山东省高二下学期期末考试数学(理)试题含答案

合集下载

山东省济宁市高二下册第二学期期末考试数学(理)试题-含答案【精编】.doc

山东省济宁市高二下册第二学期期末考试数学(理)试题-含答案【精编】.doc

2017~2018学年度下学期质量检测高二数学(理科)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数211z i i=+-在平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知随机变量ξ服从正态分布()21,N σ,若()20.66P ξ≤=,则()0P ξ≤=( ) A .0.84 B .0.68 C .0.34 D .0.163.用反证法证明命题“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设时( )A .方程30x ax b ++=没有实根B .方程30x ax b ++=至多有一实根C .方程30x ax b ++=至多有两实根D .方程30x ax b ++=恰好有两实根 4.“因为偶函数的图象关于y 轴对称,而函数()2f x x x =-是偶函数,所以()2f x x x =-的图象关于y 轴对称”.在上述演绎推理中,所以结论错误的原因是( ) A .大前提错误 B .小前提错误 C. 推理形式错误 D .大前提与推理形式都错误 5.若随机变量X 的分布列为( )X 01 2P13ab且1E X =,则随机变量X 的方差D X 等于( ) A .13 B .0 C.1 D .236.盒中有7只螺丝钉,其中有2只是不合格的,现从盒中随机地取出3只,那么恰有1只不合格的概率是( ) A .47 B .421 C.17 D .127.函数()y f x =的图象在点()()1,1f 处的切线方程是210x y -+=,若()()g x xf x =,则()'g x =( )A .3B .2 C.1 D .328.(请考生在下列两题中任选一题作答) [选修4-4:坐标系与参数方程] (1)在极坐标中,点2,3π⎛⎫⎪⎝⎭到圆4cos ρθ=的圆心的的距离为( )A .3πB C.2 D [选修4-5:不等式选讲](2)设0ab >,下列不等式中正确的是( ) ①a b a b +>- ②a b a b +>+ ③a b a b +<- ④a b a b +>-A .①和②B .①和③ C.①和④ D .②和④ 9.已知圆柱的轴截面的周长为12,则圆柱体积的最大值为( ) A .274π B .8π C.27π D .64π 10.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.8,0.5,现已知目标被击中,则它是被甲击中的概率是( ) A .0.8 B .0.9 C.58 D .8911.(请考生在下列两题中任选一题作答) [选修4-4:坐标系与参数方程] (1)已知椭圆4cos :3sin x C y θθ=⎧⎨=⎩(θ为参数)与x 轴正半轴,y 轴正半轴的交点分别为,A B ,动点P 是椭圆上任一点,则PAB ∆面积的最大值为( )A .)61 B .)61 C.125 D .245[选修4-5:不等式选讲](2)函数()f x )A .5B 1 D .212.已知函数()()ln xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是( )A .(],e -∞B .(),e -∞ C.[),e +∞ D .(),e +∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若复数z 满足23z z i +=-,其中i 为虚数单位,则z = . 14.由曲线2y x =与2x y =所围成的封闭图形的面积为 .15.从2位女生,4位男生中选了3人参加数学、物理、化学竞赛,每个学科各1人,且至多有1位女生参赛,则不同的参赛方案共有 种.(用数字填写答案).16.已知定义在上的函数()f x 满足()()'f x f x >(其中()'f x 为()f x 的导函数)且()1f e =,则不等式()x f x e >的解集是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知112nx ⎛⎫- ⎪⎝⎭的展开式中所有项的系数和为164. (1)求112nx ⎛⎫- ⎪⎝⎭的展开式中二项式系数最大的项;(2)求()1212nx x ⎛⎫+- ⎪⎝⎭的展开式中的常数项.18.某种农作物可以生长在滩涂和盐碱地,它的灌溉是将海水稀释后进行灌溉.某实验基地为了研究海水浓度()%x 对亩产量y (吨)的影响,通过在试验田的种植实验,测得了该农作物的亩产量与海水浓度的数据如下表:绘制散点图发现,可以用线性回归模型拟合亩产量y (吨)与海水浓度%x 之间的相关关系,用最小二乘法计算得y 与x 之间的线性回归方程为ˆˆ0.09y x a =-+. (1)求ˆ,,am n 的值; (2)统计学中常用相关指数2R 刻画回归效果,2R 越大,回归效果越好,如假设20.85R =,就说明预报变量y 的差异有85%是解释变量x 引起的.请计算相关指数2R (精确到0.01),并指出亩产量的变化多大程度上是由浇灌海水浓度引起的?(附:残差ˆˆi i i ey y =-,相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑,其中()5210.051ii y y =-=∑)19. 观察下列等式:11=;2349++=; 3456725++++=;4567891049++++++=;……(1)照此规律,归纳猜想第()*n n N ∈个等式; (2)用数学归纳法证明(1)中的猜想.20. 2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了90人进行调查,其中女生中对足球运动有兴趣的占40%,而男生有12人表示对足球运动没有兴趣.(1)完成22⨯列联表,并回答能否有99.9%的把握认为“对足球是否有兴趣与性别有关”?生,抽取3次,记被抽取的3名学生中对尼球有兴趣的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列和数学期望. 附()()()()()22n ad bc K a b c d a c b d -=++++21.已知函数()()ln 1xf x e a x =-+,其中e 为自然对数的底数.(1)若1a =,求()f x 的最小值; (2)若0a e ≤≤,证明:()0f x >.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,已知点()2,0P ,直线122:2x t l y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是2sin soc ρθθ=. (1)求曲线C 的直角坐标方程; (2)若直线l 与曲线C 的交点为,A B ,求11PA PB+的值. 23.选修4-5:不等式选讲 已知函数()1f x ax =-.(1)当2a =时,解不等式()1f x x >+;(2)若关于x 的不等式()()1f x f x m +-<-有实数解,求m 的取值范围.2017~2018学年度下学期质量检测高二数学(理)参考答案一、选择题1-5BCABD 6-10ADCBD 11、12:BA 二、填空题14.1315.96 16.{}1x x < 三、解答题17.解:(1)由题意,令1x =得11264n⎛⎫= ⎪⎝⎭,即6n =,所以112nx ⎛⎫- ⎪⎝⎭展开式中二项式系数最大的项是第4项,即334631522T C x x ⎛⎫=-=- ⎪⎝⎭(2)112nx ⎛⎫- ⎪⎝⎭展开式的第1k +项为.()166110,1,2, (622)kk k k k T C C x k x -+⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭由1k -=-,得1k =;由0k -=,得0k =.所以()1212nx x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为11612112x C x -⎛⎫⨯-+⨯=- ⎪⎝⎭18.解:(1)因为()13456755x =++++= ()10.570.530.440.360.300.445y =++++= 所以ˆ0.440.095a=-⨯+,即ˆ0.89a = 所以线性回归方程为ˆ0.090.89yx =-+ 所以333ˆˆ0.0950.890.44,0.440.440ym y y =-⨯+==-=-= 444ˆˆ0.0960.890.36,0.360.350.01yn y y =-⨯+==-=-= (2)()()52222221ˆ0.05000.010.040.0042i i i y y=-=-++++=∑所以相关指数20.004210.920.051R =-≈故亩产量的变化有92%是由海水浓度引起的19.解:(1)第n 个等式为()()()()()212...3221*n n n n n n N ++++++-=-∈;(2)用数学归纳法证明如下: ①当1n =时,左边1=,右边211== 所以当1n =时,原等式成立.②假设当()*n k k N =∈时原等式成立,即()()()()()212....3221*k k k k k k N ++++++-=-∈则当1n k =+时,()()()()()12....3231331k k k k k k +++++-+-+++()()()22131331k k k k k ⎡⎤=--+-+++⎣⎦()()22244121211k k k k =++=+=+-⎡⎤⎣⎦所以当1n k =+时,原等式也成立.由①②知,(1)中的猜想对任何*n N ∈都成立. 20.解:(1)根据已知数据得到如下列联表:根据列联表中的数据,得到()2290382412161210.82850405436K ⨯-⨯==>⨯⨯⨯所以有99.9%的把握认为“对足球是否有兴趣与性别有关” (2)由列联表中数据可知,对足球有兴趣的学生频率是35,将频率视为概率, 即从大二学生中抽取一名学生对足球有兴趣的概率是35, 有题意知3~3,,0,1,2,3,5X B X ⎛⎫= ⎪⎝⎭()3032805125P X C ⎛⎫===⎪⎝⎭()2132336155125P X C ⎛⎫==⨯= ⎪⎝⎭()2232354255125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭ ()33332735125P X C ⎛⎫===⎪⎝⎭ 从而X 的分布列为()355E X =⨯=21.解:(1)若1a =,()()()ln 11xf x e x x =-+>-所以()()()111'111x xx e f x e x x x +-=-=>-++设()()11xg x x e =+-,则()()()'120xxxg x e x e x e =++=+>所以()g x 在()1,-+∞上为增函数, 又()00g =,所以当()1,0x ∈-时,()()0,'0g x f x <<,()f x 单调递减; 当()0,x ∈+∞时,()()0,'0g x f x >>,()f x 单调递增. 所以()f x 的最小值为()01f =.(2)由题意知()()()1'111xxx e a a f x e x x x +-=-=>-++ 当0a =时,()0xf x e =>显然成立.当0a e <≤时,由(1)知()()1xh x x e a =+-在()1,-+∞上为增函数,因为()()10,1210h a h e -=-<=->所以存在唯一的()01,1x ∈-使得()00h x =,即()001xx e a +=所以当()01,x x ∈-时,()()0,'0h x f x <<,()f x 单调递减; 当()0,x x ∈+∞时,()()0,'0h x f x >>,()f x 单调递增. 所以()f x 的最小值为()()00000ln 1ln 1xx a af x e a x a x e ⎛⎫=-+=- ⎪+⎝⎭()000011ln 11ln 21ln 11a a x a x a a a x x ⎛⎫⎛⎫=-+=++--≥-- ⎪ ⎪++⎝⎭⎝⎭()1ln 0a a =-≥当且仅当00111ln 1x x a ⎧=+⎪+⎨⎪=⎩,即00x a e=⎧⎨=⎩时取等号.代入()001xx e a +=得1a =,矛盾, 所以等号不能成立.所以()00f x >,所以()0f x >22.解:(1)对于曲线,两边同乘以ρ可得22sin cos ρθρθ=,即2y x =所以它的直角坐标方程为2y x =(2)把直线l 的参数方程代入2y x =,得23280t t --=所以121228,33t t t t +==- 因为点()2,0P 在直线l 上, 所以1283PA PB t t ⋅== 因为12803t t =-< 所以12103PA PB t t +=-==所以101153843PA PB PA PB PA PB++===⋅23.解:(1)由题意的:211x x ->+ 两边平方得:2244121x x x x -+>++ 即2360x x ->, 解得0x <或0x >,所以原不等式的解集为()(),02,-∞⋃+∞ (2)11112ax ax ax ax ->--≥---=()()f x f x +-的最小值为2所以21m <-, 即12m -<-或12m -> 亦即1m <-或3m >。

