细胞生物学论文.
叶绿体的研究进展细胞生物学论文(1)

叶绿体的研究进展细胞生物学论文(1)叶绿体是植物细胞中的核糖体体系,是光合作用的重要场所。
自从1883年Schimper的研究发现叶绿体后,研究人员对叶绿体的细胞生物学行为和功能进行了大量的研究。
本文就叶绿体的研究进展做一综述。
一、叶绿体的起源和进化叶绿体起源于一次原核生物和真核生物的共生事件。
这次共生事件导致原核生物进入真核生物细胞,成为真核生物内的一项复杂结构和新功能的起源。
研究表明,叶绿体和细胞质基因的比较显示了叶绿体和细胞质都存在高度的多样性,这表明了叶绿体的进化是一个非常复杂的过程。
此外,研究还发现,叶绿体基因组中存在大量的基因转移,说明叶绿体的进化是一个由多个因素共同作用的进程。
二、叶绿体的结构和功能叶绿体有多个膜系统,包括两个质膜和一个腔膜系统,这些膜系统在叶绿体的光合作用和细胞代谢中扮演着重要的角色。
叶绿体内部还存在大量的第一级葡萄糖和第一级光合色素,这些在光合作用和提供能量方面起着重要的作用。
三、叶绿体的光合作用叶绿体是光合生物的光合作用场所。
光合作用是通过光合作用中的各种步骤来转化太阳能为化学能,并将其储存在ATP和NADPH中。
光合作用是生命的基本过程之一,它为植物提供能量并产生O2。
关于叶绿体的光合作用机制,科学家研究发现,光合作用机制包括5个过程:光场效应、电子传递、ATP生成、碳的固定和光保护。
四、叶绿体的光敏响应和光防御叶绿体本身是一个光敏结构,它能够感知光强度和光质,并作出相应的反应。
例如,叶绿体光受体和铁离子信号能够感知光线和热量,促进植物进行适应性反应。
此外,叶绿体中还存在着一系列反应蛋白,如Apx、Chi、Psb7、Psb28,能够提供叶绿体免疫功能及光防御作用。
五、叶绿体与环境胁迫的关系环境胁迫是植物生长发育过程中的常见问题。
环境胁迫对叶绿体的结构和功能产生负面影响,因此,科学家研究了叶绿体在不同环境胁迫下的应对机制。
例如,研究发现,叶绿体MC4和MC3等膜蛋白可以改善叶片的灌浆效应,有效地缓解了盐碱胁迫对植物生长和发育的不利影响。
细胞生物学论文

细胞生物学概述摘要:细胞生物学是以细胞为研究对象,从细胞的整体水平、亚显微水平、分子水平等三个层次,(斯。
诺。
美。
A11-走在生物医学的最前沿)以动态的观点,研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。
细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。
从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。
英文摘要:Cell biology is to cell as the research object, from the three levels of the overall level of the sub microscopic level, cells, molecular level (,. Connaught. Beauty. A11- in the forefront of biomedical) from the dynamic point of view, the structure and function of cells, cell and organelle of the life history and various life activities of the discipline. Cell biology is one of the frontier branch of modern life science, mainly is the basic rule to study cell from different hierarchy of life activities of cells. From the life structure and arrangement, and developmental biology is located between cell biology molecular biology, their mutual connection, mutual penetration.关键字:细胞学说显微技术遗传物质前言:细胞是生命的基本单位,细胞的特殊性决定了个体的特殊性,因此,对细胞的深入研究是揭开生命奥秘、改造生命和征服疾病的关键。
