2020美赛巅峰培训-数模入门与常用算法汇总

合集下载

数学建模竞赛常用算法

数学建模竞赛常用算法
图是由节点(顶点)和边组成的一种数据结构,用于表示对象及 其之间的关系。
网络流概念
网络流是图论中的一个重要概念,表示在有向图中,通过边进行 传输的流量。
图的表示方法
图的常见表示方法包括邻接矩阵、邻接表和边集数组等。
图与网络基本概念
图论基础
图是由节点(顶点)和边组成的一种数据结构,用于表示对象及 其之间的关系。
在非线性规划中,凸函数和凹函数的 性质对于问题的求解和分析具有重要 意义。
局部最优解与全局最优解
非线性规划问题可能存在多个局部最 优解,而全局最优解是所有局部最优 解中目标函数值最优的解。
非线性规划基本概念
非线性规划定义
凸函数与凹函数
非线性规划是一种数学优化技术,用 于求解目标函数或约束条件为非线性 函数的优化问题。
Gomory割等。
03
迭代过程
在每次迭代中生成一个或多个割平面,将原问题转化为一个更小的子问
题,然后求解子问题并更新最优解。重复此过程直到满足终止条件。
应用案例:物流配送路径优化
问题描述
物流配送路径优化问题是指在满足一定约束条件下,寻找总成本最小的配送路径。该问题 可转化为整数规划问题进行求解。
建模方法
使用单纯形法求解该线性规划模 型,得到最优的生产计划安排。 同时,可以进行灵敏度分析以了 解不同参数变化对生产计划的影
响程度。
应用案例:生产计划优化
问题描述
某企业计划生产多种产品,每种 产品需要不同的原料和加工时间, 且市场需求和原料供应有限。如 何安排生产计划以最大化利润或
最小化成本?
建模过程
将每种产品的产量作为决策变量, 以利润或成本作为目标函数,以 市场需求、原料供应和生产能力 等作为约束条件,构建线性规划

数学建模竞赛中应当掌握的十类算法

数学建模竞赛中应当掌握的十类算法

数学建模竞赛中应当掌握的十类算法1 十类常用算法数学建模竞赛中应当掌握的十类算法:1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

数学建模常用的30个常用算法(python代码)

数学建模常用的30个常用算法(python代码)

数学建模常用的30个常用算法(python代码) 数学建模中使用的算法涉及多个领域,包括优化、统计、机器学习等。

以下是一些在数学建模中常用的30个算法的简要说明和Python代码示例。

请注意,这只是一小部分,具体应用场景和需求可能需要使用其他算法。

1.线性规划(Linear Programming):from scipy.optimize import linprog2.整数规划(Integer Programming):from scipy.optimize import linprog3.非线性规划(Nonlinear Programming):from scipy.optimize import minimize4.蒙特卡洛模拟(Monte Carlo Simulation):import numpy as np5.差分方程(Difference Equations):import numpy as np6.梯度下降法(Gradient Descent):import numpy as np7.贪心算法(Greedy Algorithm):def greedy_algorithm(values, weights, capacity):n = len(values)ratio = [(values[i] / weights[i], i) for i in range(n)]ratio.sort(reverse=True)result = [0] * ntotal_value = 0current_weight = 0for _, i in ratio:if weights[i] + current_weight <= capacity: result[i] = 1current_weight += weights[i]total_value += values[i]return result, total_value8.动态规划(Dynamic Programming):def dynamic_programming(weights, values, capacity): n = len(values)dp = [[0] * (capacity + 1) for _ in range(n + 1)]for i in range(1, n + 1):for w in range(capacity + 1):if weights[i - 1] <= w:dp[i][w] = max(dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]])else:dp[i][w] = dp[i - 1][w]return dp[n][capacity]9.遗传算法(Genetic Algorithm):import numpy as np10.模拟退火算法(Simulated Annealing):import numpy as np11.马尔可夫链(Markov Chains):import numpy as np12.蒙特卡洛树搜索(Monte Carlo Tree Search):import numpy as np13.K均值聚类(K-means Clustering):from sklearn.cluster import KMeans14.主成分分析(Principal Component Analysis):from sklearn.decomposition import PCA15.支持向量机(Support Vector Machine):from sklearn.svm import SVC16.朴素贝叶斯分类器(Naive Bayes Classifier):from sklearn.naive_bayes import GaussianNB17.决策树(Decision Tree):from sklearn.tree import DecisionTreeClassifier18.随机森林(Random Forest):from sklearn.ensemble import RandomForestClassifier19.K最近邻算法(K-Nearest Neighbors):from sklearn.neighbors import KNeighborsClassifier20.多层感知器(Multilayer Perceptron):from sklearn.neural_network import MLPClassifier21.梯度提升机(Gradient Boosting):from sklearn.ensemble import GradientBoostingClassifier22.高斯混合模型(Gaussian Mixture Model):from sklearn.mixture import GaussianMixture23.时间序列分析(Time Series Analysis):import statsmodels.api as sm24.马尔科夫链蒙特卡洛(Markov Chain Monte Carlo):import pymc3 as pm25.局部最小二乘回归(Local Polynomial Regression):from statsmodels.nonparametric.kernel_regression import KernelReg26.逻辑回归(Logistic Regression):from sklearn.linear_model import LogisticRegression27.拉格朗日插值法(Lagrange Interpolation):from scipy.interpolate import lagrange28.最小二乘法(Least Squares Method):import numpy as np29.牛顿法(Newton's Method):def newton_method(f, df, x0, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - f(x) / df(x)if abs(f(x)) < tol:breakreturn x30.梯度下降法(Gradient Descent):def gradient_descent(f, df, x0, learning_rate=0.01, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - learning_rate * df(x)if abs(df(x)) < tol:breakreturn x以上代码只是简单示例,实际应用中可能需要根据具体问题进行调整和扩展。

