2015-2016高二期末考试理科数学试卷题(含答案)
2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年度 第一学期期末质量监测高二数学(理科)试卷一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线023=+-y x 的倾斜角是A.6π B.3π C.23π D.56π 2. 直线l 过点(2,2)P -,且与直线032=-+y x 垂直,则直线l 的方程为 A. 220x y +-= B. 260x y --=C. 260x y --=D. 250x y -+=3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为π12, 则该几何体的体积是A. π4B. 12πC. 16πD. 48π 4. 在空间中,下列命题正确的是 A. 如果直线m ∥平面α,直线α⊂n 内,那么m ∥n ;B. 如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC. 如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m α⊥D. 如果平面α⊥平面β,任取直线m α⊂,那么必有m β⊥5. 如果直线013=-+y ax 与直线01)21(=++-ay x a 平行.那么a 等于A. -1B.31 C. 3 D. -1或316. 方程)0(0222≠=++a y ax x 表示的圆A. 关于x 轴对称B. 关于y 轴对称C. 关于直线x y =轴对称D. 关于直线x y -=轴对称7. 如图,正方体1111ABCD A BC D -中,点E ,F 分别是1AA ,AD 的中点,则1CD 与EF 所成角为A. 0︒B. 45︒C. 60︒D. 90︒8. 如果过点M (-2,0)的直线l 与椭圆1222=+y x 有公共点,那么直线l 的斜率k 的取值范围是A.]22,(--∞ B.),22[+∞ C.]21,21[-D. ]22,22[-二、填空题:本大题共6小题,每小题5分,共30分.9. 已知双曲线的标准方程为116422=-y x ,则该双曲线的焦点坐标为,_________________渐近线方程为_________________.10. 已知向量)1,3,2(-=a,)2,,5(--=y b 且a b ⊥ ,则y =________.11. 已知点),2,(n m A -,点)24,6,5(-B 和向量(3,4,12)a =-且AB ∥a .则点A 的坐标为________.12. 直线0632=++y x 与坐标轴所围成的三角形的面积为________. 13. 抛物线x y 82-=上到焦点距离等于6的点的坐标是_________________.14. 已知点)0,2(A ,点)3,0(B ,点C 在圆122=+y x 上,当ABC ∆的面积最小时,点C 的坐标为________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15. (本小题共13分)如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,E ,F ,G 分别是AC ,AD ,BC 的中点. 求证:(I )AB ∥平面EFG ;(II )平面⊥EFG 平面ABC .16. (本小题共13分)已知斜率为2的直线l 被圆0241422=+++y y x 所截得的弦长为求直线l 的方程.17. (本小题共14分)如图,在四棱锥P ABCD -中,平面⊥PAB 平面ABCD ,AB ∥CD ,AB AD ⊥,2CD AB =,E 为PA 的中点,M 在PD 上(点M 与D P ,两点不重合).(I ) 求证:PB AD ⊥;(II )若λ=PDPM,则当λ为何值时, 平面⊥BEM 平面PAB ?(III )在(II )的条件下,求证:PC ∥平面BEM .18. (本小题共13分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,平面PCD ⊥底面ABCD ,PD CD ⊥,PD CD =,E 为PC 的中点. (I ) 求证:AC ⊥PB ; (II ) 求二面角P --BD --E 的余弦值.19. (本小题共14分)已知斜率为1的直线l 经过抛物线22y px =(0)p >的焦点F ,且与抛物线相交于A ,B 两点,4=AB .(I ) 求p 的值;(II ) 设经过点B 和抛物线对称轴平行的直线交抛物线22y px =的准线于点D ,求证:DO A ,,三点共线(O 为坐标原点).20. (本小题共13分)已知椭圆2222:1(0)x y G a b a b +=>>的左焦点为F ,离心率为33,过点)1,0(M 且与x 轴平行的直线被椭圆G 截得的线段长为6. (I ) 求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于2,求直线OP (O 是坐标原点)的斜率的取值范围.2015-2016学年度第一学期期末质量检测高二数学(理科)试卷参考答案2016.1一、ABB C BA CD二、9.(±52,0),2y x =±10. -411. (1,-2,0)12. 313. (-4,24±)14. (13133,13132) 说明:1.第9题,答对一个空给3分。
2015-2016学年度第一学期高二理科试卷及答案

蚌埠市2015—2016学年度第一学期期末学业水平监测高二数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的A 、B 、C 、D 的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卡上.(不用答题卡的,填在下面相应的答题栏内,用答题卡的不必填...) 1.直线320x y ++=的倾斜角为 【 】A. 6p -B.56pC. 3p- D. 23p 2.命题“2,20∃∈++≤x R x x a ”的否定是 【 】A.2,20x R x x a "?+? B.2,20x R x x a $?+> C.2,20x R xx a "?+> D.2,20x R x x a $?+?3.以下命题正确的是 【 】 A.经过空间中的三点,有且只有一个平面。
B.空间中,如果两个角的两条边分别对应平行,那么这两个角相等。
C.空间中,两条异面直线所成角的范围是(0,]2p。
D.如果直线l 平行于平面a 内的无数条直线,则直线l 平行于平面a 。
4. 已知圆M 的方程为22224510x y x y ++-+=,则下列说法中不正确的是 【 】A. 圆M 的圆心为5(1,)4-B.圆M 的半径为334C.圆M 被x 轴截得的弦长为3D. 圆M 被y 轴截得的弦长为1725. 已知,,a b c 是三条不重合的直线,,a b 是两个不重合的平面,直线l a Ì,则【 】A. //,////a c b c a b ÞB. //,////a b a b b b ÞC. //,////a c c a a a ÞD. ////a l a a Þ。
6.设a R Î,则“1a =-”是“直线21:()210l a a x y ++-=与直线2:(1)40l x a y +++=垂直”的 【 】A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 7.某几何体的三视图(单位:cm )如图,则这个几何体 的表面积为(单位:cm 2) 【 】 A. 2443+ B. 4883+ C.2483+ D.4843+8.已知(3cos ,3sin ,1)P a a 和(2cos ,2sin ,1)Q b b ,则PQ的取值范围是 【 】A. [0,5]B. [1,25]C. [1,5]D. (1,5) 9.若直线l 的方向向量为(1,1,2)=-u ,平面a 的法向量为(3,3,6)=--n ,则 【 】A. //l aB. α⊥lC. l a ÌD. l 与a 斜交 10.已知矩形A BCD 的顶点都在半径为5的球P 的球面上,且4,3AB BC ==,则棱锥P ABCD -的体积为 【 】A. 53B. 303C.1033D.103 11.已知不等式组36032020x y x y x y +-≤⎧⎪+-≥⎨⎪--≤⎩表示的平面区域为D ,则区域D 的面积为 【 】A. 2B.3C.4D. 5 12. 在平面直角坐标系xOy 中,圆M 的方程为2282160x y x y +--+=,若直线30kx y -+=上至少存在一点,使得以该点为圆心,半径为1的圆与圆M 有公共点,则k 的取值范围为 【 】 A .4(,]3-∞- B .[0,)+?C .4[,0]3- D .4(,][0,)3-???蚌埠市2015—2016学年度第一学期期末学业水平监测高二数学(理科)题号 一 二 三总分 17 18 19 20 21 22 得分一、选择题答题栏:(不用答题卡的请将正确答案的字母代号填入下表;用答题卡的不必填....)题号 1 2 3 4 5 6 7 8 9 10 11 12 小计 答案第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案直接填在题中横线上.13.平面直角坐标系中,直线320x y -+=关于点(1,1)对称的直线方程是____________. 14.若命题“存在实数0[1,2]x Î,使得230xe x m ++-<”是假命题,则实数m 的取值范围为____________.15.已知正四棱锥侧面是正三角形,则侧棱与底面所成的角为_______.16.如图,已知平行六面体1111ABCD A B C D -中,1AC 与平面111,A BD CB D 交于,E F 两点,设K 为11△B CD 的外心,则1:K BED A BFD V V --=_______________。