细胞生物学实验论文

课题:不同性质物质细胞膜通透性的观察比较姓名:***学院:生命科学学院学号:20110*****年级:2011级专业:生物技术不同性质物质细胞膜通透性的观察比较生命科学学院2011级*** 201101****摘要:溶血是浓密的红细胞溶液突然变成红色透亮的血红蛋白溶液的过程,并已被用于测量各种物质透入红细胞速度的指标。
本实验利用人血红细胞和鸡血红细胞在不同性质物质的等渗溶液中发生溶血现象速度快慢的比较,探究细胞膜对不同性质物质的通透性的差异。
关键词:不同性质物质细胞膜通透性细胞膜的存在将胞内物质与细胞周围环境隔离开,为细胞内发生的各种代谢反应提供了一个相对稳定的内环境。
为了能与周围环境间进行物质和能量的交换,细胞膜可以选择性地让某些物质进出细胞。
各种物质进出细胞的方式可大体分为3种途径:被动运输(依浓度梯度,不需能量),主动运输(逆浓度梯度或电化学梯度,需要耗能)和胞吞与胞吐作用。
水是生物界最普遍的溶剂,水分子可以按照物质浓度梯度从渗透压低的一侧通过细胞膜向渗透压高的一侧扩散,以至于在高渗环境中,动物细胞会失水而收缩;在低渗环境中,动物细胞会吸水膨胀直至破裂。
本实验将红细胞分别放于各种不同等渗溶液中,由于红细胞膜对不同溶质的通透性不同,使得不同溶质透入细胞的速度相差很大,有些溶质甚至不能透入细胞。
当溶质分子进入细胞后,可引起渗透压升高,水分子随即进入细胞,使细胞膨胀,当膨胀到一定程度时,红细胞膜会发生破裂,血红素溢出,此时,原来不透明的红细胞悬液突然变成红色透明的血红蛋白溶液,这种现象称为红细胞溶血。
由于各种溶质进入细胞的速度不同,所以不同的溶质诱导红细胞溶血的时间也不同。
可通过测量溶血时间来估计细胞膜对各种物质通透性的大小。
本实验利用人血红细胞和鸡血红细胞在不同性质物质的等渗溶液中发生溶血现象速度快慢的比较,探究细胞膜对不同性质物质的通透性的差异。
1 材料与方法1.1实验材料:抗凝人血、鸡血的稀释液(1份血液加入9份生理盐水进行稀释)1.2实验试剂:0.17mol/L的氯化钠溶液,0.17mol/L氯化铵,0.17mol/L醋酸铵,0.17mol/L硝化钠,0.12mol/L草酸铵,0.12mol/L硫酸钠,0.32mol/L葡萄糖,0.32mol/L甘油,0.32mol/L乙醇,0.32mol/L丙酮,0.32mol/L乙二醇。
(细胞生物学专业优秀论文)组蛋白乙酰化修饰调控果蝇热休克基因表达和寿..

摘要衰老是一个普遍的生物学现象,衰老控制着生物寿命的长短,主要受遗传因子和环境因素所影响。
了解衰老的分子机制,对于延缓衰老、保持生命活力具有重要的意义。
热休克蛋白(HSP)作为高度保守的“分子伴侣”,在细胞内广泛地参与许多复杂的功能活动,可以抵制衰老过程中一些有害蛋白的发生。
其基因的表达调控是一种特殊的真核基因表达模式,包括基础水平和诱导水平的表达。
由组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)催化的乙酰化反应在真核基因的表达调控中起着重要作用,这两种酶通过对核心组蛋白进行可逆修饰来调节核心组蛋白的乙酰化水平,从而调控转录的起始与延伸。
组蛋白去乙酰化酶抑制剂(HDI)可以通过抑制HDAC活性提高组蛋白乙酰化水平,是研究乙酰化修饰在真核基因表达调控中的作用的有用工具。
本论文一方面采用HDItrichostatinA<TSA)和丁酸钠(BuA)喂食果蝇,改变果蝇体内组蛋白乙酰化水平,系统地研究组蛋白乙酰化修饰、HSP的表达以及寿命调控三者之间的关系。
结果发现hsp基因在长寿果蝇中具有较高的基础表达、较快的热激诱导反应速度以及较强的高温抵抗性。
同时,不同的hsp基因在果蝇衰老过程中的作用不尽相同,hsp22的作用最为重要,hsp70次之,而hsp26的表达几乎与寿命无关。
使用HDITSA和BuA喂食果蝇可以延长其寿命,但不同的HDI的作用机制不尽相同,同一种HDI对不同寿命品系的果蝇的延长程度也不尽相同。
TSA的处理有一种时间依赖性,更长时间的TSA处理对寿命是有利的;而BuA的处理却与此不同,过长时间的处理反而加速衰老。
同样的去乙酰化酶抑制剂,同一剂量处理,在不同果蝇品系种的作用不同,它们对短寿果蝇寿命的延长程度更为明显。
另外,HDI处理还促进果蝇衰老过程中hsp基因的基础表达和诱导表达,但是随着衰老的进行,这种促进作用逐渐减弱。
同样在不同寿命的果蝇品系中,其提高hsp基因表达的程度也不一样。