数学建模大赛常用算法

数学建模大赛常用算法

数学建模大赛常用算法
数学建模比赛是一项非常重要的比赛,旨在培养学生的数学建模能力。

在数学建模比赛中,常用的算法有很多,下面我们来介绍一些常用的算法。

1. 图论算法
图论是数学建模中一个非常重要的分支,其应用广泛,包括交通规划、电路设计、网络安全等领域。

图的数据结构包括邻接矩阵和邻接表,常用的算法有最短路径算法、最小生成树算法、拓扑排序算法等。

2. 数值计算算法
数值计算是数学建模中另一个重要的分支,其应用广泛,包括金融、天气预报、物理学等领域。

常用的算法有牛顿迭代法、龙格-库塔法等。

数值计算还包括数值积分、差分方程等方面。

3. 统计学算法
统计学是数学建模中另一个重要的分支,其应用广泛,包括医学、金融、社会学等领域。

常用的算法有假设检验、方差分析等。

统计学还包括回归分析、时间序列分析等方面。

4. 优化算法
优化算法是数学建模中另一个重要的分支,其应用广泛,包括运筹学、金融、工程等领域。

常用的算法有线性规划、整数规划、动态规划等。

总之,数学建模常用的算法非常多,学生需要掌握其中的一些算
法,才能在数学建模比赛中脱颖而出。

数学建模常用的十大算法

数学建模常用的十大算法

数学建模常用的十大算法一、线性回归算法线性回归算法(linear regression)是数学建模中最常用的算法之一,用于研究变量之间的线性关系。

它可以将变量之间的关系建模为一个线性方程,从而找出其中的关键因素,并预测未来的变化趋势。

二、逻辑回归算法逻辑回归算法(logistic regression)是一种用于建立分类模型的线性回归算法。

它可用于分类任务,如肿瘤疾病的预测和信用评级的决定。

逻辑回归利用某个事件的概率来建立分类模型,这个概率是通过一个特定的函数来计算的。

三、决策树算法决策树算法(decision tree)是一种非参数化的分类算法,可用于解决复杂的分类和预测问题。

它使用树状结构来描述不同的决策路径,每个分支表示一个决策,而每个叶子节点表示一个分类结果。

决策树算法的可解释性好,易于理解和解释。

四、k-均值聚类算法k-均值聚类算法(k-means clustering)是无监督学习中最常用的算法之一,可用于将数据集分成若干个簇。

此算法通过迭代过程来不断优化簇的质心,从而找到最佳的簇分类。

k-均值聚类算法简单易用,但对于高维数据集和离群值敏感。

五、支持向量机算法支持向量机算法(support vector machine)是一种强大的分类和回归算法,可用于解决复杂的非线性问题。

该算法基于最大化数据集之间的间隔,找到一个最佳的超平面来将数据分类。

支持向量机算法对于大型数据集的处理效率较高。

六、朴素贝叶斯算法朴素贝叶斯算法(naive bayes)是一种基于贝叶斯定理的分类算法,用于确定不同变量之间的概率关系。

该算法通过使用先验概率来计算各个变量之间的概率,从而预测未来的变化趋势。

朴素贝叶斯算法的处理速度快且适用于高维数据集。

七、随机森林算法随机森林算法(random forest)是一种基于决策树的分类算法,它利用多个决策树来生成随机森林,从而提高预测的准确性。

该算法通过随机化特征选择和子决策树的训练,防止过度拟合,并产生更稳定的预测结果。

数学建模十类常用算法

数学建模十类常用算法

十类常用算法数学建模竞赛中应当掌握的十类算法:1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo 、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