河南省郑州市2015-2016学年高二数学下学期期末试卷理(含解析)

2015-2016学年河南省郑州市高二(下)期末数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分.在每小题所给的四个答案中,只有一项是符合题目要求的)1.已知复数z满足z+3i﹣3=6﹣3i,则z=()A.9 B.3﹣6i C.﹣6i D.9﹣6i2.函数f(x)=2x+1在(1,2)内的平均变化率()A.3 B.2 C.1 D.03.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.904.在2013年9月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:价格x 9 9.5 10 10.5 11销售量y 11 10 8 6 5由散点图可知,销售量y与价格x之间有较好的线性相关关系,其线性回归方程是:y=﹣3.2x+a,则a=()A.﹣24 B.35.6 C.40.5 D.405.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好6.设(2﹣x)6=a0+a1x+a2x+…+a6x6则|a1|+|a2|+…+|a6|的值是()A.665 B.729 C.728 D.637.若x=2是函数f(x)=x(x﹣m)2的极大值点,则m的值为()A.3 B.6 C.2或6 D.28.由曲线y2=2x和直线y=x﹣4所围成的图形的面积()A.21 B.16 C.20 D.189.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是()A.B.C.D.10.对于R上的可导函数f(x),若a>b>1且有(x﹣1)f′(x)≥0,则必有()A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)11.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×2201412.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)二、填空题(共4小题,每小题5分,满分20分)13.若随机变量ξ~N(2,1),且P(ξ>3)=0.158 7,则P(ξ>1)= .14.已知函数f(x)=+x+1有两个极值点,则实数a的取值范围是.15.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.16.观察下列等式:+=1+++=12+++++=39…则当m<n且m,n∈N时, =(最后结果用m,n表示)三、解答题(共6小题,满分70分.解答时应写出文字说明、证明过程或演算步骤)17.已知(+)n展开式中的倒数第三项的系数为45.求:(1)含x5的项;(2)系数最大的项.18.已知数列{a n}满足S n+a n=2n+1.(1)写出a1,a2,a3,并推测a n的表达式;(2)用数学归纳法证明所得的结论.19.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.20.已知函数f(x)=x3+(1﹣a) x2﹣a(a+2)x+b(a,b∈R).(Ⅰ)若函数f(x)的图象过原点,且在原点处的切线斜率是﹣3,求a,b的值;(Ⅱ)若函数f(x)在区间(﹣1,1)上不单调,求a的取值范围.21.近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.患心肺疾病不患心肺疾病合计男 5女10合计50已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为,(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.下面的临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001K 2.072 2.706 3.841 5.024 6.635 7.879 10.828 22.已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(1)讨论a=1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+;(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.2015-2016学年河南省郑州市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分.在每小题所给的四个答案中,只有一项是符合题目要求的)1.已知复数z满足z+3i﹣3=6﹣3i,则z=()A.9 B.3﹣6i C.﹣6i D.9﹣6i【考点】复数代数形式的乘除运算.【分析】直接移向变形得答案.【解答】解:由z+3i﹣3=6﹣3i,得z=6﹣3i+3﹣3i=9﹣6i.故选:D.2.函数f(x)=2x+1在(1,2)内的平均变化率()A.3 B.2 C.1 D.0【考点】变化的快慢与变化率.【分析】求出在区间(1,2)上的增量△y=f(2)﹣f(1),再利用平均变化率的公式,求出平均变化率.【解答】解:函数f(x)在区间(1,2)上的增量为:△y=f(2)﹣f(1)=2×2+1﹣3=2,所以f(x)在区间(1,2)上的平均变化率为:==2.故选:B.3.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.90【考点】计数原理的应用.【分析】本题属于排列问题,全排即可.【解答】解:5本不同的数学用书,全排列,故有A55=120种,故选:C4.在2013年9月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:价格x 9 9.5 10 10.5 11销售量y 11 10 8 6 5由散点图可知,销售量y与价格x之间有较好的线性相关关系,其线性回归方程是:y=﹣3.2x+a,则a=()A.﹣24 B.35.6 C.40.5 D.40【考点】线性回归方程.【分析】先求出横标和纵标的平均数,根据a=y﹣bx,把所求的平均数和方程中出现的b的值代入,求出a的值,题目中给出公式,只要代入求解即可得到结果.【解答】解: ==10,==8,∵y=﹣3.2x+a,∴a=3.2x+y=3.2×10+8=40.故选D.5.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好【考点】相关系数.【分析】A根据相关关系的定义,判断命题A正确;B线性回归分析的相关系数r的绝对值越接近1,线性相关性越强,判断命题B错误;C一组数据拟合程度的好坏,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,判断命题C正确;D用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,由此判断命题D正确.【解答】解:对于A,根据相关关系的定义,即可判断自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系是相关关系,∴命题A正确;对于B,线性回归分析中,相关系数r的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴命题B错误;对于C,残差图中,对于一组数据拟合程度的好坏评价,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,∴命题C正确;对于D,回归分析中,用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,∴R2为0.98的模型比R2为0.80的模型拟合效果好,命题D正确.故选:B.6.设(2﹣x)6=a0+a1x+a2x+…+a6x6则|a1|+|a2|+…+|a6|的值是()A.665 B.729 C.728 D.63【考点】二项式定理的应用.【分析】由二项式定理可知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,可得|a0|+|a1|+|a2|+…+|a6|=a0﹣a1+a2﹣a3+a4﹣a5+a6,把x=﹣1,x=0代入已知式子计数可得结果.【解答】解:∵(2﹣x)6=a0+a1x+a2x+…+a6x,由二项式定理可知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,令x=﹣1可得:∴|a0|+|a1|+|a2|+…+|a6|=a0﹣a1+a2﹣a3+a4﹣a5+a6=(2+1)6=729,x=0时,a0=26=64.∴|a1|+|a2|+…+|a6|=665.故选:A.7.若x=2是函数f(x)=x(x﹣m)2的极大值点,则m的值为()A.3 B.6 C.2或6 D.2【考点】利用导数研究函数的极值.【分析】由题意可知:求导,f′(2)=0,求得m的值,再分别利用函数极值的判断,求得m的值.【解答】解:f(x)=x(x﹣m)2=x3﹣2mx2+m2x,则f′(x)=3x2﹣4mx+m2,x=2是函数f(x)的极大值点,f′(2)=0,12﹣8m+m2=0,解得m=2或6,当m=2时,f(x)=x(x﹣2)2,f′(x)=3x2﹣8x+4,f′(x)>0,解得:x>2或x<,f′(x)<0,解得:<x<2,∴f(x)的单调递增区间为:(﹣∞,),(2,+∞),单调递减区间为:(,2),∴x=是f(x)的极大值,x=2是f(x)的极小值;当m=6时,f(x)=x(x﹣6)2,f′(x)=3x2﹣24x+36,f′(x)>0,解得:x>6或x<2,f′(x)<0,解得:2<x<6,∴f(x)的单调递增区间为:(﹣∞,2),(6,+∞),单调递减区间为:(2,6),∴x=2是f(x)的极大值,x=6是f(x)的极小值;所以m=6,故答案选:B.8.