细胞生物学论文-细胞自噬

细胞生物学论文-细胞自噬生物学家通过对选定的生物物种进行科学研究,来揭示某种具有普遍规律的生命现象。
此时,这种被选定的生物物种就是模式生物。
例如果蝇,有谁会想到,这种红眼、双翅、羽状触角芒、身体分节、黄褐色的小昆虫,在近百年间竟然能够“成就”好几位获得诺贝尔奖的大科学家。
什么是自噬?大隅良典研究的是酵母的细胞自噬机制。
酿酒酵母是一种模式生物,非常经典。
经过20多年的研究,在酵母里已经发现了34种与自噬有关的基因。
那么自噬到底是什么?当你真的了解它以后,你会发现,原来细胞这么“聪明”!自噬,不就是自己吃自己吗?可以这样理解。
自噬就是细胞自己降解自己结构的过程,即把一些暂时用不上的零件,拆解变成最小的模块,然后重新组装成自己需要的东西,这就是自噬。
在植物细胞和酵母细胞里,自噬在液泡中发生。
而在动物细胞里,自噬在溶酶体里发生。
从一个蛋白质到整个细胞器,都是可以降解的。
自噬是细胞内分解代谢的一种途径。
除此之外还有一种途径,称之为泛素蛋白酶体途径。
简单说就是在蛋白质上加个泛素,做个标记,然后送进蛋白酶体中完成消化。
发现细胞自噬首次提出自噬这一概念的,是诺贝尔奖生理学或医学奖获得者、比利时细胞和生物化学家克里斯汀・德・迪夫。
他在20世纪50年代通过电子显微镜观察到自噬体,并在1963年溶酶体国际会议上正式提出,他也因此被誉为“自噬之父”。
到了20世纪90年代,大隅良典开始用酵母研究自噬。
再后来越来越多科学家加入了研究自噬的队伍。
细胞自噬其实分为三种方式,这是根据如何“打包”物质和如何运送物质来划分的。
第一种叫宏自噬,也叫巨自噬,顾名思义就是自噬体比较大,用细胞膜或者其他的双层膜去把那些不想要的东西包裹起来,然后和溶酶体融合。
第二种叫微自噬。
顾名思义就是自噬体比较小,溶酶体或者液泡直接用自身去吞噬那些需要降解的东西,也许是细胞器,也许是蛋白质。
第三种叫分子伴侣介导自噬。
是指分子伴侣将细胞内的蛋白质先从折叠状态恢复为未折叠的状态,再放到溶酶体里。
细胞生物学论文

细胞生物学论文细胞生物学是现代生命科学领域的重要分支之一,研究细胞的结构、功能和生理过程,以及细胞与细胞之间的相互作用。
本论文将探讨细胞生物学的一些重要概念和研究进展,包括细胞结构、细胞器功能、细胞分裂、细胞信号传导等方面。
一、细胞结构细胞是生命的基本单位,由细胞膜、细胞质和细胞核组成。
细胞膜是细胞的外层包裹,承担了细胞与外界环境之间的交流和物质交换。
细胞质是细胞膜内的胞浆,包含了各种细胞器,如内质网、高尔基体、线粒体、溶酶体等。
细胞核是细胞内的重要组成部分,含有遗传物质DNA,控制着细胞的生长和分裂。
二、细胞器功能细胞器是细胞内的各种功能区域,各有自己独特的功能。
内质网是蛋白质合成的主要场所,通过它可以将蛋白质合成、折叠和修饰后运送到其他细胞器或细胞膜上。
高尔基体则负责蛋白质的分泌和细胞外物质的转运。
线粒体是细胞内主要的能量合成器官,通过氧化磷酸化产生大量的ATP分子。
溶酶体则参与细胞内废物的降解和清除。
三、细胞分裂细胞分裂是细胞生物学中的重要过程,负责细胞的繁殖和复制。
细胞分裂包括有丝分裂和减数分裂两种形式。
有丝分裂是指细胞按照一定的步骤和顺序完成DNA复制、纺锤体形成、染色体分离和细胞质分裂等过程。
减数分裂则是在有丝分裂的基础上,再进行一次染色体分离和细胞质分裂,最终得到生殖细胞。
四、细胞信号传导细胞信号传导是细胞之间相互沟通和协调的重要方式。
细胞通过细胞膜上的受体感知外界信号,并将其转化为细胞内的化学信号。
这些信号通过信号转导通路传递到细胞核或其他细胞器,调节细胞的生理活动。
信号通路可以分为多种类型,如激活型的酶级联反应、细胞表面受体介导的信号转导和细胞间的细胞因子介导的信号传递。
总结:细胞生物学是一门重要的学科,研究细胞的结构、功能和生理过程,以及细胞与细胞之间的相互作用。
本论文对细胞生物学的几个重要方面进行了讨论,包括细胞结构、细胞器功能、细胞分裂和细胞信号传导。
这些内容对于深入理解细胞生物学的基本原理和研究进展具有重要的意义,也为进一步探索细胞的奥秘和应用于医学研究提供了基础。
细胞生物学实验
2015年秋季学期细胞生物学实验论文细胞膜对不同性质物质通透性的一般规律系别:专业:姓名:学号:—2015.10.14—摘要:关键词:一、前言细胞膜是细胞质与外界相隔的一层薄膜,它的出现是原始生命物质长期进化过程中关键的一步。
