2020美赛巅峰培训-数模入门与常用算法汇总
数学建模竞赛常用算法

网络流概念
网络流是图论中的一个重要概念,表示在有向图中,通过边进行 传输的流量。
图的表示方法
图的常见表示方法包括邻接矩阵、邻接表和边集数组等。
图与网络基本概念
图论基础
图是由节点(顶点)和边组成的一种数据结构,用于表示对象及 其之间的关系。
在非线性规划中,凸函数和凹函数的 性质对于问题的求解和分析具有重要 意义。
局部最优解与全局最优解
非线性规划问题可能存在多个局部最 优解,而全局最优解是所有局部最优 解中目标函数值最优的解。
非线性规划基本概念
非线性规划定义
凸函数与凹函数
非线性规划是一种数学优化技术,用 于求解目标函数或约束条件为非线性 函数的优化问题。
Gomory割等。
03
迭代过程
在每次迭代中生成一个或多个割平面,将原问题转化为一个更小的子问
题,然后求解子问题并更新最优解。重复此过程直到满足终止条件。
应用案例:物流配送路径优化
问题描述
物流配送路径优化问题是指在满足一定约束条件下,寻找总成本最小的配送路径。该问题 可转化为整数规划问题进行求解。
建模方法
使用单纯形法求解该线性规划模 型,得到最优的生产计划安排。 同时,可以进行灵敏度分析以了 解不同参数变化对生产计划的影
响程度。
应用案例:生产计划优化
问题描述
某企业计划生产多种产品,每种 产品需要不同的原料和加工时间, 且市场需求和原料供应有限。如 何安排生产计划以最大化利润或
最小化成本?
建模过程
将每种产品的产量作为决策变量, 以利润或成本作为目标函数,以 市场需求、原料供应和生产能力 等作为约束条件,构建线性规划
数学建模竞赛中应当掌握的十类算法

数学建模竞赛中应当掌握的十类算法1 十类常用算法数学建模竞赛中应当掌握的十类算法:1. 蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。
4. 图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。
这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。
两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。
如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。
赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
数学建模常用的30个常用算法(python代码)

数学建模常用的30个常用算法(python代码) 数学建模中使用的算法涉及多个领域,包括优化、统计、机器学习等。
以下是一些在数学建模中常用的30个算法的简要说明和Python代码示例。
请注意,这只是一小部分,具体应用场景和需求可能需要使用其他算法。
1.线性规划(Linear Programming):from scipy.optimize import linprog2.整数规划(Integer Programming):from scipy.optimize import linprog3.非线性规划(Nonlinear Programming):from scipy.optimize import minimize4.蒙特卡洛模拟(Monte Carlo Simulation):import numpy as np5.差分方程(Difference Equations):import numpy as np6.梯度下降法(Gradient Descent):import numpy as np7.贪心算法(Greedy Algorithm):def greedy_algorithm(values, weights, capacity):n = len(values)ratio = [(values[i] / weights[i], i) for i in range(n)]ratio.sort(reverse=True)result = [0] * ntotal_value = 0current_weight = 0for _, i in ratio:if weights[i] + current_weight <= capacity: result[i] = 1current_weight += weights[i]total_value += values[i]return result, total_value8.动态规划(Dynamic Programming):def dynamic_programming(weights, values, capacity): n = len(values)dp = [[0] * (capacity + 1) for _ in range(n + 1)]for i in range(1, n + 1):for w in range(capacity + 1):if weights[i - 1] <= w:dp[i][w] = max(dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]])else:dp[i][w] = dp[i - 1][w]return dp[n][capacity]9.遗传算法(Genetic Algorithm):import numpy as np10.模拟退火算法(Simulated Annealing):import numpy as np11.马尔可夫链(Markov Chains):import numpy as np12.蒙特卡洛树搜索(Monte Carlo Tree Search):import numpy as np13.K均值聚类(K-means Clustering):from sklearn.cluster import KMeans14.主成分分析(Principal Component Analysis):from sklearn.decomposition import PCA15.支持向量机(Support Vector Machine):from sklearn.svm import SVC16.朴素贝叶斯分类器(Naive Bayes Classifier):from sklearn.naive_bayes import GaussianNB17.决策树(Decision Tree):from sklearn.tree import DecisionTreeClassifier18.随机森林(Random Forest):from sklearn.ensemble import RandomForestClassifier19.K最近邻算法(K-Nearest Neighbors):from sklearn.neighbors import KNeighborsClassifier20.多层感知器(Multilayer Perceptron):from sklearn.neural_network import MLPClassifier21.梯度提升机(Gradient Boosting):from sklearn.ensemble import GradientBoostingClassifier22.高斯混合模型(Gaussian Mixture Model):from sklearn.mixture import GaussianMixture23.时间序列分析(Time Series Analysis):import statsmodels.api as sm24.马尔科夫链蒙特卡洛(Markov Chain Monte Carlo):import pymc3 as pm25.局部最小二乘回归(Local Polynomial Regression):from statsmodels.nonparametric.kernel_regression import KernelReg26.逻辑回归(Logistic Regression):from sklearn.linear_model import LogisticRegression27.拉格朗日插值法(Lagrange Interpolation):from scipy.interpolate import lagrange28.最小二乘法(Least Squares Method):import numpy as np29.牛顿法(Newton's Method):def newton_method(f, df, x0, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - f(x) / df(x)if abs(f(x)) < tol:breakreturn x30.梯度下降法(Gradient Descent):def gradient_descent(f, df, x0, learning_rate=0.01, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - learning_rate * df(x)if abs(df(x)) < tol:breakreturn x以上代码只是简单示例,实际应用中可能需要根据具体问题进行调整和扩展。
数学建模大赛常用算法

