解题时注意:同角的余角相等.26.一个多边形的内角和比它的外角和多720°,求该多边形的边数.解析:8【分析】先根据一个多边形的内角和比它的外角和多720°得出其内角和度数,再设这个多边形的边数为n,根据内角和公式建立关于n的方程,解之即可.【详解】解:∵一个多边形的内角和比它的外角和多720°,∴这个多边形的内角和为360°+720°=1080°,设这个多边形的边数为n,则(n﹣2)•180°=1080°,解得n=8,答:该多边形的边数为8,故答案为:8.【点睛】本题考查了多边形的内角与外角,解题的关键是掌握多边形的外角和为360°、多边形内角和定理:(n-2)•180° (n≥3且n为整数).27.已知a,b,c为三角形三边的长,化简:a b c b c a c a b+++-----.解析:a+c-b【分析】根据三角形的三边关系得出a+b>c,a+c>b,再去绝对值符号,合并同类项即可.【详解】解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,∴原式=(a b)c b(c a)c(a b)+-+-+--+=a+b-c-b+c+a+c-a-b=a+c-b【点睛】本题考查的是三角形的三边关系以及整式的加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.28.(问题引入)(1)如图1,△ABC,点O是∠ABC和∠ACB相邻的外角平分线的交点,若∠A=40°,请求出∠BOC的度数.(深入探究)(2)如图2,在四边形ABDC中,点O是∠BAC和∠ACD的角平分线的交点,若∠B+∠D=110°,请求出∠AOC的度数.(类比猜想)(3)如图3,在△ABC中,∠CBO=13∠DBC,∠BCO= 13∠ECB,∠A=α,则∠BOC=___(用α的代数式表示,直接写出结果,不需要写出解答过程).(4)如果BO,CO分别是△ABC的外角∠DBC,∠ECB的n等分线,它们交于点O,∠CBO=∠1n DBC∠BCO=1n∠ECB,则∠BOC=___(用n、a的代数式表示,直接写出结果,不需要写出解答过程).解析:(1)70°;(2)55°;(3)120°-13α;(4)()11801nn nα-⨯︒-【分析】(1)由三角形内角和定理可求得∠ABC+∠ACB ,再利用邻补角可求得∠DBC+∠ECB ,根据角平分线的定义可求得∠OBC+∠OCB ,在△BOC 中利用三角形内角和定理可求得∠BOC ; (2)根据三角形内角和等于180°,四边形内角和等于360°,结合角平分线的定义即可得到∠AOC 与∠B+∠D 之间的关系;(3)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=120°-3α; (4)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=()11801n n nα-⨯︒-. 【详解】(1)∵∠A=40°,∴∠ABC+∠ACB=180°-∠A=140°,∴∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-140°=220°,∵BO 、CO 分别平分∠DBC 和∠ECB ,∴∠OBC+∠OCB=12(∠DBC+∠ECB) =12×220°=110°, ∴∠BOC=180°-(∠OBC+∠OCB )=180°-110°=70°;(2)∵点O 是∠BAC 和∠ACD 的角平分线的交点,∴∠OAC=12∠CAB ,∠OCA=12∠ACD , ∴∠AOC=180°-(∠OAC+∠OCA) =180°-12(∠CAB+∠ACD) =180°-12(360°-∠B-∠D) =12(∠B+∠D), ∵∠B+∠D=110°, ∴∠AOC=12(∠B+∠D)=55°; (3)在△OBC 中,∠BOC=180°-(∠OBC+∠OCB)=180°-13(∠DBC+∠ECB) =180°-13(∠A+∠ACB+∠A+∠ABC)=180°-13(∠A+180°)=120°-13α;故答案为:120°-13α;(4)在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-1n(∠DBC+∠ECB)=180°-1n(∠A+∠ACB+∠A+∠ABC)=180°-1n(∠A+180°)=()11801nn nα-⨯︒-.故答案为:()11801nn nα-⨯︒-.【点睛】本题考查了三角形的内角和定理,三角形的外角性质,角平分线的定义,整体思想的利用是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题3分,共10小题,共计:30分) 1. 下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )A.3cm,4cm,8cmB.8cm,7cm,15cmC.5cm,5cm,11cmD.13cm,12cm,20cm2. 将一副直角三角板如图1-1放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为( )A.75°B.65°C.45°D.30°3. 如图1-2,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠1=40°,则∠3等于( )A.50°B.30°C.20°D.15°4.已知ΔABC 中,AB=6,BC=4,那么边AC 的长可能是下列哪个值( )A.11B.5C.2D.15.一个多边形的外角和是内角和的25,这个多边形的边数为( )A.5B.6C.7D.86. 已知等腰三角形的两边长分别是5和6,则这个等腰三角形的周长为( )图1-1图1-2 132 ADEBC图1-3A.11B.16C.17D.16或177. 如图1-3,在ΔABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°8.如图1-4,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则多边形的边数为( )A.13B.14C.15D.16 9.如图1-5中,∠A+∠B+∠C+∠D+∠BEC=( )A.270°B.180°C.360°D.225°10.已知等腰三角形ΔABC 的一个内角是另外一内角的两倍,则其顶角为( )A .90°B .36°C .45°D .36°或90° 二、填空题(每小题3分,共30分.把答案填在题中横线上)1. 一个m 边形的各个内角都相等,都等于140°,一个n 边形的内角和与外角和相等,一个k 边形有k 条对角线,则()2018m n k --=___________。

2. 过一个多边形的一个顶点作一条直线,把这个多边形截掉两个角后,它的内角和为1260°,则这个多边形原来的边数为___________或___________。