由曲线y2=2x和直线y=x﹣4所围成的图形的面积()A.21 B.16 C.20 D.18【考点】定积分在求面积中的应用.【分析】先求出曲线y2=2x 和直线y=x﹣4的交点坐标,从而得到积分的上下限,然后利用定积分表示出图形面积,最后根据定积分的定义求出即可.【解答】解:由解得曲线y2=2x 和直线y=x﹣4的交点坐标为:(2,﹣2),(8,4)选择y为积分变量∴由曲线y2=2x 和直线y=x﹣4所围成的图形的面积S=(y+4﹣y2)=(y2+4y﹣y3)|﹣24=18,故选:D.9.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是()A.B.C.D.【考点】条件概率与独立事件.【分析】因为第一次抽出正品,所以剩下的9件中有5件正品,所以第二次也摸到正品的概率是,据此解答即可.【解答】解:设“第一次摸出正品”为事件A,“第二次摸出正品”为事件B,则事件A和事件B相互独立,在第一次摸出正品的条件下,第二次也摸到正品的概率为:P(B|A)===.故选:D.10.对于R上的可导函数f(x),若a>b>1且有(x﹣1)f′(x)≥0,则必有()A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)【考点】利用导数研究函数的单调性.【分析】由不等式,通过分类讨论可以得出f(x)的单调性,即可得出f(a),f(b),f (1)的大小关系.【解答】解:由(x﹣1)f′(x)≥0可以得知,若(x﹣1)f′(x)>0,则有以下两种情况:①当x>1时,有f′(x)>0;②当x<1时,有f′(x)<0,∴可以得知当x>1时,f(x)单调递增,当x<1时,f(x)单调递减,∵a>b>1,∴f(a)>f(b)>f(1)∴f(a)+f(b)>2f(1),而当(x﹣1)f′(x)=0时,可以得知,f(a)=f(b)=f(1),∴f(a)+f(b)=2f(1),综上,可得f(a)+f(b)≥2f(1),故选:C.11.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×22014【考点】归纳推理.【分析】数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M,由此可得结论【解答】解:由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×20,第3行的第一个数为:4×21,…第n行的第一个数为:(n+1)×2n﹣2,第2016行只有M,则M=(1+2016)•22014=2017×22014故选:B.12.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)【考点】利用导数研究函数的单调性;导数的运算.【分析】构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.二、填空题(共4小题,每小题5分,满分20分)13.若随机变量ξ~N(2,1),且P(ξ>3)=0.158 7,则P(ξ>1)= 0.8413 .【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ~N(2,1),得到正态曲线关于x=2对称,由P(ξ>1)=P(ξ<3),即可求概率.【解答】解:∵随机变量ξ~N(2,1),∴正态曲线关于x=2对称,∵P(ξ>3)=0.1587,∴P(ξ>1)=P(ξ<3)=1﹣0.1587=0.8413.故答案为:0.841314.已知函数f(x)=+x+1有两个极值点,则实数a的取值范围是(﹣∞,﹣1)∪(1,+∞).【考点】利用导数研究函数的极值.【分析】求出函数的导数,令导数为0,由题意可得,判别式大于0,解不等式即可得到.【解答】解:函数f(x)=+x+1的导数f′(x)=x2+2ax+1由于函数f(x)有两个极值点,则方程f′(x)=0有两个不相等的实数根,即有△=4a2﹣4>0,解得,a>1或a<﹣1.故答案为:(﹣∞,﹣1)∪(1,+∞)15.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36 种.【考点】排列、组合的实际应用;排列、组合及简单计数问题.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足A、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.16.观察下列等式:+=1+++=12+++++=39…则当m<n且m,n∈N时, = n2﹣m2(最后结果用m,n表示)【考点】归纳推理.【分析】通过观察,第一个式子为m=0,n=1.第二个式子为m=2,n=4.第三个式子为m=5,n=8,然后根据结果值和m,n的关系进行归纳得到结论.【解答】解:当m=0,n=1时,为第一个式子+=1,此时1=12﹣0,当m=2,n=4时,为第二个式子+++=12,此时12=42﹣22当m=5,n=8时,为第三个式子+++++=39,此时39,=82﹣52由归纳推理可知, =n2﹣m2.故答案为:n2﹣m2三、解答题(共6小题,满分70分.解答时应写出文字说明、证明过程或演算步骤)17.已知(+)n展开式中的倒数第三项的系数为45.求:(1)含x5的项;(2)系数最大的项.【考点】二项式定理的应用.【分析】(1)由题意知=45,求得 n=10,在二项展开式的通项公式中,令x的幂指数等于0,求得k的值,可得含x3的项.(2)本题即求二项式系数最大的项,利用通项公式求得结果.【解答】解:(1)由题意知=45,∴n=10,T k+1=•,令=5,得k=2.所以含x3的项为 T3=•x3=45x3.(2)系数最大的项,即二项式系数最大的项,即T6=•=252•.18.已知数列{a n}满足S n+a n=2n+1.(1)写出a1,a2,a3,并推测a n的表达式;(2)用数学归纳法证明所得的结论.【考点】数列递推式;数学归纳法.【分析】(1)取n=1,2,3,分别求出a1,a2,a3,然后仔细观察,总结规律,猜测a n的值.(2)用数学归纳法进行证明,①当n=1时,命题成立;②假设n=k时,命题成立,即a k=2﹣,当n=k+1时,a1+a2+…+a k+a k+1+a k+1=2(k+1)+1,a k+1=2﹣,当n=k+1时,命题成立.故a n=2﹣都成立.【解答】解:(1)当n=1,时S1+a1=2a1=3∴a1=当n=2时,S2+a2=a1+a2+a2=5∴a2=,同样令n=3,则可求出a3=∴a1=,a2=,a3=猜测a n=2﹣(2)①由(1)已得当n=1时,命题成立;②假设n=k时,命题成立,即a k=2﹣,当n=k+1时,a1+a2+…+a k+2a k+1=2(k+1)+1,且a1+a2+…+a k=2k+1﹣a k∴2k+1﹣a k+2a k+1=2(k+1)+1=2k+3,∴2a k+1=2+2﹣,即a k+1=2﹣,即当n=k+1时,命题成立.根据①②得n∈N+,a n=2﹣都成立.19.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.【解答】解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件B2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P()=+==,故所求概率为:P(C)=P(B1+B2)=P(B1)+P(B2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为:X 0 1 2 3PE(X)=3×=.20.已知函数f(x)=x3+(1﹣a) x2﹣a(a+2)x+b(a,b∈R).(Ⅰ)若函数f(x)的图象过原点,且在原点处的切线斜率是﹣3,求a,b的值;(Ⅱ)若函数f(x)在区间(﹣1,1)上不单调,求a的取值范围.【考点】利用导数研究函数的单调性;导数的几何意义.【分析】(Ⅰ)先求导数:f′(x)=3x2+2(1﹣a)x﹣a(a+2),再利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a,b等式解之,从而问题解决.(Ⅱ)根据题中条件:“函数f(x)在区间(﹣1,1)不单调,”等价于“导函数f′(x)在(﹣1,1)既能取到大于0的实数,又能取到小于0的实数”,由于导函数是一个二次函数,有两个根,故问题可以转化为到少有一根在区间(﹣1,1)内,先求两根,再由以上关系得到参数的不等式,解出两个不等式的解集,求其并集即可;【解答】解析:(Ⅰ)由题意得f′(x)=3x2+2(1﹣a)x﹣a(a+2)又,解得b=0,a=﹣3或a=1(Ⅱ)函数f(x)在区间(﹣1,1)不单调,等价于导函数f′(x)[是二次函数],在(﹣1,1有实数根但无重根.∵f′(x)=3x2+2(1﹣a)x﹣a(a+2)=(x﹣a)[3x+(a+2)],令f′(x)=0得两根分别为x=a与x=若a=即a=﹣时,此时导数恒大于等于0,不符合题意,当两者不相等时即a≠﹣时有a∈(﹣1,1)或者∈(﹣1,1)解得a∈(﹣5,1)且a≠﹣综上得参数a的取值范围是(﹣5,﹣)∪(﹣,1)21.近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.患心肺疾病不患心肺疾病合计男 5女10合计50已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为,(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.