数学建模大赛常用算法
数学建模比赛是一项非常重要的比赛,旨在培养学生的数学建模能力。
在数学建模比赛中,常用的算法有很多,下面我们来介绍一些常用的算法。
1. 图论算法
图论是数学建模中一个非常重要的分支,其应用广泛,包括交通规划、电路设计、网络安全等领域。
图的数据结构包括邻接矩阵和邻接表,常用的算法有最短路径算法、最小生成树算法、拓扑排序算法等。
2. 数值计算算法
数值计算是数学建模中另一个重要的分支,其应用广泛,包括金融、天气预报、物理学等领域。
常用的算法有牛顿迭代法、龙格-库塔法等。
数值计算还包括数值积分、差分方程等方面。
3. 统计学算法
统计学是数学建模中另一个重要的分支,其应用广泛,包括医学、金融、社会学等领域。
常用的算法有假设检验、方差分析等。
统计学还包括回归分析、时间序列分析等方面。
4. 优化算法
优化算法是数学建模中另一个重要的分支,其应用广泛,包括运筹学、金融、工程等领域。
常用的算法有线性规划、整数规划、动态规划等。
总之,数学建模常用的算法非常多,学生需要掌握其中的一些算
法,才能在数学建模比赛中脱颖而出。
数学建模常用的十大算法

数学建模常用的十大算法一、线性回归算法线性回归算法(linear regression)是数学建模中最常用的算法之一,用于研究变量之间的线性关系。
它可以将变量之间的关系建模为一个线性方程,从而找出其中的关键因素,并预测未来的变化趋势。
二、逻辑回归算法逻辑回归算法(logistic regression)是一种用于建立分类模型的线性回归算法。
它可用于分类任务,如肿瘤疾病的预测和信用评级的决定。
逻辑回归利用某个事件的概率来建立分类模型,这个概率是通过一个特定的函数来计算的。
三、决策树算法决策树算法(decision tree)是一种非参数化的分类算法,可用于解决复杂的分类和预测问题。
它使用树状结构来描述不同的决策路径,每个分支表示一个决策,而每个叶子节点表示一个分类结果。
决策树算法的可解释性好,易于理解和解释。
四、k-均值聚类算法k-均值聚类算法(k-means clustering)是无监督学习中最常用的算法之一,可用于将数据集分成若干个簇。
此算法通过迭代过程来不断优化簇的质心,从而找到最佳的簇分类。
k-均值聚类算法简单易用,但对于高维数据集和离群值敏感。
五、支持向量机算法支持向量机算法(support vector machine)是一种强大的分类和回归算法,可用于解决复杂的非线性问题。
该算法基于最大化数据集之间的间隔,找到一个最佳的超平面来将数据分类。
支持向量机算法对于大型数据集的处理效率较高。
六、朴素贝叶斯算法朴素贝叶斯算法(naive bayes)是一种基于贝叶斯定理的分类算法,用于确定不同变量之间的概率关系。
该算法通过使用先验概率来计算各个变量之间的概率,从而预测未来的变化趋势。
朴素贝叶斯算法的处理速度快且适用于高维数据集。
七、随机森林算法随机森林算法(random forest)是一种基于决策树的分类算法,它利用多个决策树来生成随机森林,从而提高预测的准确性。
该算法通过随机化特征选择和子决策树的训练,防止过度拟合,并产生更稳定的预测结果。
数学建模十类常用算法