山东省菏泽市2023-2024学年高二下学期7月期末考试 数学含答案

山东省菏泽市2023-2024学年高二下学期7月期末考试 数学含答案

2023—2024学年高二下学期教学质量检测数学试题(答案在最后)2024.07注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径05毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.一质点A 沿直线运动,位移s (单位:米)与时间t (单位:秒)之间的关系为221s t =+,当位移大小为9时,质点A 运动的速度大小为()A.2B.4C.6D.82.若X 服从两点分布,()()100.32P X P X =-==,则()0P X =为()A.0.32B.0.34C.0.66D.0.683.下列说法正确的是()A.线性回归分析中决定系数2R 用来刻画回归的效果,若2R 值越小,则模型的拟合效果越好B.残差平方和越小的模型,拟合的效果越好C.正态分布()2,N μσ的图象越瘦高,σ越大D.两个随机变量的线性相关性越强,则相关系数r 的值越接近于14.已知函数()23f x ax x=+的单调递增区间为[)1,+∞,则a 的值为()A.6B.3C.32D.345.若()465nn a n ⨯+-∈N 能被25整除,则正整数a 的最小值为()A.2B.3C.4D.56.从标有1,2,3,4,5,6的6张卡片中任取4张卡片放入如下表格中,使得表中数字满足,a b c d >>,则满足条件的排法种数为()abcdA.45B.60C.90D.1807.在()21*(2n n +∈N 的展开式中,x 的幂指数是整数的各项系数之和为()A .2131n +- B.2131n ++ C.21312n +- D.21312n ++8.已知函数()3213f x x x =-,若()e n f m n =-,则m 与n 的大小关系为()A.m n >B.m n=C.m n< D.不能确定二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量()4,2X N ~,若(6),(46)P X a P X b >=<<=,则()A .12a b +=B.(2)P X a <=C.()218E X += D.()218D X +=10.已知曲线()y f x =在原点处的切线与曲线()y xf x =在()2,8处的切线重合,则()A.()24f =B.()23f '=C.()04f '= D.曲线()y f x =在()2,a 处的切线方程为y a=11.假设变量x 与变量Y 的n 对观测数据为()()()1122,,,,,,n n x y x y x y ,两个变量满足一元线性回归模型()()2,0,.Y bx e E e D e σ=+⎧⎨==⎩要利用成对样本数据求参数b 的最小二乘估计ˆb ,即求使()21()ni i i Q b y bx ==-∑取最小值时的b 的值,若某汽车品牌从2020~2024年的年销量为w (万辆),其中年份对应的代码t 为15~,如表,年份代码t12345销量w (万辆)49141825根据散点图和相关系数判断,它们之间具有较强的线性相关关系,可以用线性回归模型描述令变量x t t Y w w =-=-,且变量x 与变量Y 满足一元线性回归模型2()0,()Y bx eE e D e σ=+⎧⎨==⎩则下列结论正确的有()A .51521ˆiii ii x ybx===∑∑ B.51521ˆiii ii x yby===∑∑C.ˆ 5.1 1.3wt =- D.2025年的年销售量约为34.4万辆三、填空题:本题共3小题,每小题5分,共15分.12.A 、B 、C 、D 共4名同学参加演讲比赛,决出第一至第四的名次.A 和B 去询问成绩,回答者对A 说:“很遗憾,你和B 都没有得到冠军.”对B 说:“你当然不会是最差的.”从这两个回答分析,这4人的名次排列有__________.种(用数字作答).13.函数()()e 211x x f x x -=-的极小值为__________.14.定义:设,X Y 是离散型随机变量,则X 在给定事件Y y =条件下的期望为()()11,()()n ni i i i i i P X x Y y E X Y y x P X x Y y x P Y y ======⋅===⋅=∑∑∣∣,其中{}12,,,n x x x 为X 的所有可能取值集合,(),P X x Y y ==表示事件“X x =”与事件“Y y =”都发生的概率.某射击手进行射击训练,每次射击击中目标的概率均为(01)p p <<,击中目标两次时停止射击.设ξ表示第一次击中目标时的射击次数,η表示第二次击中目标时的射击次数.则()2,5P ξη===__________,()E n ξη==∣__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校有南、北两家餐厅,各餐厅菜品丰富多样,可以满足学生的不同口味和需求.某个就餐时间对在两个餐厅内就餐的100名学生分性别进行了统计,得到如下的22⨯列联表.性别就餐人数合计南餐厅北餐厅男252550女203050合计4555100(1)对学生性别与在南北两个餐厅就餐的相关性进行分析,依据0.100α=的独立性检验,能否认为在不同餐厅就餐与学生性别有关联?(2)若从这100名学生中选出2人参加某项志愿者活动,求在抽出2名学生的性别为一男一女的条件下,这2名学生均在“南餐厅”就餐的概率.附:()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++;α0.1000.0500.0250.010x α2.7063.8415.0246.63516.由0,1,2,3这四个数组成无重复数字的四位数中.(1)求两个奇数相邻的四位数的个数(结果用数字作答);(2)记夹在两个奇数之间的偶数个数为X ,求X 的分布列与期望.17.已知函数()()1ln f x x x ax =--.(1)若2a =,求()f x 在()()1,1f 处的切线方程;(2)若()f x 的图象恒在x 轴的上方,求a 的取值范围.18.已知离散型随机变量X 服从二项分布(),B n p .(1)求证:11C C ,(kk n n k n n k --=≥,且n 为大于1的正整数);(2)求证:()E X np =;(3)一个车间有12台完全相同的车床,它们各自独立工作,且发生故障的概率都是20%,设同时发生故障的车床数为X ,记X k =时的概率为()P X k =.试比较()P X k =最大时k 的值与()E X 的大小.19.已知函数()()()2()e ,xf x x a x b a b =--∈R .(1)当1,2a b ==时,求函数()f x 的单调区间;(2)若x a =是()f x 的一个极大值点,求b 的取值范围;(3)令()()exg x f x -=且12(),,a b x x <是()g x 的两个极值点,3x 是()g x 的一个零点,且123,,x x x 互不相等.问是否存在实数4x ,使得1234,,,x x x x 按照某种顺序排列后构成等差数列,若存在求出4x ,若不存在说明理由.2023—2024学年高二下学期教学质量检测数学试题2024.07注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径05毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.一质点A 沿直线运动,位移s (单位:米)与时间t (单位:秒)之间的关系为221s t =+,当位移大小为9时,质点A 运动的速度大小为()A.2B.4C.6D.8【答案】D 【解析】【分析】令9s =求出t ,再求出函数的导函数,代入计算可得.【详解】因为221s t =+,令2219s t +==,解得2t =(负值已舍去),又4s t '=,所以2|428t s ='=⨯=,所以当位移大小为9时,质点A 运动的速度大小为8m /s .故选:D2.若X 服从两点分布,()()100.32P X P X =-==,则()0P X =为()A.0.32 B.0.34C.0.66D.0.68【答案】B 【解析】【分析】利用两点分布的性质可得答案.【详解】依题意可得()()101P X P X =+==,()()100.32P X P X =-==,所以()10.3210.34.2P X -===故选:B.3.下列说法正确的是()A.线性回归分析中决定系数2R 用来刻画回归的效果,若2R 值越小,则模型的拟合效果越好B.残差平方和越小的模型,拟合的效果越好C.正态分布()2,N μσ的图象越瘦高,σ越大D.