如果没有细胞膜,细胞形式的生命就不能存在。
细胞膜将胞内物质与细胞周围环境隔离开,为细胞内发生的各种代谢反应提供了一个相对稳定的内环境。
但细胞膜的屏蔽作用是相对的,因为细胞要与周围环境进行物质和能量的交换,因此细胞膜也是细胞与外界环境进行物质交换的结构,可以选择性地让某些物质进出细胞。
各种物质出入细胞的方式是不同的,大体可分为三种途径:被动运输、主动运输和胞吞与胞吐作用。
细胞膜对不同物质的通透性是存在差异的。
本实验为了探究这种差异,选择红细胞作为实验材料,分别放于各种等渗溶液中。
由于红细胞膜对不同溶质的通透性不同,使得不同溶质透入细胞的速度相差很大,有些溶质甚至不能透入细胞。
当溶质分子进入细胞后可引起渗透压升高,水分子随即进入细胞,使细胞膨胀,细胞膜破裂,血红素溢出。
此时,原来不透明的红细胞悬液突然变成红色透明的血红蛋白溶液,这种现象称为红细胞溶血。
由于各种溶质进入细胞的速度不同,所以不同的溶质诱导红细胞溶血的时间不同。
可以通过测量溶血时间来估计细胞膜对各种物质通透性的大小。
本实验的目的是了解细胞膜对不同物质通透性的差异、观察红细胞的溶血现象和理解溶血原理、建立等渗概念。
图表1图表2二、材料与方法2.1材料、试剂与仪器2.1.1实验材料抗凝人血、鸡血的稀释液(1份人血加入9份生理盐水、1份鸡血加入4份生理盐水进行稀释)2.1.2实验试剂(1)0.17mol/L氯化铵;(2)0.17mol/L醋酸铵;(3)0.17mol/L硝酸钠;(4)0.12mol/L草酸铵;(5)0.12mol/L硫酸钠;(6)0.32mol/L葡萄糖; (7)0.32mol/L甘油; (8)0.32mol/L乙二醇;(9)0.32mol/L乙醇; (10)0.32mol/L丙酮。
细胞生物学论文
细胞生物学论文摘要:细胞生物学在19 世纪以前,许多学者的工作,都着眼于细胞的显微结构方面,主要从事于形态上的描述,而对各种有机体中出现细胞的意义,均未作出理论上的阐述和概括。
1838-1839 年,德国植物学家施莱登和动物学家施旺根据自己研究和总结前人的工作,首次提出了细胞学,现在,细胞生物学已经成为科学的研究领域,有很大的发展前景。
关键词:细胞生物学、发展史、研究内容和现状、研究趋势、重要领域、学习方法及态度细胞生物学的发展史1604 [荷]Jansen 创造了世上第一台显微镜1838 [德]M.Schleiden 细胞是一切植物结构的基本单位,标志着细胞学说形成1858 [德]R.Virchow 细胞只能来自细胞,否定生命的自然发生学说1859 达尔文进化论1861 Max Schultze 提出原生质理论1880 [德]A.Weissmann 所有现在的细胞都可以追溯到远古时代的一个共同祖先,细胞是延续和历史的,是进化而来的1880 Hantein 提出“原生质体”概念1883 Van Benedem 及1886 Steasburer分别在动物、植物细胞中发现减数分裂1905 Wilson 发现性别与染色体的关系Weiss man 推测遗传单位有序地排列在线粒体上—[德]Borveri 及[美]Sutton 提出遗传的染色体学说1909 Harrison 及Carrel 创立组织培养技术1910 Morgan 连锁互换定律,证明基因是决定遗传性状的基本单位,建立基因学说1925 E.Gorter及F.Grendel 提出“蛋白质-脂质-蛋白质”的三明治式结构模型1936、1940 Casperson 用紫外光显微分光光度法测定DNA含量,认为蛋白的合成可能与DNA有关1950 Chargaff 碱基互补配对原则1953 [美]Janes Watson 及[英]Francis Grick DNA的双螺旋结构1958 D.E.Koshland.Jr 提出酶-底物的”诱导-契合模型”1972 S.J.Singer 及G.Nicolson 提出了生物膜的流动镶嵌模型细胞生物学研究的趋势和重要领域细胞生物学是现代生命科学的重要基础学科、细胞生物学的主要研究内容、当前细胞生物学研究的总趋势与重点领域、细胞重大生命活动的相互关系、细胞生物学的发展和研究领域研究领域:染色体DNA与蛋白质相互作用关系—主要是非组蛋白对基因组的作用细胞增殖、分化、凋亡的相互关系及其调控细胞信号转导的研究细胞结构体系的组装细胞生物学的内容和发展1.20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。
(细胞生物学专业优秀论文)蛋白质...