十类常用算法数学建模竞赛中应当掌握的十类算法:1. 蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo 、Lingo 软件求解。
4. 图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。
这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。
两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。
如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。
赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
数模十大常用算法及说明&参考文献

数模十大常用算法及说明1. 蒙特卡罗算法该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo 、Lingo 软件求解。
4. 图论算法这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
十类算法的详细说明1.蒙特卡罗算法大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。
美赛建模知识点总结

美赛建模知识点总结美赛建模是指利用数学模型和算法,对美赛(Mathematical Contest in Modeling)中的实际问题进行建模和求解的过程。
美赛是全球范围内最具影响力和知名度的数学建模竞赛之一,参赛者需要在规定的时间内解决所提出的实际问题,并撰写完整的模型报告。
在美赛中,建模的过程非常重要,而建模的关键知识点也是参赛者需要掌握的重点之一。
下面将对美赛建模中的关键知识点进行总结。
1. 问题分析在美赛建模中,首先需要对所提出的实际问题进行全面的分析。
这包括了对问题的深入理解,明确问题的目标和约束条件,确定问题的关键变量和影响因素等。
同时还需要对问题的实际背景和应用领域进行了解,从而找到问题的实际意义和解决方法。
2. 数学建模数学建模是美赛中的核心环节,参赛者需要使用数学理论和方法对问题进行建模。
数学建模的关键知识点包括:微积分、线性代数、概率论与数理统计、运筹学、图论等。
参赛者需要根据实际问题的特点,选择合适的建模方法,构建数学模型,推导数学方程,进行数学分析和求解。
3. 计算机编程在美赛建模中,计算机编程是求解问题的重要手段。
参赛者需要熟练掌握一种或多种计算机编程语言,如C/C++、Python、MATLAB等。
计算机编程的知识点包括:数据结构与算法、面向对象程序设计、图形图像处理等。
通过编程实现模型的求解和仿真,对结果进行分析和展示。
4. 模型分析与评价建立数学模型后,需要对模型进行分析和评价。
这包括了对模型的合理性和可靠性进行评估,比较模型预测结果和实际数据的吻合程度,对模型的敏感性和稳定性进行分析。
同时还需要对模型的优缺点进行评价,提出改进和优化建议。
5. 模型报告撰写模型报告是美赛中的重要成果之一,参赛者需要撰写完整的模型报告,包括问题分析、数学模型构建、模型求解和分析、模型评价等内容。
模型报告的撰写需要一定的文献调研和写作技巧,能够清晰、准确地表达模型的思路和解决方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主讲:科研交流-老教练
ቤተ መጻሕፍቲ ባይዱ 1 什么叫数学建模?
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
数学模型
对于一个现实对象,为了一个特定目的,
根据其内在规律,作出必要的简化假设,
运用适当的数学工具,得到的一个数学结构。
• ⑧投影寻踪综合评价法:糅合多种算法,比如遗传算法、最优化理论
• ⑨方差分析、协方差分析等
• 方差分析:看几类数据之间有无差异,差异性影响,例如:元素对麦子的产 量有无影响,差异量的多少;(1992年作物生长的施肥问题)
• 协方差分析:有几个因素,我们只考虑一个因素对问题的影响,忽略其他因 素,但注意初始数据的量纲以及初始情况。(2006年,艾滋病疗法的评价以及 预测问题)
(2)关联与因果
• ①灰色关联分析方法(样本点的个数较少) • ②Superman或kendall等级相关分析 • ③Person相关(样本点的个数比较多) • ④Copula相关(比较难,金融数学,概率密度) • ⑤典型相关分析(因变量Y1234,自变量组X1234,各自变量组相关