两个随机变量的线性相关性越强,则相关系数r 的值越接近于1【答案】B 【解析】【分析】2R 值越大,模型的拟合效果越好可判断A ;残差平方和越小的模型,拟合的效果越好,判断B ;正态分布()2,N μσ的图象越瘦高,σ越小可判断C ;两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,可判断D .【详解】对于A :2R 值越大,模型的拟合效果越好,故A 错误;对于B ,残差平方和越小的模型,拟合的效果越好,故B 正确.对于C ,正态分布()2,N μσ的图象越瘦高,σ越小,故C 错误;对于D ,两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故D 错误.故选:B .4.已知函数()23f x ax x=+的单调递增区间为[)1,+∞,则a 的值为()A.6B.3C.32D.34【答案】C 【解析】【分析】求出函数的定义域与导函数,分0a ≤、0a >两种情况讨论,求出函数的单调递增区间,从而得到方程,解得即可.【详解】函数()23f x ax x=+的定义域为{}|0x x ≠,又()3223232ax f x ax x x -'=-=,当0a ≤时()0f x '<恒成立,所以()f x 没有单调递增区间,不符合题意;当0a >时,323y ax =-单调递增,令()0f x ¢>,解得1332x a ⎛⎫> ⎪⎝⎭,所以()f x 的单调递增区间为133,2a ⎡⎫⎛⎫⎪⎢+∞ ⎪⎪⎢⎝⎭⎣⎭(或133,2a ⎛⎫⎛⎫⎪+∞ ⎪ ⎪⎝⎭⎝⎭),依题意可得13312a ⎛⎫= ⎪⎝⎭,解得32a =.故选:C5.若()465nn a n ⨯+-∈N 能被25整除,则正整数a 的最小值为()A.2B.3C.4D.5【答案】C 【解析】【分析】利用二项式定理展开,并对n 讨论即可得到答案【详解】因为()465nn a n ⨯+-∈N 能被25整除,所以当1n =时,46529a a ⨯+-=-,此时2925(Z)a k k =-∈,0a >,当1k =时,4a =;当2n ≥时,11224(51)54(5C 5C 5n n n n n n n a --⨯++-=⨯+⨯++⨯ 1C 51)5n n n a -+⨯++-112214(5C 5C 54()C 51)5n n n n n n n n a---=⨯+⨯++⨯+⨯⨯++- 2132425(5C 5C 25)4n n n n n n a ---=⨯+⨯++++- 213225(454C 54C )4n n n n na n ---=⨯+⨯++++- ,因此只需4a -能够被25整除即可,可知最小正整数a 的值为4,综上所述,正整数a 的最小值为4,故选:C6.从标有1,2,3,4,5,6的6张卡片中任取4张卡片放入如下表格中,使得表中数字满足,a b c d >>,则满足条件的排法种数为()abcdA.45B.60C.90D.180【答案】C 【解析】【分析】分两步完成,第一步从6张卡片中任取2张卡片放入a 、b ,第二步从剩下的4张卡片中任取2张卡片放入c 、d ,按照分步乘法计数原理计算可得.【详解】首先从6张卡片中任取2张卡片放入a 、b (较大的数放入a )有26C 种方法;再从剩下的4张卡片中任取2张卡片放入c 、d (较大的数放入c )有24C 种方法;综上可得一共有2264C C 90=种不同的排法.故选:C7.在()21*(2n n +∈N 的展开式中,x 的幂指数是整数的各项系数之和为()A.2131n +- B.2131n ++ C.21312n +- D.21312n ++【答案】D 【解析】【分析】设((21212,2n n A B ++==,由二项式定理知A 与B 中的x 的整数次幂项之和相同,再利用赋值法求解.【详解】设((21212,2n n A B ++==,由二项式定理知A 与B 中的x 的整数次幂项之和相同,记作()f x ,非整数次幂项之和互为相反数,相加后相互抵消.故有())()2121222n n f x ++=++.令1x =,则所求的系数之和为()()2111312n f +=+.故选:D.8.已知函数()3213f x x x =-,若()e n f m n =-,则m 与n 的大小关系为()A.m n >B.m n=C.m n< D.不能确定【答案】A 【解析】【分析】设()e x g x x =-,利用导数先研究函数()f x 和()g x 图象性质,并得到在R 上()()g x f x >恒成立,若()e ()nf m ng n =-=,可知3m >,若0n <,则显然m n >,若0n ≥,由()()()g m f m g n >=,所以m n >,综上所述,m n >.【详解】由()3213f x x x =-,()2()22f x x x x x =-=-',当0x <或2x >时,()0f x '>,则函数()f x 单调递增,当02x <<时,()0f x '<,则函数()f x 单调递减,4()(0)0,()(2)3f x f f x f ====-极大值极小值,且(3)0f =,设()e x g x x =-,则()e 1x g x '=-,当0x <时,()0g x '<,则函数()g x 单调递减,当0x >时,()0g x '>,则函数()g x 单调递增,()(0)1g x g ==极小值,设()321()()()e 33xF x g x f x x x x x ⎛⎫=-=---> ⎪⎝⎭,则2()e 12x F x x x'=--+设()2()e 123xm x x x x =--+>,则()e 22x m x x '=-+,设()()e 223xv x x x =-+>,则()e 20x v x '=->恒成立,所以()v x 在()3,∞+单调递增,3()e 2320v x >-⨯+>,即()0m x '>恒成立,所以()m x 在()3,∞+单调递增,则33()(3)e 196e 40m x m >=--+=->,即()0F x '>恒成立,所以()F x 在()3,∞+单调递增,则3()(3)e 30F x F >=->,所以在()3,∞+上()()g x f x >恒成立,在(],3-∞显然也成立,如图,若()e ()nf m ng n =-=,可知3m >,若0n <,则显然m n >,若0n ≥,由()()()g m f m g n >=,所以m n >,综上所述,m n >故选:A【点睛】关键点点睛:设()e x g x x =-,利用导数得到在R 上()()g x f x >恒成立,若()e ()nf m ng n =-=,可知3m >;若0n <,则显然m n >,若0n ≥,由()()()g m f m g n >=,所以m n >,综上所述,m n >.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量()4,2X N ~,若(6),(46)P X a P X b >=<<=,则()A.12a b +=B.(2)P X a <=C.()218E X +=D.()218D X +=【答案】ABD 【解析】【分析】根据正态分布的对称性可判断A 、B ,根据正态分布定义及期望与方差的性质可判断C 、D.【详解】对于A ,因为4μ=,()()6,46>=<<=P X a P X b ,所以()()()44660.5>=<<+>=+=P X P X P X a b ,故A 正确;对于B ,因为4μ=,()()26P X P X a <=>=,故B 正确;对于C ,因为()4E X =,所以()()21219+=+=E X E X ,故C 错误;对于D ,因为()2D X =,所以()()2148D X D X +==,故D 正确.故选:ABD.10.已知曲线()y f x =在原点处的切线与曲线()y xf x =在()2,8处的切线重合,则()A.()24f =B.()23f '=C.()04f '= D.曲线()y f x =在()2,a 处的切线方程为y a=【答案】ACD 【解析】【分析】令()()g x xf x =,求出()g x 的导函数,依题意()28=g ,即可判断A ,又曲线()y f x =在原点处的切线过点()2,8,即可得到()0f ',即可判断C ,再由()()02g f '='求出()2f ',即可判断B 、D.【详解】令()()g x xf x =,则()()()g x f x xf x ''=+,依题意()()2228g f ==,解得()24f =,故A 正确;依题意可得曲线()y f x =在原点处的切线过点()2,8,所以()480200f '--==,故C 正确;又()()()()222204f fg f '='=+=',所以()20f '=,则曲线()y f x =在()2,a 处的切线方程为y a =,故B 错误,D 正确.故选:ACD11.