知识水坝为您倾心整理(小店)如需格式转换服务请发豆丁站内信或联系QQ@2218108823知识水坝为您倾心整理(小店)如需格式转换服务请发豆丁站内信或联系QQ@2218108823所有功能蛋白质组学研究都包含了四个关键技术平台:样品制备操作:部分氨基酸序列信息分析;蛋白鉴定与定量;蛋白胞内功能分析(图1)。
分析相互作用蛋白的第。
步需要特异性地富集这些蛋白。
这需要我们至少了解其中一个蛋白的功能活性。
在非变性条件下,从蛋白混合物(如细胞裂解液)中分离富集相互作用蛋白复合物可以通过免疫共沉淀,Pul卜down图1.蛋白质组学中重要的四个技术平台,蛋白亲和层析(EinarsonandOrlJnick,2002)和生化分离完整的多蛋白复合物(例如核孔复合物)等方法实现(图1.9)。
分离得到的相互作用蛋白复合物经由SDS—PAGE或者2DSDS—PAGE展开,并可以电印迹到PVDF膜上。
蛋白可以通过直接的氨基端或羧基端测序鉴定,也可以通过质谱测定胶内或膜上蛋白酶切得到的多肽产物来间接鉴定。
这种基于质谱的方法并不是对蛋白进行直接鉴定,而是分析蛋白酶解的多肽片断。
它的优势在于酶切后的多肽能很容易的从胶里抽提出来,而整个蛋白却很困难。
此外,少量数目的多肽片断就能为鉴定蛋白提供足够的数据信息,通过肽指纹谱(peptidemassfingerprJnting,PMF)得到所有能检测到的肽段的大小,或者通过MS/MS测定单个肽段的氨基酸组成。
一般的质谱仪都分为三个主要部分。
离子源将固相或液相分子转换成气相离子;质量分析器把气化的离子按其质荷比进行分离;最后检测器检测到达的每个离子的质荷比。
常用的生物质谱一般为两种:基质辅助激光解吸附离子化质谱(MAHDI)和电喷雾质谱(ESI)。
MAHDI通过激光轰击与基质混合在一起的样品,图2细胞图谱蛋白质组学中的亲和捕获方法利用高能量激发晶体状的基质样品混合物使其气化。
单电荷离子被引导进入质量分析器,由检测器检测。
细胞生物学论文
细胞生物学论文篇一:细胞生物学论文细胞生物学[cell biology]论述生物工程《2》姓名:学号:0802021040摘要:细胞生物学与其说是一个学科,倒不如说它是一个领域。
这可以从两个方面来理解:一:是它的核心问题的性质──把发育与遗传在细胞水平结合起来,这就不局限于一个学科的范围。
二:是它和许多学科都有交叉,甚至界限难分。
例如,就研究材料而言,单细胞的原生动物既是最简单的动物,也是最复杂的细胞,因为它们集许多功能于一身;尤其是其中的纤毛虫,不仅对于研究某些问题,例如纤毛和鞭毛的运动,特别有利,关于发育和遗传的研究也积累了大量有价值的资料。
但是这类研究也可以列入原生动物学的范畴。
其次,就研究的问题而言,免疫性是细胞的重要功能之一,细胞免疫应属细胞生物学的范畴,但这也是免疫学的基本问题。
由于广泛的学科交叉,细胞生物学虽然范围广阔,却不能像有些学科那样再划分一些分支学科──如象细胞学那样,根据从哪个角度研究细胞而分为细胞形态学、细胞化学等。
如果要把它的内容再适当地划分,可以首先分为两个方面:一是研究细胞的各种组分的结构和功能(按具体的研究对象),这应是进一步研究的基础,把它们罗列出来,例如基因组和基因表达、染色质和染色体、各种细胞器、细胞的表面膜和膜系、细胞骨架、细胞外间质等等。
其次是根据研究细胞的哪些生命活动划分,例如细胞分裂、生长、运动、兴奋性、分化、衰老与病变等,研究细胞在这些过程中的变化,产生这些过程的机制等。
关键字:细胞生物结构基因蛋白质结构发展正文: 1. 定义细胞生物学(cell biology)是在显微、亚显微和分子水平三个层次上,研究细胞的结构、功能和各种生命规律的一门科学。