性比较强,问哪一个因变量与哪一个自变量关系比较紧密?)
• ⑥小波分析预测 • ⑦神经网络预测 • ⑧混沌序列预测
(6)优化与控制
• ①线性规划、整数规划、0-1规划(有约束,确定的目标) • ②非线性规划与智能优化算法 • ③多目标规划和目标规划(柔性约束,目标含糊,超过) • ④动态规划 • ⑤图论、网络优化(多因素交错复杂) • ⑥排队论与计算机仿真 • ⑦模糊规划(范围约束) • ⑧灰色规划(难)
从,放声大喊,二狗怕惊到老李,便从独门秘籍锁喉功将其杀害,见如
花咽气后,二狗顿时惊慌,蒙上黑丝 带迅速逃离而去~
•
第二天,老李发现如花被杀,立刻联系了京城第一名探,福尔摩斯~
老哥,老哥展开了一系列的推理~
神探推理过程 数据处理
• (1)凶手留下的蛛丝马迹,连成线索 关联与分析
• (2)根据线索推测凶手的作案过程及缘由
(5)预测与预报
• 主要有五种: • 小样本内部预测 • 大样本的内部预测 • 小样本的未来预测 • 大样本的随机因素或周期特征的未来预测; • 大样本的未来预测
(5)预测与预报
• ①灰色预测模型(必须掌握) • 满足两个条件可用: • a数据样本点个数少,6-15个 • b数据呈现指数或曲线的形式 • ②微分方程预测(备用) • 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间
• ④马尔科夫预测(备用) • 一个序列之间没有信息的传递,前后没有联系,数据与数据之间随机性
强,相互不影响;今天的温度与昨天、后天没有直接联系,预测后天温 度高、中、低的概率,只能得到概率
• ⑤时间序列预测(必须掌握) • 与马尔科夫预测互补,至少有2个点需要信息的传递,ARMA模型,周
期模型,季节模型等。
的关系,通过公式推导转化为原始数据之间的关系。
• ③回归分析预测(必须掌握) • 求一个因变量与若干自变量之间的关系,若自变量变化之后,求因变量
如何变化;
• 样本点的个数有要求: • a自变量之间协方差比较小,最好趋于零,自变量间的关系小; • b样本点的个数n>3k+1,k为自变量的个数; • c因变量要符合正态分布
数学 建模
建立数学模型的全过程 (包括表述、求解、解释、检验等)
模型准备
2 建模步骤
模型假设
模型建立
模型检验
模型分析
模型求解
模型应用
3 数学建模有什么问题?
• 从一段悬疑故事讲起:
•
一天晚上,月黑风高,一采花大盗王二狗潜入土财主老李家中,见
其小妾如花姑娘有沉鱼落雁,闭月羞花之貌,顿生歹念。但如花誓死不
分类与判别
• (3)利用葵花宝典和人际交往,进行可疑人员的排查
评价与决策
• (4)结合更准确的线索和证据信息对可疑人员进行深度预分测析与,预报锁定嫌疑人
• (5)对近期类似案件进行梳理,掌握规优律化与,控严制密布防与抓捕
• (6)教导犯罪嫌疑人认真做人,认真改造
(1)数据处理问题
• ①插值拟合 • 主要用于对数据的补全和基本的趋势分析 • ②小波分析,聚类分析(高斯混合聚类,K-均值聚类等等) • 主要用于诊断数据异常值并进行剔除 • ③主成分分析、线性判别分析、局部保留投影等 • 主要用于多维数据的降维处理,减少数据冗余 • ④均值、方差分析、协方差分析等统计方法 • 主要用于数据的截取或者特征选择
智能算法选讲
兔子们吃了失忆药片,并被发射到太空,然后随机落到了地 球上的某些地方。他们不知道自己的使命是什么。但是,如果 你过几年就杀死一部分海拔低的兔子,多产的兔子们自己就会 找到珠穆朗玛峰。
遗传算法
智能算法选讲
兔子们用酒将自己灌醉了。它们随机地跳了很长时间。在这 期间,它们可能走向高处,也可能踏入平地。但是,随着时间 的流逝,它们渐渐清醒了并朝最高方向跳去。
模拟退火法
智能算法选讲
兔子们知道一个兔子的力量是渺小的。于是,它们互相转告 着,哪里的山已经找过,并且找过的每一座山他们都留下一只 兔子做记号。这样,它们制定了下一步去哪里寻找的策略。
粒子群算法
(3)分类与判别
• ①距离聚类(系统聚类)常用 • ②关联性聚类(常用) • ③层次聚类 • ④密度聚类 • ⑤其他聚类 • ⑥贝叶斯判别(统计判别方法) • ⑦费舍尔判别(训练的样本比较少) • ⑧模糊识别(分好类的数据点比较少)
(4)评价与决策
• ①模糊综合评判:评价一个对象优、良、中、差等层次评价,评价 一个学校等,不能排序
• ②主成分分析:评价多个对象的水平并排序,指标间关联性很强。 • ③层次分析法:做决策,通过指标,综合考虑做决定 • ④数据包络(DEA)分析法:优化问题,对各省发展状况进行评判 • ⑤秩和比综合评价法:评价各个对象并排序,指标间关联性不强 • ⑥神经网络评价:适用于多指标非线性关系明确的评价
• ⑦优劣解距离法(TOPSIS法)