下面的临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001K 2.072 2.706 3.841 5.024 6.635 7.879 10.828 【考点】独立性检验;离散型随机变量的期望与方差.【分析】(1)根据在全部50人中随机抽取1人抽到患心肺疾病的概率为,可得患心肺疾病的人数,即可得到列联表;(2)利用公式求得K2,与临界值比较,即可得到结论.(3)在患心肺疾病的10位女性中,有3位又患有胃病,记选出患胃病的女性人数为ξ,则ξ服从超几何分布,即可得到ξ的分布列、数学期望以及方差.【解答】解:(1)根据在全部50人中随机抽取1人抽到患心肺疾病生的概率为,可得患心肺疾病的为30人,故可得列联表补充如下患心肺疾病不患心肺疾病合计男20 5 25女10 15 25合计30 20 50(2)因为 K2=,即K2==,所以 K2≈8.333又 P(k2≥7.879)=0.005=0.5%,所以,我们有 99.5%的把握认为是否患心肺疾病是与性别有关系的.(3)现在从患心肺疾病的10位女性中,选出3名进行胃病的排查,记选出患胃病的女性人数为ξ,则ξ=0,1,2,3.故P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)=,则ξ的分布列:ξ0 1 2 3P则Eξ=1×+2×+3×=0.9,Dξ=×(0﹣0.9)2+×(1﹣0.9)2+×(2﹣0.9)2+×(3﹣0.9)2=0.4922.已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(1)讨论a=1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+;(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(1)当a=1时,求函数的定义域,然后利用导数求函数的极值和单调性.(2)利用(1)的结论,求函数f(x)的最小值以及g(x)的最大值,利用它们之间的关系证明不等式.(3)利用导数求函数的最小值,让最小值等于3,解参数a.【解答】解:(1)因为,所以当0<x<1时,f'(x)<0,此时函数f(x)单调递减.当1<x≤e时,f'(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f (1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又,所以当0<x<e时,g'(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=,所以,所以在(1)的条件下,f(x)>g(x)+.(3)假设存在实数a,使f(x)=ax﹣lnx,x∈(0,e],有最小值3,则,①当a≤0时,f'(x)<0,f(x)在(0,e]上单调递减,,(舍去),此时函数f(x)的最小值不是3.②当0时,f(x)在(0,]上单调递减,f(x)在(,e]上单调递增.所以f,满足条件.③当时,f(x)在(0,e]上单调递减,,(舍去),此时函数f(x)的最小值是不是3.综上可知存在实数a=e2,使f(x)的最小值是3.。
2015~2016学年高二第二学期期末调研测试数学(理)试题(含附加题)带答案

2015~2016学年高二期末调研测试数 学(理科) 2016.06参考公式:圆锥侧面积公式:S rl p =,其中r 是圆锥底面半径,l 是圆锥母线长.数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题..卡相应位置.....上..1.命题“∀x ≥1,x 2≥1”的否定是 ▲ .2.已知复数2(34i)5iz +=(i 为虚数单位),则|z|= ▲ .3.四位男生一位女生站成一排,女生站中间的排法共有 ▲ 种.(用数字作答)4.双曲线2221(0)3x y a a -=>的离心率为2,则a = ▲ .5.“a =1”是“直线l 1:ax +y +1=0,l 2:(a +2)x -3y -2=0垂直”的 ▲ 条件. (填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”)6.已知函数()e 2xf x x =+(e 是自然对数的底)在点(0,1)处的切线方程为 ▲ .7.设某批产品合格率为23,不合格率为13,现对该批产品进行测试,设第X 次首次测到正品,则P (X=3)= ▲ .8.若圆C 过两点(0,4),(4,6)A B ,且圆心C 在直线x -2y -2=0上,则圆C 的标准方程 为 ▲ . 9.若65()(1)(1)f x x x =+--的展开式为260126()f x a a x a x a x =++++,则125a a a +++的值为 ▲ .(用数字作答) 10.从0,1,2,3组成没有重复数字的三位数中任取一个数,恰好是偶数的概率为 ▲ . 11.已知点A (-3,-2)在抛物线C :x 2=2py 的准线上,过点A 的直线与抛物线C 在第二象限相切于点B ,记抛物线C 的焦点为F ,则直线BF 的斜率为 ▲ .12.假定某篮球运动员每次投篮命中率均为p (0<p <1).现有4次投篮机会,并规定连续两次投篮均不中即终止投篮.已知该运动员不放弃任何一次投篮机会,且恰用完4次投篮机会的概率是58,则p 的值为 ▲ . 13.若函数2()2e 3x f x a x =-+(a 为常数,e 是自然对数的底)恰有两个极值点,则实数a 的取值范围为 ▲ . 14.若实数a ,b满足a =a 的最大值是 ▲ .二、解答题:本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)一个不透明的口袋中装有6个大小和形状都相同的小球,其中2个白球,4个黑球.(1)从中取1个小球,求取到白球的概率;(2)从中取2个小球,记取到白球的个数为X ,求X 的概率分布和数学期望. 16.(本小题满分14分)正方体ABCD -A 1B 1C 1D 1中,点F 为A 1D 的中点.(1)求证:A 1B ∥平面AFC ;(2)求证:平面A 1B 1CD ⊥平面AFC .17.(本小题满分14分)如图,某工厂根据生产需要制作一种下部是圆柱、上部是圆锥的封闭型组合体存储设备,该组合体总高度为8米,圆柱的底面半径为4米,圆柱的高不小于圆柱的底面半径.已第16题图知制作圆柱侧面和底面的造价均为每平米2百元,制作圆锥侧面的造价为每平米4百元,设制作该存储设备的总费用为y 百元.(1)按下列要求写出函数关系式:①设OO 1h =(米),将y 表示成h 的函数关系式; ②设∠SDO 1q =(rad),将y 表示成θ的函数关系式;(2)请你选用其中的一个函数关系式,求制作该存储设备总费用的最小值.18.(本小题满分16分)在直三棱柱111ABC A B C -中,90BAC ∠=︒,12AB AC AA ===,,E F 分别是11,BC A C 的中点.(1)求直线EF 与平面ABC 所成角的正弦值;(2)设D 是边11B C 上的动点,当直线BD 与EF 所成角最小时,求线段BD 的长.19.(本小题满分16分)如图,已知椭圆M :22221(0)x y a b a b+=>>的离心率为2,且过点(2,1)P .第18题图 第17题图(1)求椭圆M 的标准方程;(2)设点1122(,),(,)A x y B x y 是椭圆M 上异于顶点的任意两点,直线OA ,OB 的斜率分别为12,k k ,且1214k k =-. ①求2212x x +的值;②设点B 关于x 轴的对称点为C ,试求直线 AC 的斜率.20.(本小题满分16分)已知函数()e x f x cx c =--(c 为常数,e 是自然对数的底),()f x '是函数()y f x =的导函数.(1)求()f x 的单调区间; (2)当1c >时,试证明:①对任意的0x >,(ln )(ln )f c x f c x +>-恒成立; ②函数()y f x =有两个相异的零点.第19题图2015~2016学年苏州市高二期末调研测试数 学(理科) 2016.06数学Ⅱ试题注意事项:1.答题前务必要将选做题的前面标记框涂黑,以表示选做该题,不涂作无效答题. 2.请在答题卷上答题,在本试卷上答题无效.请从以下4组题中选做2组题,如果多做,则按所做的前两组题记分.每小题10分,共40分. A 组(选修4-1:几何证明选讲)A 1.如图,在△ABC 中,AB AC =,△ABC 的外接圆为⊙O ,D 是劣弧AC 上的一点,弦AD ,BC 的延长线交于点E ,连结BD 并延长到点F ,连结CD . (1)求证:DE 平分CDF Ð; (2)求证:2AB AD AE =?.A 2.设AD ,CF 是△ABC 的两条高,AD ,CF 交于点H , AD 的延长线交△ABC 的外接圆⊙O 于点G ,AE 是 ⊙O 的直径,求证:(1)AB AC AD AE ??; (2)DG DH =.B 组(选修4-2:矩阵与变换)B 1.已知矩阵A =2143⎡⎤⎢⎥⎣⎦,B =1101⎡⎤⎢⎥-⎣⎦.(1)求A 的逆矩阵A -1;(2)求矩阵C ,使得AC =B .B 2.已知矩阵A =111a -⎡⎤⎢⎥⎣⎦,其中a ∈R ,若点P (1,1)在矩阵A 的变换下得到点P ′(0,-3). (1)求实数a 的值;(2)求矩阵A 的特征值及特征向量.C 组(选修4-4:坐标系与参数方程)C 1.在直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线1C 的极坐标方程为3)4pr q =-,曲线2C 的参数方程为8cos ,3sin x y q q ì=ïïíï=ïî(θ为参数).