假设变量x 与变量Y 的n 对观测数据为()()()1122,,,,,,n n x y x y x y ,两个变量满足一元线性回归模型()()2,0,.Y bx e E e D e σ=+⎧⎨==⎩要利用成对样本数据求参数b 的最小二乘估计ˆb ,即求使()21()ni i i Q b y bx ==-∑取最小值时的b 的值,若某汽车品牌从2020~2024年的年销量为w (万辆),其中年份对应的代码t 为15~,如表,年份代码t12345销量w (万辆)49141825根据散点图和相关系数判断,它们之间具有较强的线性相关关系,可以用线性回归模型描述令变量x t t Y w w =-=-,且变量x 与变量Y 满足一元线性回归模型2()0,()Y bx eE e D e σ=+⎧⎨==⎩则下列结论正确的有()A.51521ˆi ii i i x ybx ===∑∑ B.51521ˆi ii i i x yby ===∑∑C.ˆ 5.1 1.3wt =- D.2025年的年销售量约为34.4万辆【答案】AC 【解析】【分析】利用线性回归方程待定系数公式()()()51521ˆiii ii x x y y bx x ==--=-∑∑,再由变量的线性代换关系进行计算,最后恒过样本点(),x y ,就可得到线性回归方程.【详解】由i i x t t =-可得:()551111055i i i i x t t t t ===-=-=∑∑,同理由i i y ωω=-,可得()551111055i i i i y ωωωω===-=-=∑∑,根据公式()()()55511155522221115ˆ5iii ii ii i i iii i i i x x y y x y x y x ybx x xxx======---===--∑∑∑∑∑∑,故A 正确;B 错误;由表格中数据可得:3,14t ω==,()()5551115i iii i i i i i x y tt t t ωωωω====--=-⋅∑∑∑1429314418525531451=⨯+⨯+⨯+⨯+⨯-⨯⨯=,()5552222111514916255910ii ii i i xt ttt ====-=-=++++-⨯=∑∑∑,所以5152151ˆ 5.110iii ii x ybx=====∑∑,由于0,0x y ==,所以y 与x 的回归方程必过原点,ˆ 5.1yx =,又由于3x t t t =-=-,14y ωωω=-=-代入得:()ˆ14 5.13t ω-=-,整理得:ˆ 5.1 1.3t ω=-,故C 正确;当6t =,即表示2025年,此时ˆ 5.16 1.329.3ω=⨯-=,所以2025年的年销售量约为29.3万辆,故D 错误;故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12.A 、B 、C 、D 共4名同学参加演讲比赛,决出第一至第四的名次.A 和B 去询问成绩,回答者对A 说:“很遗憾,你和B 都没有得到冠军.”对B 说:“你当然不会是最差的.”从这两个回答分析,这4人的名次排列有__________.种(用数字作答).【答案】8【解析】【分析】依题意A 、B 不在第一名且B 不在第四名,分A 在第四名与不在第四名两种情况讨论.【详解】依题意A 、B 不在第一名且B 不在第四名,若A 在第四名,先排B 到第二、三名中的一个位置,另外两个人全排列,所以有1222A A 4=种排列;若A 不在第四名,则先排A 、B 到第二、三名两个位置,另外两个人全排列,所以有2222A A 4=种排列;综上可得这4人的名次排列有448+=种.故答案为:813.函数()()e 211x x f x x -=-的极小值为__________.【答案】324e【解析】【分析】求出函数的定义域与导函数,从而求出函数的单调区间,即可求出函数的极小值.【详解】函数()()e 211x x f x x -=-的定义域为{}|1x x ≠,又()()()2e 231x x xf x x -'=-,所以当0x <或32x >时()0f x ¢>,当01x <<或312x <<时()0f x '<,所以()f x 在(),0∞-,3,2⎛⎫+∞⎪⎝⎭上单调递增,在()0,1,31,2⎛⎫⎪⎝⎭上单调递减,所以()f x 在32x =处取得极小值,即极小值为32323e 21324e 3212f ⎛⎫⨯- ⎪⎛⎫⎝⎭== ⎪⎝⎭-.故答案为:324e14.定义:设,X Y 是离散型随机变量,则X 在给定事件Y y =条件下的期望为()()11,()()n ni i i i i i P X x Y y E X Y y x P X x Y y x P Y y ======⋅===⋅=∑∑∣∣,其中{}12,,,n x x x 为X 的所有可能取值集合,(),P X x Y y ==表示事件“X x =”与事件“Y y =”都发生的概率.某射击手进行射击训练,每次射击击中目标的概率均为(01)p p <<,击中目标两次时停止射击.设ξ表示第一次击中目标时的射击次数,η表示第二次击中目标时的射击次数.则()2,5P ξη===__________,()E n ξη==∣__________.【答案】①.32(1)p p -②.2n ##12n 【解析】【分析】根据相互独立事件的乘法公式求()2,5P ξη==,求出()P n η=、(),P i n ξη==,即可求(|)E n ξη=.【详解】由题意,事件“2,5ξη==”表示该射击手进行5次射击且在第二次、第五次击中目标,所以()322,5(1)(1)(1)(1)P p p p p p p p ξη===-⋅⋅-⋅-⋅=-,又122221()C (1)(1)(1)n n n P n p p n p p η---==-=--,()()221n P i n p p ξη-===-,()1,2,,1i n =- ,所以()()()()()222211121(1)(11,)|n n i n n p p P i n E p n i P n p n ξηξηη-=--⎡⎤+++--⎡⎤==⎣⎦==⨯=⎢⎥=⎢⎥⎣--⎦∑ 122 (1111)n n n n -=++++---1(1)1122n n n ⎛⎫-+ ⎪-⎝⎭==.故答案为:32(1)p p -;2n【点睛】关键点点睛:本题解答的关键是对题干所给公式理解并准确的应用.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校有南、北两家餐厅,各餐厅菜品丰富多样,可以满足学生的不同口味和需求.某个就餐时间对在两个餐厅内就餐的100名学生分性别进行了统计,得到如下的22⨯列联表.性别就餐人数合计南餐厅北餐厅男252550女203050合计4555100(1)对学生性别与在南北两个餐厅就餐的相关性进行分析,依据0.100α=的独立性检验,能否认为在不同餐厅就餐与学生性别有关联?(2)若从这100名学生中选出2人参加某项志愿者活动,求在抽出2名学生的性别为一男一女的条件下,这2名学生均在“南餐厅”就餐的概率.附:()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++;α0.1000.0500.0250.010x α2.7063.8415.0246.635【答案】(1)答案见解析(2)15【解析】【分析】(1)求出2χ值,与2.706比较大小,得出结论即可;(2)运用古典概型和条件概率公式求解即可.【小问1详解】零假设为0H :分类变量X 与Y 相互独立,即不同区域就餐与学生性别没有关联.222()100(25302025)1002.706()()()()4555505099n ad bc a b c d a c b d χ-⨯-⨯===<++++⨯⨯⨯.依据0.100α=的独立性检验,没有充分证据推断0H 不成立,因此可以认为0H 成立,即认为在不同区域就餐与学生性别没有关联.【小问2详解】设事件A 为“从这100名参赛学生中抽出2人,其性别为一男一女”,事件B 为“这2名学生均在南餐厅就餐”,则()11252021110025201111505050502100C C C C C ()25201C C ()C C 50505C P AB P B A P A ⨯=====⨯.故在抽出2名学生性别为一男一女的条件下,这2名学生的成绩均在“南餐厅”就餐概率为15.16.由0,1,2,3这四个数组成无重复数字的四位数中.(1)求两个奇数相邻的四位数的个数(结果用数字作答);(2)记夹在两个奇数之间的偶数个数为X ,求X 的分布列与期望.【答案】(1)8(2)分布列见解析;7()9E X =【解析】【分析】(1)分0在个位、0在十位和0在百位三类求解;(2)由题意知夹在两个奇数之间的偶数个数X 可能的取值分别为0,1,2,求出其分布列,并利用期望公式求解.【小问1详解】两个奇数相邻的无重复数字的四位数有如下三种情况:①0在个位上时有2222A A 4=个四位数,②0在十位上时有22A 2=个四位数,③0在百位上时有22A 2=个四位数,所以满足条件的四位数的个数共有4228++=个.【小问2详解】由题意知夹在两个奇数之间的偶数个数X 可能的取值分别为0,1,2,则1333884(0)C A 189P X ====,133361(1)C A 3P X ===,333142(2)C A 9P X ===,X ∴的分布列为X 012P491329期望为4127()0129399E X =⨯+⨯+⨯=.17.