以下将结合历年的竞赛题,对这十类算法进行详细地说明。

数模十大常用算法及说明&参考文献

数模十大常用算法及说明&参考文献

数模十大常用算法及说明1. 蒙特卡罗算法该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo 、Lingo 软件求解。

4. 图论算法这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

十类算法的详细说明1.蒙特卡罗算法大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。

美赛建模知识点总结

美赛建模知识点总结

美赛建模知识点总结美赛建模是指利用数学模型和算法,对美赛(Mathematical Contest in Modeling)中的实际问题进行建模和求解的过程。

美赛是全球范围内最具影响力和知名度的数学建模竞赛之一,参赛者需要在规定的时间内解决所提出的实际问题,并撰写完整的模型报告。

在美赛中,建模的过程非常重要,而建模的关键知识点也是参赛者需要掌握的重点之一。

下面将对美赛建模中的关键知识点进行总结。

1. 问题分析在美赛建模中,首先需要对所提出的实际问题进行全面的分析。

这包括了对问题的深入理解,明确问题的目标和约束条件,确定问题的关键变量和影响因素等。

同时还需要对问题的实际背景和应用领域进行了解,从而找到问题的实际意义和解决方法。

2. 数学建模数学建模是美赛中的核心环节,参赛者需要使用数学理论和方法对问题进行建模。

数学建模的关键知识点包括:微积分、线性代数、概率论与数理统计、运筹学、图论等。

参赛者需要根据实际问题的特点,选择合适的建模方法,构建数学模型,推导数学方程,进行数学分析和求解。

3. 计算机编程在美赛建模中,计算机编程是求解问题的重要手段。

参赛者需要熟练掌握一种或多种计算机编程语言,如C/C++、Python、MATLAB等。

计算机编程的知识点包括:数据结构与算法、面向对象程序设计、图形图像处理等。

通过编程实现模型的求解和仿真,对结果进行分析和展示。

4. 模型分析与评价建立数学模型后,需要对模型进行分析和评价。

这包括了对模型的合理性和可靠性进行评估,比较模型预测结果和实际数据的吻合程度,对模型的敏感性和稳定性进行分析。

同时还需要对模型的优缺点进行评价,提出改进和优化建议。

5. 模型报告撰写模型报告是美赛中的重要成果之一,参赛者需要撰写完整的模型报告,包括问题分析、数学模型构建、模型求解和分析、模型评价等内容。

模型报告的撰写需要一定的文献调研和写作技巧,能够清晰、准确地表达模型的思路和解决方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020美赛巅峰基础课2 数模入门与常用算法汇总
主讲:科研交流-老教练
ቤተ መጻሕፍቲ ባይዱ 1 什么叫数学建模?
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
数学模型
对于一个现实对象,为了一个特定目的,
根据其内在规律,作出必要的简化假设,
运用适当的数学工具,得到的一个数学结构。
• ⑧投影寻踪综合评价法:糅合多种算法,比如遗传算法、最优化理论
• ⑨方差分析、协方差分析等
• 方差分析:看几类数据之间有无差异,差异性影响,例如:元素对麦子的产 量有无影响,差异量的多少;(1992年作物生长的施肥问题)
• 协方差分析:有几个因素,我们只考虑一个因素对问题的影响,忽略其他因 素,但注意初始数据的量纲以及初始情况。(2006年,艾滋病疗法的评价以及 预测问题)
(2)关联与因果
• ①灰色关联分析方法(样本点的个数较少) • ②Superman或kendall等级相关分析 • ③Person相关(样本点的个数比较多) • ④Copula相关(比较难,金融数学,概率密度) • ⑤典型相关分析(因变量Y1234,自变量组X1234,各自变量组相关
性比较强,问哪一个因变量与哪一个自变量关系比较紧密?)
• ⑥小波分析预测 • ⑦神经网络预测 • ⑧混沌序列预测
(6)优化与控制
• ①线性规划、整数规划、0-1规划(有约束,确定的目标) • ②非线性规划与智能优化算法 • ③多目标规划和目标规划(柔性约束,目标含糊,超过) • ④动态规划 • ⑤图论、网络优化(多因素交错复杂) • ⑥排队论与计算机仿真 • ⑦模糊规划(范围约束) • ⑧灰色规划(难)
从,放声大喊,二狗怕惊到老李,便从独门秘籍锁喉功将其杀害,见如
花咽气后,二狗顿时惊慌,蒙上黑丝 带迅速逃离而去~