(1)将曲线1C 的极坐标方程化为直角坐标方程,将曲线2C 的参数方程化为普通方程;(2)若P 为曲线2C 上的动点,求点P 到直线:l 32,(2x t t y t ì=+ïïíï=-+ïî为参数)的距离的最大值.C 2.在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos ,sin x y αα=+⎧⎨=⎩(α为参数);在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C 的极坐标方程为2cos sin ρθθ=.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)若射线l :y kx =(0)x ≥与曲线1C ,2C 的交点分别为,A B (,A B 异于原点),当斜率k ∈时,求OA OB ⋅的取值范围.D 组(选修4-5:不等式选讲)D 1.已知关于x 的不等式111ax a x ≥-+-(0a >). (1)当1a =时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围.D 2.已知a ,b ,c 均为正数,求证:(1)114a b a b ++≥;(2)111111222a b c a b b c c a +++++++≥.2015~2016学年高二期末调研测试理科数学参考答案一、填空题1.∃x ≥1,x 2<1 2.5 3.24 4.1 5.充分不必要 6.310x y -+= 7.2278.22(4)(1)25x y -+-= 9.61 10.59 11.34- 12.1213.1(0,)e14.20 二、解答题15.解:(1)记从中取一个小球,取到白球为事件A ,………………………………2分1216C 1()3C P A ==.………………………………………………………………4分所以中取一个小球,取到白球的概率13.……………………………………5分(2)X 的取值为0,1,2 .…………………………………………………6分2426C 2(0)5C P X ===,112426C C 8(1)15C P X ===,2226C 1(2)15C P X === 所以………………………………………………………………12分数学期望2812()012515153E X =⨯+⨯+⨯=.……………………………………14分16.证明:(1)连接BD 交AC 于点O ,连接FO ,则点O 是BD 的中点.∵点F 为A 1D 的中点,∴A 1B ∥FO . ………………………3分 又1A B ⊄平面AFC ,FO ⊂平面AFC ,A 1B ∥平面AFC . …………………………7分(2)在正方体ABCD -A 1B 1C 1D 1中,∵CD ⊥平面A 1ADD 1,AF ⊂平面A 1ADD 1,∴CD ⊥AF . …………………………10分 又∵AF ⊥A 1D ,∴AF ⊥平面A 1B 1CD . ………………………12分 又AF ⊂面AFC ,∴平面A 1B 1CD ⊥平面AFC . ………………………14分17.解:(1)① S 圆柱侧=2πrh =8πh ,S 圆锥侧=πrl=4 ……………………2分y =2S 底面+ 2S 圆柱侧+4 S 圆锥侧=32π+16πh+16 = 32π+16(h p ,(48h ≤<);………………………4分 (注:定义域不写扣1分) ② 4=cos SD θ,=84tan h θ-. y =2S 底面+ 2S 圆柱侧+4 S 圆锥侧=32π+24(84tan )2θ⨯⨯-⨯p +444cos p θ⨯⨯⨯=32π+64(2tan )p θ-+64cos p θ=160π+64π1sin cos θθ-(04p≤θ<). ………………………6分(注:定义域不写扣1分) (2)选方案①由(1)知y =32π+16(h p ,(48h ≤<).BCOADB 1C 1D 1A 1F设8h t -=,则y = 32π+16(8t p -=32π+16(8p , …………9分y =32π+16(8p 在(04],上单调递减,………………………11分所以,当4t =时,y 取到最小值(96p +.………………………13分选方案②由(1)知y=160π+64π1sin cos θθ-(04p≤θ<), 设1sin ()cos θϕθθ-=,2sin 1'()cos θϕθθ-=,………………………8分因为,04p≤θ<,所以,'()0ϕθ<, 所以,()ϕθ在(0,]4p上单调递减,………………………11分所以,当4pθ=时,y 取到最小值(96p +. ………………………13分答:制作该存储设备总费用的最小值为(96p +百元. ……………………14分18.解:如图所示,以{1,,AB AC AA }为正交基底建立空间直角坐标系A xyz -.则1(2,0,0),(0,2,0),(0,0,2),(1,1,0),(0,1,2)B C A E F ,(1)所以(1,0,2)EF =-,………………………2分平面ABC 的一个法向量为1(0,0,2)AA =,………………………4分设直线EF 与平面ABC 所成角为α,则1sin cos ,|α=|EF AA <>=11||2||||EF AA EF AA ⋅=⋅. ………………………7分(2)法一 因为D 在11B C 上,设(,2,2)D x x -,(2,2,2)BD x x =-- 所以|||1B DBBD⋅<>==, 设6t x =-因为[0,2],x ∈所以[4,6]t ∈, |c o s ,8)B D E F <>==.当129t =即9[4,6]2t =∈时取等号. …………………………12分此时|cos ,|BD EF <>最大,所以BD 与EF 所成角最小. 此时32x =.…………………………14分所以11(,,2)22BD =-,所以232()22BD ==. ………………………16分 法二 设111(2,2,0)B D λB C λλ==-,11(2,2,2)BD BB B D λλ=+=-,其中01λ≤≤,(第18题图)|||c o s ,|||||1B D E F B D E F B D E F ⋅<>==…………………………………9分设2[2,3]λt +=∈ |co s ,BD EF<>==. …………………………12分当9[2,3]4t =∈时取等号,此时|cos ,|BD EF <>最大,所以BD 与EF 所成角最小.所以124λ=t -=,所以11(2,2,2)(,,2)22BD λλ=-=-,BD ==.……………………………………………16分19.解(1)由题意c a =,所以2222222314c a b b a a a -==-=,即224a b =, 所以椭圆M 的方程为22244x y b +=,………………………2分又因为椭圆M 过点(2,1)P ,所以2444b +=,即222,8b a ==.所以所求椭圆M 的标准方程为22182x y +=.………………………4分(2)①设直线OA 的方程为1y k x =,2211,82,x y y k x ⎧+=⎪⎨⎪=⎩ 化简得221(14)8k x +=,解得2121814x k =+,………………………6分 因为1214k k =-,故2114k k =-,同理可得222112222211218163288114164141416k k x k k k k ⨯====++++⨯,………………………8分所以22221112222111328(14)88141414k k x x k k k ++=+==+++.………………………10分②由题意,点B 关于x 轴的对称点为C 的坐标为22(,)x y -, 又点1122(,),(,)A x y B x y 是椭圆M 上异于顶点的任意两点,所以2222112248,48y x y x =-=-,故222212124()16()1688y y x x +=-+=-=,即22122y y +=.………………………12分设直线AC 的斜率为k ,则1212y y k x x +=-, 因为1214k k =-,即121214y y x x =-,故12124x x y y =-,所以222121212122212121212222221282884y y y y y y y y k x x x x x x y y ++++====+--+, ………………………15分 所以直线AC 的斜率为k 为常数,即12k =或12k =-. ………………………16分20.解:(1)()e x f x c '=-,若0c ≤,则()e 0x f x c '=->恒成立,此时函数()f x 的增区间为(,)-??; …………………………2分若0c >,令()0f x '=,得ln x c =,…………………………3分…………………………5分 (2)①令()(ln )(ln )(e e )2x x g x f c x f c x c cx -=+--=--. ………………………6分则()(e e )2220x x g x c c c c ≥-'=+--=,且()0g x '=仅在0x =时成立,所以()g x 在R上单调递增.……………8分所以当0x >时,()(0)0g x g >=,即(l n f c x f c x +>-. …………………9分②因为1c >,所以(ln )f c =ln 0c c -<. ………………………………………11分而1(1)e 0f --=>,所以(ln )(1)0f c f ⋅-<,所以()f x 在(1,ln )c -内存在一个零点,……………………………13分取2(2ln 1)e 2ln 2(e 2ln 2)f c c c c c c c c +=--=--(1c >), 设()e 2ln 2c c c ϕ=--(1c >),2()e 0c cϕ'=->, 所以()c ϕ在(1,)+∞上单调递增,所以()(1)e 20c ϕϕ>=->. 