已知函数()()1ln f x x x ax =--.(1)若2a =,求()f x 在()()1,1f 处的切线方程;(2)若()f x 的图象恒在x 轴的上方,求a 的取值范围.【答案】(1)20x y +=(2)a<0【解析】【分析】(1)利用导数的几何意义求解即可;(2)将问题转化为()(1)ln 0f x x x ax =-->恒成立,则(1)ln x xa x-<在,()0x ∈+∞上恒成立,构造函数(1)ln ()x xF x x-=,利用导数求出其最小值即可.【小问1详解】由2a =,则()(1)ln 2f x x x x =--,,()0x ∈+∞,(1)2f =-,()1ln 1f x x x'=--,代入1x =得(1)2f '=-,所以()f x 在(1,1)处的切线方程为20x y +=.【小问2详解】由()f x 图象恒在x 轴上方,则()(1)ln 0f x x x ax =-->恒成立,即(1)ln x xa x-<在,()0x ∈+∞上恒成立,令(1)ln ()x xF x x-=,即min ()a F x <,21ln ()x xF x x -+'=,令()1ln g x x x =-+,则1()10(0)g x x x'=+>>,所以()g x 在(0,)+∞上为单调递增函数且(1)0g =.所以当(0,1)x ∈时,()0F x '<,()F x 在(0,1)单调递减;当(1,)x ∈+∞时,()0F x '>,()F x 在(1,)+∞单调递增;所以(1)0F =为函数()F x 的最小值,即()(1)F x F ≥.所以综上可知a<0.18.已知离散型随机变量X 服从二项分布(),B n p .(1)求证:11C C ,(kk n n k n n k --=≥,且n 为大于1的正整数);(2)求证:()E X np =;(3)一个车间有12台完全相同的车床,它们各自独立工作,且发生故障的概率都是20%,设同时发生故障的车床数为X ,记X k =时的概率为()P X k =.试比较()P X k =最大时k 的值与()E X 的大小.【答案】(1)证明见解析(2)证明见解析(3)()P X k =最大时k 的值小于()E X 的大小【解析】【分析】(1)根据组合数公式分析证明;(2)根据二项分布结合二项式定理分析证明;(3)分析可知随机变量~(12,0.2)X B ,结合二项分布概率公式可得2k =概率最大,进而与期望对比分析.【小问1详解】左边!!C !()!(1)!()!kn n n k k k n k k n k ==⋅=---,右边11(1)!!C (1)!()!(1)!()!k n n n n n k n k k n k ---==⋅=----,所以左边=右边,即11C C k k n n k n --=;【小问2详解】由~(,)X B n p 知()C (1)k k n k n P X k p p -==-,令1q p =-由(1)知11C C k k n n k n --=可得,1111(1)11011()CC nnnk kn kk k n kk k n k nn n k k k E X kC p qn p qnp pq ----------======∑∑∑,令1k m -=,则1111()C()n mm n m n n m E X npp q np p q -----===+∑,()E X np ∴=;【小问3详解】由题意知~(12,0.2)X B ,所以()120.2 2.4E X =⨯=,要使()P X k =最大,则必有()(1)P X k P X k =≥=+,()(1)P X k P X k =≥=-,即12111312121211111212C 0.2(10.2)C 0.2(10.2)C 0.2(10.2)C 0.2(10.2)k k k k k k kk k k k k -----++-⎧-≥-⎨-≥-⎩即141341121k k k k ⎧≥⎪⎪-⎨⎪≥⎪-+⎩解得81355k ≤≤,又因为*N k ∈,所以2 2.4()k E X =<=.()P X k ∴=最大时k 的值小于()E X .19.已知函数()()()2()e ,xf x x a x b a b =--∈R .(1)当1,2a b ==时,求函数()f x 的单调区间;(2)若x a =是()f x 的一个极大值点,求b 的取值范围;(3)令()()exg x f x -=且12(),,a b x x <是()g x 的两个极值点,3x 是()g x 的一个零点,且123,,x x x 互不相等.问是否存在实数4x ,使得1234,,,x x x x 按照某种顺序排列后构成等差数列,若存在求出4x ,若不存在说明理由.【答案】(1)单调递减区间为(,-∞,,单调递增区间为(,)+∞(2)(,)a +∞(3)存在,423a bx +=【解析】【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)令2()(3)2h x x a b x ab b a =+--+--,即可判断()h x 有两个不等实根1x ,2x ,不妨设12x x <,再对1x 、2x 、a 的大小关系分类讨论,即可得到()0h a <,从而求出b 的范围;(3)求出函数的导函数,即可得到1x a =,223a b x +=,再确定3x b =,根据等差数列的定义求出4x 即可.【小问1详解】由2()()()e x f x x a x b =--得()()2(3)2e x f x x a x a b x ab b a '⎡⎤=-+--+--⎣⎦,当1a =,2b =时,()(1)(xx x f x x =--+',令()0f x '=,解得1x =21x =,3x =所以当(,x ∈-∞或x ∈时()0f x '<,当(x ∈或)x ∈+∞时()0f x ¢>,所以()f x 的单调递减区间为(,-∞,,单调递增区间为(,)+∞.【小问2详解】函数()f x 的定义域为R ,且()()2(3)2e xf x x a x a b x ab b a '⎡⎤=-+--+--⎣⎦,令2()(3)2h x x a b x ab b a =+--+--,则22 (3)4(2)(1)80a b ab b a a b ∆=-----=-++>.所以()h x 有两个不等实根1x ,2x ,不妨设12x x <.①当1x a =或2x a =时,x a =不是()f x 的极值点,此时不合题意;②当1x a >时,则x a <或12x x x <<时()0f x '<,当1a x x <<或2x x >时()0f x ¢>,所以()f x 在(),a -∞,()12,x x 上单调递减,在()1,a x ,()2,x +∞上单调递增,所以x a =不是()f x 的极大值点,③当2x a <时,则x a >或12x x x <<时()0f x ¢>,当2x x a <<或1x x <时()0f x '<,所以()f x 在(),a +∞,()12,x x 上单调递增,在()2,x a ,()1,x -∞上单调递减,所以x a =不是()f x 的极大值点,④当12x a x <<时,则2x x >或1x x a <<时()0f x ¢>,当2a x x <<或1x x <时()0f x '<,所以()f x 在()2,x +∞,()1,x a 上单调递增,在()2,a x ,()1,x -∞上单调递减,所以x a =是()f x 的极大值点.所以()0h a <,即2(3)20a a b a ab b a +--+--<,所以b a >,所以b 的取值范围(,)a +∞.【小问3详解】由2()e ()()()x g x f x x a x b -==--,知()23()3a b g x x a x +⎛⎫'=--⎪⎝⎭,由a b <,故23a b a +<,所以当x a <或23a b x +>时()0g x '>,当23a b a x +<<时()0g x '<,所以()g x 在(),a -∞,2,3a b +⎛⎫+∞ ⎪⎝⎭上单调递增,在2,3a b a +⎛⎫ ⎪⎝⎭上单调递减,不妨设()g x 的两个极值点分别为1x a =,223a b x +=.因为123,,x x x 互不相等,3x 是()g x 的一个零点,所以3x b =,所以2222223333a b b a b a a b a b +--+⎛⎫-==⨯=- ⎪⎝⎭,所以存在124242232263a b a x x a b a b x +++++====,使1423,,,x x x x 成等差数列,即存在实数4x ,使得1234,,,x x x x 按照某种顺序排列后构成等差数列,且423a b x +=.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。