细胞生物学由Cytology发展而来,Cytology是关于细胞结构与功能(特别是染色体)的研究。
现代细胞生物学从显微水平,超微水平和分子水平等不同层次研究细胞的结构、功能及生命活动。
在我国基础学科发展规划中,细胞生物学与分子生物学,神经生物学和生态学并列为生命科学的四大基础学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线粒体病的研究论文12级生工一班蒋超(1202011023)【摘要】线粒体产生细胞生存所必需的能量,是细胞质内带有遗传信息的细胞器。
近年来,线粒体机能异常与人类疾病的关系逐渐受到人们关注,如线粒体脑肌病、线粒体心肌病、Parkinson病、Alzhcirner病等疾病相关。
广义的线粒体病是指以线粒体异常为主要病因的一大类疾病。
除线粒体基因组缺陷直接导致的疾病外,编码线粒体蛋白的核DNA突变也可引起线粒体病,但这种疾病变现为孟德尔遗传方式。
目前还发现有一类线粒体疾病,可能涉及到mtDNA与nDNA的共同改变,认为是基因组间交流的通讯缺陷。
通常所指的线粒体疾病为狭义的概念,即线粒体DNA突变所指的线粒体功能异常。
一、线粒体的功能1.线粒体最主要的功能是氧化磷酸化氧化代谢产生的能量转化为电化学质子梯度,结果产出高能磷酸键生成ATP。
在有氧条件下,电子从NADH传递到氧,获得的能量转移被用作两个线粒体膜之间质子泵。
质子泵经电子向链下部传递用于能量释放并产生PH梯度和近60mv的电子梯度穿过线粒体内膜,复合物V(ATP)合成酶用这种梯度能量产生ATP。
在氧化磷酸化期间,线粒体产生ROS,线粒体超氧化物歧化酶在去除反应性氧中起重要作用。
ROS能损害蛋白质和核酸,如果不及时去除可引起线粒体和细胞损害。
2.线粒体在细胞凋亡中起重要作用多数凋亡前刺激需要线粒体外膜通透性,引起线粒体内膜释放蛋白质到胞浆。
如细胞色素C和凋亡早期因子,这些因子释放的关键作用是通道开放(线粒体传递孔),孔的开放和凋亡活化与线粒体蛋白质降解相关。
在此条件下凋亡的过度活化,线粒体氧化磷酸化与Leber遗传性视神经中细胞死亡有关。
3.线粒体在某些代谢通路中也起基本作用由于丙酮酸脱氢酶(PDH)引起丙酮酸氧化发生与线粒体内部,并提供乙酰辅酶A来燃烧Krebs循环。
对Krebs循环、脂肪酸氧化、酮氧化和支链丙酮酸代谢酶全包含在线粒体内,尿素循环的某些步骤也位于线粒体内。
因此线粒体功能丧失引起某些同路异常。
二、线粒体病的分类(一)mtDNA突变引起的疾病不同的mtDNA突变可导致相同的疾病,而同一突变也可引起不同表现型,并且通常与突变的mtDNA的异质性水平和组织分布有关。
如A8344G、T8356C均可导致MERRF;又如低比例的T8993G点突变导致NARP,比例>90%时异常导致Leigh病;高比例的A3243G突变造成MEILAS,低比例时可导致母系遗传的糖尿病和耳聋。
目前已经发现越来越多的疾病与线粒体功能障碍有关,如2型糖尿病、肿瘤、帕金森病、心肌病及衰老等。
1)Leber遗传性视神经病:简称LHON,与1871年由Leber医生首次报道,因主要症状为视神经退行性变,故又称Leber视神经萎缩。
患者多在18~20岁发病,男性较多见,个体细胞中突变mtDNA超过90%时发病少于80%时男性病状不明显。
临床表现为双侧视神经严重萎缩引起急性或亚急性双侧中央视力丧失,可伴有神经、心血管、骨骼肌等系统异常,如头痛、癫痫及心律失常等。
目前线粒体DNA的位点突变被认为是LHON的特异性病征,国外已报道25个位点突变,一般公认原发突变位点有11778(G→A)占40%,3460(G→A)占6%~25%和14484(T→C)占10%~15%3个,可单独致病,未在正常人群中发现。