从而(2ln 1)()0f c c c ϕ+=⋅>,所以(l n )(2l n f c f c ⋅+<,所以()f x 在(ln ,2ln 1)c c +内存在一个零点. ……………16分(注:也可以取(2)f c 等.)19题第2问另解:(2)111y k x =, 222y k x =,由1214k k =-得12124x x y y =-①, 1122(,),(,)A x y B x y 在椭圆22182x y +=上,所以有22112(1)8x y =-、22222(1)8x y =-, 222222212121212()4(1)(1)4(1)88864x x x x x x y y +⋅∴=--=-+②,①代入②得22128x x +=.2015~2016学年苏州市高二期末调研测试理科数学(附加题)参考答案A 组(选修4-1:几何证明选讲)A1 证明:(1)因为四边形ABCD 内接于圆O , 所以∠CDE =∠ABC .…………………………2分由AB =AC 得∠ACB =∠ABC . 所以∠CDE =∠ACB .又∠ACB与∠ADB是同弧所以的圆周角;所以∠ACB=∠ADB.所以∠CDE=∠ADB. (4)分又∠ADB=∠FDE,所以∠CDE=∠FDE,即DE平分CDFÐ.…………………………5分(2)由(1)∠ADB=∠ACB=∠ABC,在△ABD和△AEB中,因为∠ADB=∠ABC,∠BAD=∠EAB,所以△ABD∽△AEB,…………………………8分所以AB AEAD AB=,即2AB AD AE=?.…………………………10分A2 证明:(1)连结BE,因为∠E,∠ACB是同弧所对的圆周角,所以∠E=∠ACB,…………………………2分又AE是圆O的直径,所以∠ABE=π2,…………………………3分在Rt△ABE和Rt△ADC中,∠E=∠ACB,∠ABE=∠AD C=π2,所以Rt△ABE∽Rt△ADC,…………………………4分所以AB AEAD AC=,即AB AC AD AE??.…………………………5分(2)连结CG,则∠CGD=∠ABC,…………………………6分在四边形BDHF中,因为∠BDH=∠BFH=π2,∠AHF是四边形BDHF的一个外角,所以∠ABC=∠AHF,又∠AHF=∠CHD,所以∠CHD=∠CGD.…………………………7分所以Rt△CDH≌Rt△CDG,…………………………9分又CD =CD , 所以DH =DG .…………………………10分B 组(选修4-2:矩阵与变换)B1解(1)因为|A |=2×3-1×4=2,…………………………2分所以A -1=31224222⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦=312221⎡⎤-⎢⎥⎢⎥-⎣⎦. (5)分(2)由AC =B 得(A -1A )C =A -1B ,…………………………7分故C =A -1B =312221⎡⎤-⎢⎥⎢⎥-⎣⎦1101⎡⎤⎢⎥-⎣⎦=32223⎡⎤⎢⎥⎢⎥--⎣⎦.…………………………10分B2解:(1)由题意得111a -⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=03⎡⎤⎢⎥-⎣⎦,…………………………2分所以a +1=-3,所以a =-4.…………………………5分(2)由(1)知A =1141-⎡⎤⎢⎥-⎣⎦,令f (λ)=⎪⎪⎪⎪⎪⎪λ-1 1 4 λ-1=(λ-1)2-4=0. (3)分解得A 的特征值为λ=-1或3.…………………………6分当λ=-1时,由20,420x y x y -+=⎧⎨-=⎩得矩阵A 的属于特征值-1的一个特征向量为12⎡⎤⎢⎥⎣⎦,…………………………8分当λ=3时,由20,420x y x y +=⎧⎨+=⎩得矩阵A 的属于特征值3的一个特征向量为12⎡⎤⎢⎥-⎣⎦.…………………………10分C 组(选修4-4:坐标系与参数方程)C1解:(1)由3()4pr q =-,得8c o s 8s i n r q q =-+,………………2分所以28cos 8sin r r q r q =-+,…………………………3分故曲线1C 的直角坐标方程为2288x y x y +=-+,即22(4)(4)32x y ++-=, 由8cos ,3sin x y q qì=ïïíï=ïî消去参数q得2C 的普通方程为221649x y +=. …………………………5分 (2)设(8c o s ,3s i n )P q q ,直线l 的普通方程为270x y --=, ………………………6分故点P 到直线l 的距离为)7d q j =+-(其中43cos ,sin 55j j ==), …………………………8分因此m a x 155d =,故点P 到直线l 的距离的最大值为5.………………………10分C2 (1)由1cos ,sin ,x y αα=+⎧⎨=⎩得22(1)1x y -+=,即2220x y x +-=, …………………1分所以1C 的极坐标方程为2cos ρθ=. …………………………3分由2cos sin ρθθ=得22cos sin ρθρθ=,所以曲线2C 的直角坐标方程为2x y =.…………………………5分(2)设射线l :y kx =(0)x ≥的倾斜角为α,则射线的极坐标方程为θα=,且tan k α=∈,联立2cos ,ρθθα=⎧⎨=⎩得12cos OA ρα==,…………………………7分联立2cos sin ,ρθθθα⎧=⎨=⎩得22sin cos OB αρα==,…………………………9分所以122sin 2cos 2tan 2cos OA OB k αρρααα⋅=⋅=⋅==∈, ………………10分D 组(选修4-5:不等式选讲)D1 解:(1)当1a=时,原不等式为211x ≥-,……………………………2分所以112x -≥或112x --≤, 故不等式解集为13{|}22x x x ≤或≥.……………………………5分(2)因为0a >,所以原不等式可转化为111x x a a≥-+-, 因为1111x x a a-+--≥,……………………………8分所以只需111a a≥-, 解得2a ≥.……………………………10分D2 证明:(1)因为11()224b a a b a b a b 骣琪+?=+++琪桫≥,………………………3分所以114a b a b++≥.……………………………4分当且仅当b aa b=时,取“=”,即a b=时取“=”.……………………………5分(2)由(1)11144a b a b++≥,11144b c b c++≥,11144c a c a++≥,……………………8分三式相加得:111111 222a b c a b b c c a+++++++≥,……………………………9分当且仅当a b c==时取“=”.……………………………10分。
2015-2016高二期末考试理科数学试卷题(含答案)

2015-2016学年第一学期宝安区期末调研测试卷高二理科数学2016.1本试卷共6页,22小题,满分150分•考试用时120分钟.注意事项:1 •答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用 0.5毫米黑色字迹的签字笔在答题卡指定位置填写自 己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答 题卡的贴条形码区,请保持条形码整洁、不污损2 •选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求 填涂的,答案无效.3 .非选择题必须用 0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先 划掉原来的答案,然后再写上新的答案; 不准使用铅笔和涂改液.不按以上要求 作答无效. 4 •作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.一、选择题:本大题共 12小题,每小题5分,满分 60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 .不等式X 2-2x -5 - 2x 的解集是()A .| x 亠 5或 x _ -1 匚B .^x | x 5或 x ::: -1C . :x|-1 :: x ::5;—&—¥■—FD—►.| - 仁 x 二 5』 2.已知向量a =(-1,0,2),b = (1,1,0),且a kb 与2b -a 相互垂直,则k 值为( )2 24.若方程E :-上 y 1表示焦点在y 轴上的双曲线,则实数m 的取值范围为1 -m m -2() A . 1,2 B .:,1) (2, :: C . (-::,2) D . (1,::)5.在=ABC 中,a = 2、3,b= 2、2,B = 45,则角 A 等于()7 3 A .B .-553.“ x 2 = y 2”是“ x = y ”的()A .充分不必要条件C .必要不充分条件C .丄D . 15B .充分必要条件D .既不充分也不必要条件A. 30 B . 60 C . 60 或120 D . 30 或1506•已知-14盘,8成等差数列,—1,b ib ,b 3,-4成等比数列,那么 岂空 的值为( )b 255A • 5B • -5C •D •-227.若动点M(x, y)始终满足关系式.x 2 (y 2)^ . x 2 (y-2)2=8,则动点M 的轨迹方程为()2 2 2 2 2 2 2 2xy, xy, xy, xy,A •1 B •1 C •1 D • 116 12 12 16 12 16 16 128 •已知等差数列:a n [的前n 项和S n ,且满足S n 1 =n 2 -n -2,则a ^:()A • 4B • 2C • 0D • -2x - y _ 09•已知x, y 满足约束条件《x + yE2,若z = x + ay 的最大值为4,则a=()、y 兰0A • 3B • 2C • -2D • -310 •在 ABC 中,a =2,c =1,则角C 的取值范围是()(八31A •陀丿B • —,—<6 3 .丿C •—,— 丨 <6 2丿D • (0,611 •已知直线l :^kx 2k 1与抛物线C : y 2 = 4x ,若I 与C 有且仅有一个公共点,则实数k 的取值集合为()尸r f1 IA • J -1,- >B • {-1,。