山东省潍坊市高密第二职业高级中学2020-2021学年高二数学理下学期期末试卷含解析

山东省潍坊市高密第二职业高级中学2020-2021学年高二数学理下学期期末试卷含解析

山东省潍坊市高密第二职业高级中学2020-2021学年高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. (多选题)甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则下列说法正确的是()A. 甲、乙、丙三人至少一人选化学与全选化学是对立事件B. 甲的不同的选法种数为15C. 已知乙同学选了物理,乙同学选技术概率是D. 乙、丙两名同学都选物理的概率是参考答案:BD【分析】根据对立事件的概念可判断A;直接根据组合的意义可判断B;乙同学选技术的概率是可判断C;根据相互独立事件同时发生的概率可判断D.【详解】甲、乙、丙三人至少一人选化学与全不选化学是对立事件,故A错误;由于甲必选物理,故只需从剩下6门课中选两门即可,即种选法,故B正确;由于乙同学选了物理,乙同学选技术的概率是,故C错误;乙、丙两名同学各自选物理的概率均为,故乙、丙两名同学都选物理的概率是,故D正确;故选BD.【点睛】本题主要考查了对立事件的概念,事件概率的求法以及相互独立事件同时发生的概率,属于基础题.2. 已知双曲线的两个焦点为F1(﹣,0)、F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|?|PF2|=2,则该双曲线的方程是()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=1参考答案:C【考点】双曲线的标准方程.【分析】先设双曲线的方程,再由题意列方程组,处理方程组可求得a,进而求得b,则问题解决.【解答】解:设双曲线的方程为﹣=1.由题意得||PF1|﹣|PF2||=2a,|PF1|2+|PF2|2=(2)2=20.又∵|PF1|?|PF2|=2,∴4a2=20﹣2×2=16∴a2=4,b2=5﹣4=1.所以双曲线的方程为﹣y2=1.故选C.【点评】本题主要考查双曲线的定义与标准方程,同时考查处理方程组的能力.3. 下面为一个求20个数的平均数的程序,在横线上应填充的语句为 ( )A.i>20 B.i<20 C.i>=20 D.i<=20参考答案:A4. 右图是一个几何体的三视图,则该几何体的体积为()A. 6B. 8C. 16D. 24参考答案:D5. 如图甲是某条公共汽车线路收支差额与乘客量的图象(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)是不改变车票价格,减少支出费用;建议(Ⅱ)是不改变支出费用,提高车票价格.下面给出四个图象:在这些图象中A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)参考答案:B略6. 方程x2+(4+i)x+4+ai=0(a∈R)有实根b,且z=a+bi,则z=()A.2﹣2i B.2+2i C.﹣2+2i D.﹣2﹣2i参考答案:A【考点】A3:复数相等的充要条件.【分析】由复数相等的意义将方程x2+(4+i)x+4+ai=0(a∈R)转化为实系数方程,解方程求出两根.【解答】解:方程x2+(4+i)x+4+ai=0(a∈R)可以变为x2+4x+4+i(x+a)=0,由复数相等的意义得,解得x=﹣2,a=2,方程x2+(4+i)x+4+ai=0(a∈R)有实根b,故b=﹣2,所以复数z=2﹣2i,故选:A.7. 函数y=x cos x-sin x的导数为()A. x sin xB. -x sin xC. x cos xD. -x cos x参考答案:B略8. 函数的图象是由函数的图像向左平移个单位得到的,则()A. B. C. D.参考答案:B【分析】把的图像向左平移个单位后得到的图像,化简后可得的值,利用两角和的余弦和正弦展开后可得的值. 【详解】把的图像向左平移个单位后得到所得图像的解析式为,根据可得①,所以即(舍),又对①化简可得,故,故选B.【点睛】三角函数的图像往往涉及振幅变换、周期变换和平移变换,注意左右平移时是自变量作相应的变化,而且周期变换和平移变换(左右平移)的次序对函数解析式的也有影响,比如,它可以由先向左平移个单位,再纵坐标不变,横坐标变为原来的,也可以先保持纵坐标不变,横坐标变为原来的,再向左平移.9. 已知圆,圆,则圆与圆的公切线条数是()A.1 B.2 C.3 D.4参考答案:B:试题分析:由题意可知,圆M的圆心为(0,2),半径为2,圆N的圆心为(1,1),半径为1,MN=<3,所以圆M与圆N相交,则圆与圆的公切线条数只有两条,判断两圆的位置关系是关键,故选B考点:圆与圆的位置关系的判定以及公切线相关知识10. 若复数满足为虚数单位),则()A. B. C.D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 给出下列3个命题:①若,则;②若,则;③若且,则,其中真命题的序号为▲.参考答案:12. 若n为正偶数,则被9除所得的余数是________.参考答案:原式=又n为正偶数,(-1)n-1=-2=-9+7,故余数为013. 已知a>0,b>0且a+b=2,则的最小值为.参考答案:2【考点】基本不等式.【分析】利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵a>0,b>0且a+b=2,则===2,当且仅当a=b=1时取等号.因此其最小值为2.故答案为:2.【点评】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.14. 若椭圆的离心率与等轴双曲线的离心率互为倒数,则m= .参考答案:1或2【考点】椭圆的简单性质.【专题】分类讨论;分类法;圆锥曲线的定义、性质与方程.【分析】由等轴双曲线的离心率为,即有椭圆的离心率为,讨论椭圆的焦点的位置,结合离心率公式,解方程可得m的值.【解答】解:等轴双曲线的离心率为,即有椭圆的离心率为,若椭圆的焦点在x轴上,则a2=2,b2=m2,c2=2﹣m2,即有e2===,解得m=1;若椭圆的焦点在y轴上,则b2=2,a2=m2,c2=m2﹣2,即有e2===,解得m=2.综上可得m=1或2.故答案为:1或2.【点评】本题考查椭圆和双曲线的性质,主要考查离心率的运用,以及椭圆的焦点的确定,考查运算能力,属于基础题和易错题.15. 以下三个关于圆锥曲线的命题中:①设A、B为两个定点,K为非零常数,若|PA|-|PB|=K,则动点P的轨迹是双曲线。

潍坊市高二数学下学期期末考试试题含解析

潍坊市高二数学下学期期末考试试题含解析
5。 老师想要了解全班50位同学的成绩状况,为此随机抽查了10位学生某次考试的数学与物理成绩,结果列表如下:
学生










平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;

山东省潍坊市昌乐及第中学2021年高二数学理下学期期末试题含解析

山东省潍坊市昌乐及第中学2021年高二数学理下学期期末试题含解析

山东省潍坊市昌乐及第中学2020-2021学年高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在极坐标系中,圆的垂直于极轴的两条切线方程分别为()A. 和B. 和C.和D. 和参考答案:B2. 若f(x)=2cos α-sin x,则f′(α)等于A.-sin αB.-cos αC.-2sin α-cos αD.-3cos α参考答案:B略3. 复数A.B.C.D.参考答案:C略4. 一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A表示第一次摸得白球,B表示第二次摸得白球,则A与B是()A.互斥事件B.不相互独立事件C.对立事件D.相互独立事件参考答案:B【考点】C8:相互独立事件;C4:互斥事件与对立事件.【分析】直接利用互斥事件与对立事件以及对立事件的定义判断即可.【解答】解:由互斥事件与对立事件定义可知互斥事件是二者一个发生了另一个就不能发生.对立事件是二者互斥并且二者必有一个发生,相互独立事件:事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件.所以一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A表示第一次摸得白球,B表示第二次摸得白球,则A与B是不相互独立事件.故选B.5. 若抛物线y2=2px(p>0)上的横坐标为6的点到焦点的距离为10,则焦点到准线的距离为()A.4 B.8 C.16 D.32参考答案:B【考点】抛物线的简单性质.【分析】根据抛物线的定义可知该点到准线的距离为10,进而利用抛物线方程求得其准线方程,利用点到直线的距离求得p,即为焦点到准线的距离.【解答】解:∵横坐标为6的点到焦点的距离是10,∴该点到准线的距离为10,抛物线的准线方程为x=﹣,∴6+=10,求得p=8故选B.6. 已知正数x、y满足,则的最小值是A.18 B.16 C.8D.10参考答案:A7. 已知点,且,则实数的值是A. 或B. 或C. 或D. 或参考答案:D8. 已知i是虚数单位,则1+i+i2…+i100等于( )A.1﹣i B.1+i C.0 D.1参考答案:D考点:虚数单位i及其性质.专题:数系的扩充和复数.分析:根据复数i n的周期性进行求解.解答:解:∵i4n+i4n+1+i4n+2+i4n+3=0,∴1+i+i2…+i100=1+(i+i2…+i100)=1+25(i+i2+i3+i4)=1,故选:D点评:本题主要考查复数的计算,根据i4n+i4n+1+i4n+2+i4n+3=0是解决本题的关键.比较基础.9. 不等式组,所表示的平面区域的面积等于()A. B. C.D.参考答案:C10. 下列四个函数中,与y=x表示同一函数的是()A.y=()2B.y=C.y=D.y=参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 已知不等式ax2+5x+b<0的解集为{x|﹣3<x<2},则不等式bx2+5x+a>0的解集为.参考答案:(﹣,)【考点】一元二次不等式的解法.【分析】根据不等式ax2+5x+b<0的解集为{x|﹣3<x<2},求出a,b的值,从而解不等式bx2+5x+a >0即可.【解答】解:因为ax2+5x+b>0的解集为{x|﹣3<x<2}根据一元二次不等式求解集的方法可得ax2+5x+b=a(x+3)(x﹣2)且a<0,解得a=5,b=﹣30.则不等式bx2+5x+a>0变为﹣30x2+5x+5>0,即6x2﹣x﹣1<0,解得:﹣<x<,故答案为:(﹣,).12. 已知,则的最小值是。