1991年Huoponen等首先在N41基因发现3460位点突变,次年1992年John等发现14484位点突变。
我国LHON11778位点突变占66%,但罕见。
现认为位点突变与LHON密切相关,亦有少数4146及14459位点突变被认为是与LHON相关的主要致病性突变。
LHON继发位点近年来有增多的趋势,已达22个,虽然它们在LHON患者中发生率比对照组中高,但在对照家系中也存在,一般认为可能为多态性,母亲发现有异质性,且单独存在时不患病。
有人认为继发位点不能改变该病的表现,但也有人认为可增强表型表达的可能性,可起媒介作用或有低危险性。
治疗:本病至今尚无有效的治疗方法。
因为有些病人在病程中视力可以自然恢复,所以对任何治疗效果的评价均应慎重。
目前此病被作为基因治疗的重点研究对象之一。
为减少对视神经的毒性损害,应告诫患者戒烟和戒酒。
虽然临床有使用神经营养药物治疗,但并无肯定的疗效。
日本目前对于急性期病例使用血管扩张剂艾地苯醌(idebenone)联合维生素B2、维生素C、泛癸利酮(辅酶Q10)和前列腺素类的降眼压药异丙乌诺前列酮(Isopropyl unoprostone),旨在缩短视力恢复的时间。
有些Leber遗传性视神经病变病人,在视力减退数月甚至数年以后,视力可以部分甚至全部恢复。
这种视力部分或全部恢复的病例,据统计可分别为29%及12%。
视力一旦有所恢复,通常很少会再减退。
二)线粒体脑肌病线粒体肌病(mitochondrial myopathy)是指因遗传基因的缺陷导致线粒体的结构和功能异常,导致细胞呼吸链及能量代谢障碍的一组多系统疾病。
伴有中枢神经系统症状者称线粒体脑肌病。
此病于1962年由Luft首次采用改良Gomori Trichrome染色(MGT)发现肌纤维中有破碎红纤维(或不整红边纤维)(ragged red fiber,RRF),并诊断首例线粒体肌病,继而发现此类线粒体疾病也可同时累及中枢神经系统,引起多种线粒体脑肌病。
本病为一组临床综合征。
线粒体脑肌病常见的临床综合征依次分述如下:1.线粒体肌病(mitochondrial myopathy)主要表现为以四肢近端为主的肌无力伴运动耐受不能。
任何年龄均可发病,儿童和青年多见。
肌无力进展非常缓慢,可有缓解复发。
患病几十年后患者仍可生活自理。
婴儿线粒体肌病有婴儿致死性和良性两种类型。
致死性婴儿肌病多发生在出生后1周,表现为肌力、肌张力低下、呼吸困难、乳酸中毒和肾功能不全,多于1岁内死亡。
良性婴儿肌病表现为婴儿期内肌力、肌张力低下和呼吸困难,1岁以后症状缓解,并逐渐恢复正常。
最常见的基因异常为mtDNA3250位点上的突变。
生化缺陷主要为酶复合体Ⅰ缺乏,也可有复合体Ⅱ、Ⅲ缺乏。
肌活检可见大量RRF,血清肌酶多正常或轻度升高。
可有高乳酸血症。
2.线粒体脑肌病伴高乳酸血症和卒中样发作(MELAS)是一组以卒中为主要临床特征的线粒体病,呈母性遗传,80%以上的患者20岁以前发病。
特征性的临床表现为反复发作的头痛和(或)呕吐、皮质盲(偏盲)、偏身感觉障碍。
头痛表现为偏头痛或偏侧颅面痛,反复性呕吐可伴或不伴偏头痛。
皮质盲是本综合征的一个非常重要的症状,30岁以下枕叶卒中的患者中,14%为MELAS。
局限性癫痫有时是MELAS卒中发作的先兆,为本综合征的特征之一。
其他伴随症状有身材矮小、智能低下、肌力减退、感音性耳聋和癫痫发作。
酶复合体Ⅰ缺乏是MELAS最常见(50%)的生化缺陷,此外还可有复合体Ⅲ和Ⅳ缺乏。
80%的MELAS在mtDNA3243位点上有移位突变,有些患者在3271、3252、3260、3291位点上也发现了移位突变。