2015-2016学年高二数学期末试卷及答案

2015—2016学年第一学期期末测试高二理科数学复习题必修3,选修2-3,选修2-1简易逻辑、圆锥曲线参考公式:用最小二乘法求线性回归方程y bx a =+的系数公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y bx =-,其中x ,y 是数据的平均数.第♊卷(本卷共 分)一、选择题:(本大题共 题,每小题 分,共 分,在每小题给出的四个选项中,只有一项是符合题目要求的).从一副扑克牌☎ 张✆中抽取一张牌,抽到牌❽❾的概率是☎ ✆✌ 154 127 118 227.设随机变量~(0,1)N ξ,若()1P pξ>=,则()10P ξ-<<= ☎ ✆✌ 2p 1p - 12p - 12p -.如图 所示的程序框图的功能是求♊、♋两处应分别填写图✌.5?i <,2S S =+.5?i ≤,2S S =.5?i <,2S S =+ .5?i ≤,2S S =.将参加夏令营的 名学生编号为: ,⑤, ,采用系统抽样方法抽取一个容量为 的样本,且随机抽得的号码为 这 名学生分住在三个营区,从 到 在第♊营区,从 到 在第♋营区,从 到 在第♌营区.三个营区被抽中的人数依次为 ☎ ✆✌. . . . .如图 ,分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为 ☎ ✆✌24π- 22-π 44π- 42-π(82x 展开式中不含..4x 项的系数的和为 ☎ ✆✌. . . ..学校体育组新买2颗同样篮球,3颗同样排球,从中取出 颗发放给高一 个班,每班1颗,则不同的发放方法共☎ ✆✌. 种 . 种 . 种. 种.容量为100的样本数据,按从小到大的顺序分为8组,如下表:第三组的频数和频率分别是☎ ✆✌.14和0.14 .0.14和14 .141和0.14 . 31和141.“2012”含有数字0, 1, 2,且恰有两个数字 .则含有数字0, 1, 2,且恰有两个相同数字的四位数的个数为☎ ✆✌.18 .24 .27 .36一射手对靶射击,直到第一次命中为止每次命中的概率为 ,现有 颗子弹,命中后的剩余子弹数目ξ的期望为☎ ✆✌ 经回归分析可得⍓与⌧线性相关,并由最小二乘法求得回归直线方程为ˆ 1.1y x a =+,则♋= ☎ ✆✌、 、 、 、 设随机变量ξ~ ☎☐✆η~ ☎☐✆若95)1(=≥ξp ,则)2(≥ηp 的值为 ☎ ✆☎✌✆8132 ☎✆ 2711 ☎✆ 8165 ☎✆ 8116第♋卷(本卷共计 分)二、填空题:(本大题共 小题,每小题 分,共 分).甲从学校乘车回家,途中有 个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是52,则甲回家途中遇红灯次数的期望为 。
人教版高二(理科)第一学期期末考试数学试题-含答案

2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
2015~2016学年度第二学期高二年级期末考试数学理科试卷

4.某中学从 4 名男生和 3 名女生中推荐 4 人参加某高校自主招生考试,若这 4 人中必须既 有男生又有女生,则不同的选法共有 ( A.14
5.某四面体的三视图如图所示.该四面 体的六条棱的长度中,最大的是( A. 2 5 B. 2 6 C. 2 7 )
9 1 , 2] (0, ] 4 2 9 2 C. ( , 2] (0, ] 4 3
A. (
11 1 , 2] (0, ] 4 2 11 2 D. ( , 2] (0, ] 4 3
B. (
第 II 卷(非选择题)
二、填空题(本大题共 5 小题,每小题 5 分,共 25 分) 11.某校开展“爱我海西、爱我家乡”摄影比赛,9 位评委为参赛作品 A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分 后,算得平均分为 91,复核员在复核时,发现有一个数字(茎叶图中的 x)无法看清,若 记分员计算无误,则数字 x 应该是__________. 12.花园小区内有一块三边长分别是 5 m,5 m,6 m 的三角形绿化地,有一只小花猫在其 内部玩耍,若不考虑猫的大小,则在任意指定的某时刻,小花猫与三角形三个顶点的距 离均超过 2 m 的概率是________. 13.某班级有一个 7 人小组,现任选其中 3 人相互调整座位,其余 4 人座位不变,则不同的 调整方案的种数为________. 14.已知 a b ,且 ab 1 ,则
19. (本小题满分 12 分) 某青年教师专项课题进行“学生数学成绩与物理成绩的关系”的课题研究,对于高二年级 800 名学生上学期期末数学和物理成绩,按优秀和不优秀分类得结果:数学和物理都优秀的 有 60 人, 数学成绩优秀但物理不优秀的有 140 人, 物理成绩优秀但数学不优秀的有 100 人. (1)能否在犯错概率不超过 0.001 的前提下认为该校学生的数学成绩与物理成绩有关系? (2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取 3 名学生的成绩,记抽取的 3 个成绩中数学、物理两科成绩至少有一科优秀的次数为 X,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年第一学期宝安区期末调研测试卷高二 理科数学2016.1本试卷共6页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.不等式x x x 2522>--的解集是( ) A .{}15|-≤≥x x x 或 B .{}15|-<>x x x 或 C .{}51|<<-x xD .{}51|≤≤-x x2.已知向量)0,1,1(),2,0,1(=-=,且k -+2与相互垂直,则k 值为( )A .57B .53C .51D .1 3.“22y x =”是“y x =”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件4.若方程121:22=---m y m x E 表示焦点在y 轴上的双曲线,则实数m 的取值范围为( ) A .()2,1B .()+∞∞-,2()1,C .)2,(-∞D .),1(+∞5.在︒===∆45,22,32,B b a ABC 中,则角A 等于( ) A .︒30 B .︒60C.︒︒12060或D .︒︒15030或6.已知8,,,121a a -成等差数列,4,,,,1321--b b b 成等比数列,那么221b a a ⋅的值为( ) A .5 B .5- C .25-D .25 7.若动点),(y x M 始终满足关系式8)2()2(2222=-++++y x y x ,则动点M 的轨迹方程为( )A .1121622=+y x B .1161222=+y x C .1161222=-y x D .1121622=-y x 8.已知等差数列{}n a 的前n 项和n S ,且满足n n S n -=+21-2,则=1a ( ) A .4B .2C .0D .2-9.已知,x y 满足约束条件⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,若ay x z +=的最大值为4,则a = ( )A .3B .2C .2-D .3-10.在1,2,==∆c a ABC 中,则角C 的取值范围是( ) A .⎪⎭⎫ ⎝⎛2,0π B .⎪⎭⎫⎝⎛3,6ππ C .⎪⎭⎫⎝⎛2,6ππ D .]6,0(π 11.已知直线x y C k kx y l 4:12:2=++=与抛物线,若C l 与有且仅有一个公共点,则实数k 的取值集合为( )A .⎭⎬⎫⎩⎨⎧-21,1B .{}0,1-C .⎭⎬⎫⎩⎨⎧-21,0,1D .⎭⎬⎫⎩⎨⎧21,012.已知圆2221:b y x C =+与椭椭圆1:22222=+by a x C ,若在椭圆2C 上存在一点P ,使得由点P 所作的圆1C 的两条切线互相垂直,则椭圆2C 的离心率的取值范围是( ) A .]23,22[B .)1,21[C .)1,23[D .)1,22[二、填空题:本大题共4小题,每小题5分,满分20分.13.已知命题xm x f m x R x p )-(3)(:q ;1,:2=>+∈∀指数函数命题是增函数.若“q ∧p ”为假命题且“q ∨p ”为真命题,则实数m 的取值范围为 .14.已知点N M ,分别是空间四面体OABC 的边BC OA 和的中点,P 为线段MN 的中点,若γμλ++=,则实数=++γμλ .15.设数列{}n a 的前n 项和为n S ,且111,1++⋅=-=n n n S S a a ,则数列{}n a 的通项公式=n a .16.已知双曲线149:22=-y x C ,点M 与曲线C 的焦点不重合,若点M 关于曲线C 的两个焦点的对称点分别为B A ,,且线段MN 的中点P 恰好在双曲线C 上,则=-||BN AN三、解答题:本大题6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(本小题满分10分)设命题034:22<+-a ax x p (其中0>a ,R x ∈),命题065:2≥-+-x x q ,R x ∈.(1)若1=a ,且q p ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.18.