高中高二数学下学期期末试题 理(含解析)-人教版高二全册数学试题

高中高二数学下学期期末试题 理(含解析)-人教版高二全册数学试题

2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣72.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.103.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.724.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±35.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣16.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.188.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.59.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC210.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣403411.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.14.()dx=.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)=.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:曰需48 49 50 51 52 53 54求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣7【考点】A2:复数的基本概念.【分析】直接由题意求得a,b的值,则答案可求.【解答】解:∵a+bi(a,b∈R)与2﹣3i互为共轭复数,∴a=2,b=3,则a﹣b=﹣1.故选:B.2.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.10【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布的对称性即可得出a﹣2=2.【解答】解:∵随机变量ξ~N(l,25),∴P(ξ≤0)=P(ξ≥2),∴a﹣2=2,即a=4.故选A.3.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.72【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、在2、4之中任选1个,安排在个位,②、将剩下的4个数字安排在其他四个数位,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、要求五位数为偶数,需要在2、4之中任选1个,安排在个位,有2种情况,②、将剩下的4个数字安排在其他四个数位,有A44=24种情况,则有2×24=48个五位偶数,故选:B.4.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±3【考点】DC:二项式定理的应用.【分析】在二项式(x+a)10的展开式中,令x的幂指数等于8,求得r的值,可得x8的系数,再根据x8的系数为45,求得a的值.【解答】解:二项式(x+a)10的展开式的通项公式为 T r+1=•x10﹣r•a r,令10﹣r=8,求得r=2,可得x8的系数为•a2=45,∴a=±1,故选:A.5.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣1【考点】67:定积分.【分析】由题意首先求得原函数,然后利用微积分基本定理即可求得定积分的值.【解答】解:由微积分基本定理可得.故选:C.6.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.【考点】CM:条件概率与独立事件.【分析】由题意利用条件概率的计算公式,求得甲中奖的前提下乙也中奖的概率.【解答】解:每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,设甲中奖概率为P(A),乙中奖的概率为P(B),两人都中奖的概率为P(AB),则P(A)=0.6,P(B)=0.6,两人都中奖的概率为P(AB)=0.4,则已知甲中奖的前提下乙也中奖的概率为P(B/A)===,故选:D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.18【考点】67:定积分.【分析】本题考查定积分的实际应用,首先求得交点坐标,然后结合题意结合定积分的几何意义计算定积分的数值即可求得封闭图形的面积.【解答】解:联立直线与曲线的方程:可得交点坐标为(﹣2,2),(4,8),结合定积分与几何图形面积的关系可得阴影部分的面积为:.故选:D.8.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.5【考点】BK:线性回归方程.【分析】根据表中数据计算、,代入回归直线方程中求出m的值.【解答】解:根据表中数据,计算=×(0+1+2+3+4)=2,=×(1.2+m+2.9+4.1+4.7)=,代入回归直线方程=x+1中,得=2+1,解得m=2.1.故选:B.9.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC2【考点】F3:类比推理.【分析】由题意结合平面与空间类比的关系即可得出题中的结论.【解答】解:平面与空间的对应关系为:边对应着面,边长对应着面积,结合题意类比可得.故选:C.10.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣4034【考点】DC:二项式定理的应用.【分析】在所给的等式中,两边同时对x求导,再令x=2,可得a1+2a2+3a3+…+2017a2017 的值.【解答】解:在(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017中,两边同时对x求导,可得﹣2×2017(3﹣2x)2016=a1+2a2(x﹣1)+…+2017a2017(x﹣1)2016,再令x=2,可得a1+2a2+3a3+…+2017a2017=﹣4034,故选:D.11.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.【考点】3O:函数的图象.【分析】求出f′(x)的解析式,判断奇偶性,再根据f″(x)的单调性得出f′(x)的增长快慢变化情况,得出答案.【解答】解:f′(x)=x+sin(x+π)=x﹣sinx,∴f′(﹣x)=﹣x+sinx=﹣f′(x),∴f′(x)是奇函数,图象关于原点对称,排除B,D;∵f″(x)=1﹣cosx在(0,π)上是增函数,∴f′(x)在(0,π)上的增加速度逐渐增大,排除C,故选A.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)【考点】6B:利用导数研究函数的单调性.【分析】根据函数的单调性得到x+1>x2﹣5>0,解不等式即可.【解答】解:∵f(x)>﹣(x+1)f′(x),∴[(x+1)•f(x)]′>0,故函数y=(x+1)•f(x)在(0,+∞)上是增函数,由不等式f(x+1)>(x﹣2)f(x2﹣5)得:(x+2)f(x+1)>(x+2)(x﹣2)f(x2﹣5),即(x+2)f(x+1)>(x2﹣4)f(x2﹣5),∴x+1>x2﹣5>0,解得:﹣2<x<3,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.【考点】CH:离散型随机变量的期望与方差.【分析】利用二项分布的性质求解即可.【解答】解:∵离散型随机变量ξ~B(5,),Dξ=5×=,故答案为:.14.()dx=.【考点】67:定积分.【分析】本题考查定积分的几何意义,首先确定被积函数表示的几何图形,然后结合图形的形状和圆的面积公式即可求得定积分的数值.【解答】解:函数即:(x﹣1)2+y2=1(x≥1,y≥0),表示以(1,0)为圆心,1为半径的圆在x轴上方横坐标从1到2的部分,即四分之一圆,结合定积分的几何意义可得.故答案为.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)= ﹣9 .【考点】63:导数的运算.【分析】由题意首先求得f'(2)的值,然后结合导函数的解析式即可求得最终结果.【解答】解:由函数的解析式可得:∴f′(x)=2x+f′(2)(﹣1),∴f′(2)=4+f′(2)(﹣1),解得f′(2)=,则∴.故答案为:﹣9.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.【考点】KL:直线与椭圆的位置关系.【分析】由曲线C的直角坐标方程,代入直线的参数方程,运用韦达定理,可得|AB|=|t1﹣t2|,化简整理即可得到所求值;【解答】解:把代入+y2=1可得:,整理得:8t2+4t﹣3=0,,|AB|=|t1﹣t2|==.故答案为:.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.【考点】RG:数学归纳法.【分析】归纳S n的表达式,再根据数学归纳法的证题步骤进行证明.【解答】解:记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…S n=l2﹣22+32﹣42+52﹣62+…+(2n﹣1)2﹣(2n)2=﹣n×(2n+1),证明如下:①当n=1时,显然成立,②假设当n=k时,等式成立,即S k=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2=﹣k×(2k+1),那么当n=k+1时,即S k+1=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2+(2k+1)2﹣(2k+2)2=﹣k×(2k+1)+(2k+1)2﹣(2k+2)2=﹣(2k2+5k+3)=﹣(k+1)(2k+3)即n=k+1时,等式也成立.故由①和②,可知等式成立.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.【考点】6H:利用导数研究曲线上某点切线方程;6D:利用导数研究函数的极值.【分析】(Ⅰ)求出f (x)的导数,可得切线的斜率和切点,由点斜式方程可得所求切线的方程;(Ⅱ)求出函数f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,再由极值的定义,可得所求极值.【解答】解:(Ⅰ)函数f(x)= [(x﹣5)2+121nx]的导数为f′(x)=x﹣5+=,可得y=f (x)在点(1,f(1))处的切线斜率为2,切点为(1,8),即有切线的方程为y﹣8=2(x﹣1),即为2x﹣y+6=0;(Ⅱ)由f′(x)=x﹣5+=,结合x>0,由f′(x)>0,可得x>3或0<x<2,f(x)递增;由f′(x)<0,可得2<x<3,f(x)递减.则f(x)在x=2处取得极大值,且为;f(x)在x=3处取得极小值,且为2+6ln3.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)【考点】BL:独立性检验.【分析】(Ⅰ)首先由题意求得优秀的人数,据此结合列联表的特征写出列联表即可;(Ⅱ)结合(1)中的列联表结合题意计算K2的值即可确定喜欢数学是否与性别有关.【解答】解:(Ⅰ)由题意可知:所有优秀的人数为:人,据此完成列联表如下所示:优秀非优秀合计甲班10 30 40乙班30 30 60合计40 60 100(Ⅱ)由列联表中的结论可得:,则若按99%的可靠性要求,不能认为“成绩与班级有关系”.20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ,求了曲线C的直角坐标方程为,由此能求出曲线C的参数方程;(Ⅱ)求得直线AB的方程,设P点坐标,根据点到直线的距离公式及正弦函数的性质,即可求得点P到直线AB的距离的最大值.【解答】解:(Ⅰ)曲线C的极坐标方程为ρ2(1+3sin2θ)=4,即ρ2(sin2θ+cos2θ+3sin2θ)=4,由x=ρcosθ,y=ρsinθ,得到曲线C的直角坐标方程为x2+4y2=4,即;∴曲线C的参数方程为(α为参数);(Ⅱ)∵曲线与x轴的正半轴及y轴的正半轴分别交于点A,B,∴由已知可得A(2,0),B(0,1),直线AB的方程:x+2y﹣2=0,设P(2cosφ,sinφ),0<φ<2π,则P 到直线AB的距离d==丨sin(φ+)﹣1丨,∴当φ+=π,即φ=时d取最大值,最大值为(+1).点P到直线AB的距离的最大值(+1).21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:48 49 50 51 52 53 54曰需求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)根据利润公式得出函数解析式;(2)(i)求出利润的可能取值及其对应的概率,得出分布列和数学期望;(ii)求出n=51时对应的数学期望,根据利润的数学期望大小得出结论.【解答】解:(1)当n≤50时,y=5n﹣50×3=5n﹣150,当n>50时,y=50×(5﹣3)=100,∴y=.(2)(i)由(1)可知n=48时,X=90,当n=49时,X=95,当n≥50时,X=100.∴X的可能取值有90,95,100.∴P(X=90)==,P(X=95)==,P(X=100)==,∴X的分布列为:X 90 95 100P∴E(X)==98.(ii)由(i)知当n=50时,E(X)=98,当n=51时,y=,∴当n=48时,X=87,当n=49时,X=92,当n=50时,X=97,当n≥51时,X=102,∴P(X=87)=,P(X=92)=,P(X=97)==,P(X=102)=.∴E(X)=87+++=97.7.∵98>97.7,∴每天应购进50盒比较合理.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).【考点】6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的X围,求出函数的单调区间即可;(Ⅱ)问题等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,问题等价于:lnt>,根据函数的单调性证明即可;(Ⅲ)根据<1,令x=,得到(1+)ln(x+1)>1,判断大小即可.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),因为f′(x)=,当a≤0时,f'(x)>0,所以函数f(x)在(0,+∞)上单调递增;当a>0时,由f'(x)<0得0<x<a,由f'(x)>0得x>a,所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(Ⅱ)证明:①因为x>0,x<(x+l)ln(x+1)等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,所以不等式ln(x+1)>(x>0)等价于:lnt>,即:lnt﹣>0(t>1),由(Ⅰ)得:函数g(t)=lnt﹣在(1,+∞)上单调递增,所以g(t)>g(1)=0,即:ln(x+1)>;②因为x>0,不等式 x<(x+l)ln(x+1)等价于ln(x+1)<x,令h(x)=ln(x+1)﹣x,则h′(x)=﹣1=,所以h'(x)<0,所以函数h(x)=ln(x+1)﹣x在(0,+∞)上为减函数,所以h(x)<h(0)=0,即ln(x+1)<x.由①②得:x>0时,x<(x+l)ln(x+1);(Ⅲ)由(Ⅱ)得:x>0时,<1,所以令x=,得100×ln(+1)<1,即ln()100<1,所以()100<e;又因为>(x>0),所以(1+)ln(x+1)>1,令x=得:100×ln>1,所以ln()100>1,从而得()100>e.所以()100<()100.。