(温馨提示:有两种情况!)3. 如图1-6,若该图案是由8个全等的等腰梯形拼成的经典图案,则图中∠1=___________。

图1-4图1-5DEABC图1-614. 在ΔABC 中,其中最大角的取值范围为_____________________。

5. 在ΔABC 中,小写字母a,b,c 分别代表三边的边长,求代数式c a b a b cb ac a b c a c b b c a------+++-+-+-的值为___________。

6. 在ΔABC 中,∠A:∠B:∠C=m:n:k(m,n,k 都是正整数,且m<n<k,m+n+k=9),请问ΔABC ∠A=__________,∠B=__________,∠C=__________。

(提示:写出一组适合的答案)7. 有一个多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有 __________条。

三、解答题(本大题共4小题,共40分,解答应写出文字说明,•证明过程或演算步骤)1.等腰三角形中,AB=AC ,周长为25cm ,AC 边上中线BD 分三角形周长为两部分,其中一部分比另一部分长5cm ,求AC 长。

(10分)2. 如图1-7.∠A+∠B+∠C+∠D+∠E+∠F+∠G=n ×90°,求n 等于多少?(10分,要求写清楚详细的求解过程,否则不计分。

)3.如图1-8,在六边形ABCDEF中,CD//AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的度数。

4.如图1-9,在△ABC中,∠B, ∠C的平分线交于点O.ABC DE图1-8FC ABD EFMGH图1-7A(1)若∠A=50°,求∠BOC的度数.(2)设∠A=n°(n为已知数),求∠BOC的度数.四、附加题(本大题共5小题,共50分,解答应写出文字说明,•证明过程或演算步骤)1.已知三角形的三边a、b、c的长都是整数,且a≦b<c,如果b=7,则这样的三角形共有多少?(请写好推算过程。

)2.如图1-10中,第1图中有6个白色正六边形与1个黑色正六边形,第2图中有10个白色正六边形与2个黑色正六边形,第3图有14个白色正六边形与3个黑色正六边形。

图1-11第1图第2图第3图(1).第7图中有_________个白色正六边形与_________个黑色正六边形。

(2).第n图中有_________个白色正六边形与_________个黑色正六边形。

黑白正六边形共计有_______________个。

(请用n的表达式表示)3.已知:如图1—11,在△ABC中有D、E两点,求证:BD+DE+EC<AB+AC.4.如图1-12所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=•∠AED,•求∠CDE的度数.图1-125.如图1-13,四边形ABCD中,∠A+∠BCD=180°,两组对边延长后分别交于P、Q两点,∠P,∠Q的平分线交于M,求证:PM⊥QM.QDCMA B P图1-13附答案:一、选择题()1 2 3 4 5 6 7 8 9 10D A C B C D C B B D二、填空题1.0;2.11,10;3.67.5°;4.60≤∠C<180°;5. 1;6.20°、40°、120°或20°、60°、100°或40°、60°、80°;7.9;三、解答题1.AC的长为10cm或203cm;2.解:∵∠A+∠D=∠AMG,∠BHF=∠AMG+∠G,∴∠BHF=∠A+∠D+∠G;∵五边形BCEFH的内角各为(5-2)*180°=540°∴∠B+∠C+∠E+∠F+∠BHF=540°∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°∵∠A+∠B+∠C+∠D+∠E+∠F+∠G=n*90°∴n*90°=540°∴n=63.解:如图作MN,分割六边形ABCDEF为两个五边形ABCMN与五边形DEFNM;∵CD//AF ∴∠CMN+∠ANM=180°,∠DMN+∠FNM=180°;∵五边形ABCMN的内角各为(5-2)*180°=540°;∴∠A+∠B+∠C+∠CMN+∠ANM=540°;∵∠C=120°,∠B=60°∴∠BAF=540°-(∠CMN+∠ANM)-∠B-∠C=540°-90°-124°-180°=146°,∴∠CDE=∠BAF=146°∵五边形DEFMN的内角各为(5-2)*180°=540°;∠F=540°-(∠DMN+∠FNM)-∠D-∠E=540°-180°-146°-80°=134°4.解:∵∠B,∠C的平分线交于点O.∴∠OBA=∠OBC=12∠CBA;∠OCA=∠OCB=12∠ACB;∴∠BOC=180°-12(∠CBA+∠ACB) ∵∠CBA+∠ACB=180°-∠A=180°-50°=130°∴∠BOC=-12*130°=115°(2).同理∠BOC=90°+12∠A=90°+12n°四、附加题1.解:分类计论当a=1,b=7时,得7<C<8,不能构成三角形。

当a=2,b=7时,得7<C<9 有一组(2,7,8)能构成三角形。

……依次讨论,最终得到21个三角形合题意。

2. (1).30 7 (2).4n+2 n 5n+23. 证明:延长BD交AC于点F,延长DE交AC于点G。

∵AB+AF>BF BF=BD+DF∴AB+AF>BD+DF (1)∵DF+FG>DG DG=DE+EG∴DF+FG>DE+EG (2)∵EG+CG>CE (3)∴(1)+(2)+(3)=AB+AF+DF+FG+EG+CG>BD+DF+DE+EG+CE ∵AC=AF+FG+CG∴AB+AC+DF+EG>BD+DF+DE+EG+CE∴AB+AC>BD+DE+CE4.∠CDE=20°5.证明:∵∠BCD=∠PCQ(对顶角相等)∴∠BCD=∠PCQ=∠A+∠AQC+∠APC∵∠A+∠BCD=180°∴∠A+∠AQC+∠APC=180°-∠A∴2∠A+∠AQC+∠APC=180°∵∠M=∠A+∠AQM+∠APM 且∠AQM=12∠AQC,∠APM=12∠APC∴∠M=∠A+12(∠AQC+∠APC)∴∠M=∠A+12(180°-2∠A)=∠A+90°-∠A=90°^。

相关文档
最新文档