(本小题满分12分)已知函数x x x g x x f 2)(,log )(22+==,数列{}n a 的前n 项和记为n S ,n b 为数列{}n b 的通项,n ∈N *.点),(),(n n S n n b 和分别在函数)()(x g x f 和的图象上.(1)求数列{}n a 和{}n b 的通项公式; (2)令)(112-⋅=n n n b f a C ,求数列{}n C 的前n 项和T n .19.(本小题满分12分)已知a 、b 、c 分别是ABC ∆的三个内角A 、B 、C 所对的边(1)若ABC ∆面积,60,2,23︒===∆A c S ABC 求a 、b 的值; (2)若B c a cos =,且A c b sin =,试判断ABC ∆的形状.20.(本小题满分12分)已知直线l 过点)1,1(M ,且与x 轴,y 轴的正半轴分别相交于B A ,点,O 为坐标原点.(1)当||||OB OA +取得最小值时,直线l 的方程; (2)当22||||MB MA +取得最小值时,直线l 的方程.21.(本小题满分12分)如图所示,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 的中点.(1)求证:11AD E B ⊥(2)若二面角11A E B A --的大小为30°,求AB 的长.22.(本小题满分12分)如图示,B A ,分别是椭圆C :)0(12222>>=+b a b y a x 的左右顶点,F 为其右焦点,2是||AF 与||FB 的等差中项,是||AF 与||FB 的等比中项.点P 是椭圆C 上异于A 、B 的任一动点,过点A 作直线x l ⊥轴.以线段AF 为直径的圆交直线AP 于点M A 、,连接FM 交直线l 于点Q .(1)求椭圆C 的方程;(2)试问在x 轴上是否存在一个定点N ,使得直线PQ 必过该定点N ?若存在,求出N 点的坐标,若不存在,说明理由.宝安区2015-2016学年度第一学期期末调研考试试题MQABFOxyP⋅⋅l高 二 数 学(理科)选择题:B A C A C B B D A D C D一、填空题13) )2,1[∈m 14) 43 15) ⎪⎩⎪⎨⎧≥-=-=)2()1(1)1(1n n n n a n 16) 12三、解答题17[解] (1)当a =1时,由x 2-4x +3<0,得1<x <3,................1分即命题p 为真时有1<x <3.命题q 为真时,32≤≤x ................2分 由p ∧q 为真命题知,p 与q 同时为真命题,则有2<x <3.即实数x 的取值范围是(2,3). ................4分 (2)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.又a >0,所以a <x <3a , ................6分 由p ⌝是q ⌝的充分不必要条件知,q 是p 的充分不必要条件. 则有{32≤≤x }⊂{x |a <x <3a }. ................8分 所以⎩⎨⎧><332a a 解得1<a<2.即实数a 的取值范围是(1,2). ................10分18题解(1) nn n b b n 2log 2=⇒=………………. 2分)1(2)1(2212-+-=⇒+=-n n S n n S n n ………………. 4分故12+=n a n ………………. 6分(2)分分10)121121(218)12)(12(1+--=-+=n n n n C n故24121+-=n T n ……………. 12分 19.[解] 1)23sin 21==∆A bc S ABC ,2360sin 221=︒⋅∴b ,得1=b ………3分由余弦定理得:360cos 21221cos 222222=︒⋅⨯⨯-+=-+=A bc c b a , 所以3=a ………………………6分(2)由余弦定理得:2222222c b a acb c a c a =+⇒-+⋅=,所以︒=∠90C ……8分在ABC Rt ∆中,c a A =sin ,所以a cac b =⋅= ……………………10分所以ABC ∆是等腰直角三角形;……………………………12分20.[解] (1)设A (a,0),B (0,b )(a >0,b >0).……………….1分 设直线l 的方程为x a +y b =1,则1a +1b =1,……………….3分 所以|OA |+|OB |=a +b =(a +b ))11(ba + =2+b a +ab ≥2+2b a ·ab =4,……………….5分当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.……………….6分 (2)设直线l 的斜率为k ,则k <0,直线l 的方程为y -1=k (x -1), 则⎪⎭⎫⎝⎛-0,11k A ,B (0,1-k ), ……………….7分 所以|MA |2+|MB |2=2111⎪⎭⎫ ⎝⎛+-k +12+12+(1-1+k )2=2+k 2+1k 2≥2+2k 2·1k 2=4.当且仅当k 2=1k 2,即k =-1时,上式等号成立 ……………….11分 ∴当|MA |2+|MB |2取得最小值时,直线l 的方程为x +y -2=0..……………….12分21[解] (1)证明:以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.………1分设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),)0,1,2(a E ,B 1(a,0,1),AB 1→=(a,0,1),)0,1,2(a AE =.故AD 1→=(0,1,1),)1,1,2(1--=a E B …………….2分∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0, ……………….3分∴B 1E ⊥AD 1 .………….4分 (2)连结A 1D ,B 1C ,由长方体ABCD A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C . 确良 .……………….5分 又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1, ∴AD 1⊥平面DCB 1A 1,∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). .……………….6分 设AD 1→与n 所成的角为θ ,则cos θ=n ·AD 1→|n ||AD 1→|=-a2-a 2·1+a 24+a 2. .……………….8分∵二面角A B 1E A 1的大小为30°,∴|cos θ|=cos 30°,即3a22·1+5a 24=32, ………………10分 解得a =2,即AB 的长为2. ………………12分 22.(1)由题意得AF a c =+,FB a c =-, ........................................................1分即2()()2a c a c a c a c ++-=⎧⎪⎨+⋅-=⎪⎩()(), ..........................................................................................2分解得:1,2==c a ,2223b a b ∴=-=, (3)分∴所求椭圆的方程为:13422=+y x . .......................................................................4分 (2)假设在x 轴上存在一个定点)0,(n N ,使得直线PQ 必过定点)0,(n N ............5分设动点),(00y x P ,由于P 点异于B 、A , 故00≠y 且20±≠x 由点P 在椭圆上,故有4)4(31202222200x y b y a x -=⇒=+.......① (6)分又由(I )知)0,1(),0,2(F A -,所以直线AP 的斜率200+=x y K AP . ............................7分又点M 是以线段AF 为直径的圆与直线AP 的交点,所以FM AP ⊥, 所以0211y x k k K k AP MF MF AP +-=-=⇒-=⋅, .................................8分所以直线FM 的方程:)1(20-+-=x y x y ................................................................9分 联立l FM 、的方程⎪⎩⎪⎨⎧-=+-=2200x y x y ,得交点))2(3,2(00y x Q +- . 所以Q 、P 两点连线的斜率)2()2(32)2(3000200000++-=++-=x y x y x y x y k PQ ......② 将.①式代入②式,并整理得:04)2(3y x K PQ +-=.........................................................10分又N 、P 两点连线的斜率nx y k PN -=00若直线QP 必过定点)0,(n N ,则必有PN PQ K k =恒成立 即nx y y x -=+-00004)2(3 整理得:))(2(340020n x x y -+-=....③ ......................11分将.①式代入③式,得))(2(34)4(340020n x x x -+-=-⨯解得:2=n故直线PQ 过定点()20,. ....................................12分。