MELAS主要的脑病理改变为大脑和小脑皮质、齿状核呈海绵状变性,大脑皮质、基底核、丘脑、小脑和脑干多灶性坏死。
大脑皮质假分层状坏死作为缺氧性脑病的病理特征也可见于MELAS,此外脑弥漫性钙化也很常见。
由于在脑血管平滑肌、内皮细胞以及神经元细胞内均可见大量异常线粒体集聚,因此目前还不清楚卒中样发作是由脑血管病变还是神经元功能障碍所致。
肌肉活检可见RRF和强琥珀酸脱氢酶反应性血管(strongly SDH-reactive vessel,SSV)。
脑CT表现为脑白质尤其是脑皮质下白质内多发性低密度灶,基底核对称性或全脑弥漫性钙化。
3.伴破碎红纤维的肌阵挛癫痫(myoclonus epilepsy with ragged red fiber,MERRF)为母性遗传方式。
40岁以前均可发病,10岁左右起病多见。
其主要临床特征为小脑共济失调、肌阵挛或肌阵挛癫痫。
母系亲属可呈现部分表现型,如仅有耳聋或癫痫(包括失神发作、失张力发作和强制阵挛发作)。
伴随症状可有身材矮小、精神运动发育迟缓、神经性耳聋、视神经萎缩、眼肌麻痹、颈部脂肪瘤、周围神经病、心脏病和糖尿病。
MERRF的生化缺陷多数为酶复合体Ⅳ缺乏,其次为酶复合体Ⅰ和Ⅳ缺乏。
80%的MERRF患者在mtDNA8344位点上有移位突变。
脑病理改变主要累及小脑齿状核、红核、壳核和Luys体。
肌肉的主要病理改变为:RRF和SSV,后者反映线粒体在血管内皮和平滑肌细胞内聚集。
血或脑脊液乳酸水平可升高。
颅脑CT可见脑萎缩。
4.Kearns-Sayre综合征(KSS)及Pearson综合征 KSS多在20岁以前发病,多为散发,除眼外肌瘫痪外伴视网膜色素变性和(或)心脏传导阻滞,还可出现身材矮小、神经性耳聋和小脑性共济失调。
Pearson综合征为一组婴儿非神经系统紊乱症状,包括全血细胞下降,胰外分泌功能紊乱,肝功异常,可有肾功能衰竭,幸存者后期出现KSS表现。
此二综合征的遗传基础为mtDNA大量重复。
5.慢性进行性外眼肌麻痹(chronic progressive external ophthalmoplegia,CPEO) 可为家族性或散发性,家族性发病的遗传方式目前尚不能完全确定,部分为母性遗传,也可以是常染色体显性遗传。
任何年龄均可发病,但20岁以前发病者多见。
临床表现为眼球运动障碍、眼睑下垂、短暂复视,多伴有易疲劳和肢体近端无力。
肌活检病理可见大量RRF和细胞色素氧化酶(COX)缺失。
电镜下可见肌膜下大量异常线粒体集聚,线粒体嵴异常和嵴内类晶体样包涵体形成。
脑脊液检查可有乳酸增高和蛋白升高。
国内学者研究证实mtDNA有杂合缺失,另经DNA测序证实mtDNA10909位点产生一个新的PvuⅡ酶切位点,且由单个碱基置换,认为是一新的点突变(陈清棠等,1996),采用蛋白A胶体金法(PGA)标记及免疫电镜观察,发现肌肉组织中与线粒体酶复合体Ⅰ、Ⅱ、Ⅲ及Ⅳ结合的金粒子,其程度减少,提示线粒体内呼吸链中的酶复合体活性降低(宋东林等,1996)。
6.Leigh病又称亚急性坏死性脑脊髓病。
为家族性或散发性线粒体脑肌病。
部分为母性遗传,部分为常染色体隐性遗传。
于出生后6个月~2岁内发病。
典型症状为喂食困难,共济失调,肌张力低下,精神运动性癫痫发作以及脑干损伤所致的眼睑下垂,眼肌麻痹,视力下降和耳聋。
临床上见到幼儿出现反复发作的共济失调,肌张力降低,手足徐动及呕吐症状应考虑此病。
本病5%的基因异常与MERRF相同,为mtDNA8344和8993位点突变。
脑损害分布和病理特征与Wernicke 脑病非常相似,但比Wernick脑病更广泛,表现为丘脑、基底核、中脑、脑桥、延髓和脊髓双侧对称性海绵状改变伴髓鞘脱失、胶质和血管增生,周围神经可有脱髓鞘性改变。