第二天,老李发现如花被杀,立刻联系了京城第一名探,福尔摩斯~
老哥,老哥展开了一系列的推理~
神探推理过程 数据处理
• (1)凶手留下的蛛丝马迹,连成线索 关联与分析
• (2)根据线索推测凶手的作案过程及缘由
(5)预测与预报
• 主要有五种: • 小样本内部预测 • 大样本的内部预测 • 小样本的未来预测 • 大样本的随机因素或周期特征的未来预测; • 大样本的未来预测
(5)预测与预报
• ①灰色预测模型(必须掌握) • 满足两个条件可用: • a数据样本点个数少,6-15个 • b数据呈现指数或曲线的形式 • ②微分方程预测(备用) • 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间
• ④马尔科夫预测(备用) • 一个序列之间没有信息的传递,前后没有联系,数据与数据之间随机性
强,相互不影响;今天的温度与昨天、后天没有直接联系,预测后天温 度高、中、低的概率,只能得到概率
• ⑤时间序列预测(必须掌握) • 与马尔科夫预测互补,至少有2个点需要信息的传递,ARMA模型,周
期模型,季节模型等。
的关系,通过公式推导转化为原始数据之间的关系。
• ③回归分析预测(必须掌握) • 求一个因变量与若干自变量之间的关系,若自变量变化之后,求因变量
如何变化;
• 样本点的个数有要求: • a自变量之间协方差比较小,最好趋于零,自变量间的关系小; • b样本点的个数n>3k+1,k为自变量的个数; • c因变量要符合正态分布
数学 建模
建立数学模型的全过程 (包括表述、求解、解释、检验等)
模型准备
2 建模步骤
模型假设
模型建立
模型检验
模型分析
模型求解
模型应用
3 数学建模有什么问题?
• 从一段悬疑故事讲起:

一天晚上,月黑风高,一采花大盗王二狗潜入土财主老李家中,见
其小妾如花姑娘有沉鱼落雁,闭月羞花之貌,顿生歹念。但如花誓死不
分类与判别
• (3)利用葵花宝典和人际交往,进行可疑人员的排查
评价与决策
• (4)结合更准确的线索和证据信息对可疑人员进行深度预分测析与,预报锁定嫌疑人
• (5)对近期类似案件进行梳理,掌握规优律化与,控严制密布防与抓捕
• (6)教导犯罪嫌疑人认真做人,认真改造
(1)数据处理问题
• ①插值拟合 • 主要用于对数据的补全和基本的趋势分析 • ②小波分析,聚类分析(高斯混合聚类,K-均值聚类等等) • 主要用于诊断数据异常值并进行剔除 • ③主成分分析、线性判别分析、局部保留投影等 • 主要用于多维数据的降维处理,减少数据冗余 • ④均值、方差分析、协方差分析等统计方法 • 主要用于数据的截取或者特征选择
智能算法选讲
兔子们吃了失忆药片,并被发射到太空,然后随机落到了地 球上的某些地方。他们不知道自己的使命是什么。但是,如果 你过几年就杀死一部分海拔低的兔子,多产的兔子们自己就会 找到珠穆朗玛峰。
遗传算法
智能算法选讲
兔子们用酒将自己灌醉了。它们随机地跳了很长时间。在这 期间,它们可能走向高处,也可能踏入平地。但是,随着时间 的流逝,它们渐渐清醒了并朝最高方向跳去。
模拟退火法
智能算法选讲
兔子们知道一个兔子的力量是渺小的。于是,它们互相转告 着,哪里的山已经找过,并且找过的每一座山他们都留下一只 兔子做记号。这样,它们制定了下一步去哪里寻找的策略。
粒子群算法
(3)分类与判别
• ①距离聚类(系统聚类)常用 • ②关联性聚类(常用) • ③层次聚类 • ④密度聚类 • ⑤其他聚类 • ⑥贝叶斯判别(统计判别方法) • ⑦费舍尔判别(训练的样本比较少) • ⑧模糊识别(分好类的数据点比较少)
(4)评价与决策
• ①模糊综合评判:评价一个对象优、良、中、差等层次评价,评价 一个学校等,不能排序
• ②主成分分析:评价多个对象的水平并排序,指标间关联性很强。 • ③层次分析法:做决策,通过指标,综合考虑做决定 • ④数据包络(DEA)分析法:优化问题,对各省发展状况进行评判 • ⑤秩和比综合评价法:评价各个对象并排序,指标间关联性不强 • ⑥神经网络评价:适用于多指标非线性关系明确的评价
• ⑦优劣解距离法(TOPSIS法)
相关文档
最新文档