2023-2024学年山东省淄博市高二下学期期末考试数学试题(含解析)

2023-2024学年山东省淄博市高二下学期期末考试数学试题(含解析)

2023-2024学年山东省淄博市高二下学期期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设等差数列{a n },a 2=3,d =5,则a 5=( )A. −5B. 18C. 23D. 282.若函数f(x)满足lim Δx→0f(1−Δx)−f(1)Δx =18,则f′(1)=( )A. −18B. −14C. 18D. 143.设{a n }是等比数列,且a 2+a 3=2,a 5+a 6=−16,则公比q =( )A. −2B. 2C. −8D. 84.在(2− x )7的展开式中,含x 2的项的系数为( )A. −280B. 280C. −560D. 5605.某志愿者小组有5人,从中选3人到A 、B 两个社区开展活动,其中1人到A 社区,则不同的选法有( )A. 12种B. 24种C. 30种D. 60种6.直线y =kx 与曲线y =ln 2x 相切,则实数k 的值为( )A. 1B. 12C. 2e D. 2e 27.若P(B|A)=13,P(A)=34,P(B)=12,则P(A|B)=( )A. 14 B. 34 C. 13 D. 128.不等式2ln x > x ln2的解集是( )A. (1,2)B. (4,+∞)C. (2,+∞)D. (2,4)二、多选题:本题共3小题,共15分。

在每小题给出的选项中,有多项符合题目要求。

9.已知随机变量X ~N (3,1),则下列说法正确的是( )A. 若Y =X +3,则E (Y )=6B. 若Y =3X +1,则D (Y )=3C. P (X ≤2)=P (X ≥4)D. P (0≤X ≤4)=1-2P (X ≥4)10.若函数f(x)的定义域为(−4,3),其导函数f′(x)的图象如图所示,则( )A. f(x)有两个极大值点B. f(x)有一个极小值点C. f(0)>f(1)D. f(−2)>f(−3)11.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,它的前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,则数列1,3,6,10被称为二阶等差数列,现有二阶等差数列{c n},其前6项分别为4,8,10,10,8,4,设其通项公式c n=g(n).则下列结论中正确的是( )A. 数列{c n+1−c n}的公差为2B. ∑20(c i+1−c i)=−300i=1C. 数列{c n}的前7项和最大D. c21=−296三、填空题:本题共3小题,每小题5分,共15分。

山东省高二第二学期期末考试数学(理)试题(含参考答案)

山东省高二第二学期期末考试数学(理)试题(含参考答案)

山东省第二学期期末考试高二数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数34i1iz(i 是虚数单位)对应的点在()A .第一象限 B.第二象限 C.第三象限 D.第四象限2.在用线性回归方程研究数据的拟合效果中,分别作出下列四个关于四组数据的残差图,则用线性回归模式拟合效果最佳的是()3.已知向量2,3,1ar,4,2,bx r,且ab rr,则x 的值为()A .12 B.10 C.14 D.144.现抛掷两枚骰子,即事件A 为“朝上的2个数之和为偶数”,事件B 为“朝上的2个数均为偶数”,则P B A()A .18B.14C .25D .125.如图,阴影部分面积是()A .1eeB.1e1eC .1e2eD .1ee6.设随机变量X ,Y 满足:31YX ,2,X B p:,若519P X ,则D Y()A .4B .5 C.6 D.7 7.函数2sin yx x 的图象大致是()A .B .C .D .8.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题.甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是()A .甲 B.乙 C.丙 D.丁9.做一个无盖的圆柱形水桶,若要使其体积是64,且用料最省,则圆柱的底面半径为()A .3B .4 C.5 D.610.直三棱柱111ABC A B C 中,90BCA,12CA CC CB ,则直线1BC 与直线1AB 所成角的余弦值为()A .255B .53C .35D .5511.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有()A .15种B .20种C .48种 D.60种12.已知函数313f xxa 与函数2122g xxx 的图象上恰有三对关于y 轴对称的点,则实数a 的取值范围是()A .107,36B .710,63C .710,63D .107,36第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线sin e x yx在点0,1处的切线方程为.14.已知621a x x的展开式的所有项系数的和为192,则展开式中2x 项的系数是.15.如图,已知二面角l 的大小为60,其棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知2AB ,3AC ,4BD ,则线段CD 的长为.16.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行:设实系数一元二次方程22100a xa x a ……①在复数集C 内的根为1x ,2x ,则方程①可变形为2120a xx xx ,展开得222122120a xa x x x a x x .……②比较①②可以得到:11220122a x x a a x x a 类比上述方法,设实系数一元n 次方程11100nn n n a xa xa x a L(2n 且*n N )在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1nii x .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.观察下列等式:11;132;1353;13574;………(1)照此规律,归纳猜想出第n 个等式;(2)用数学归纳法证明(1)中的猜想.18.甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在45,75内为优质品.从两个企业生产的零件中各随机抽出了500件,测量这些零件的质量指标值,得结果如下表:甲企业:乙企业:(1)已知甲企业的500件零件质量指标值的样本方差2142s,该企业生产的零件质量指标值X 服从正态分布2,N ,其中近似为质量指标值的样本平均数x (注:求x 时,同一组数据用该区间的中点值作代表),2近似为样本方差2s ,试根据该企业的抽样数据,估计所生产的零件中,质量指标值不低于71.92的产品的概率.(精确到0.001)(2)由以上统计数据完成下面22列联表,并问能否在犯错误的概率不超过0.01的前提下,认为“两个分厂生产的零件的质量有差异”.附注:参考数据:14211.92,参考公式:0.6827P X ,220.9545PX ,330.9973PX.22n adbcKa b c d a c b d19.如图,在三棱锥P ABC 中,AB BC ,PA PB ,E 为AC 的中点.(1)求证:PE AB ;(2)设平面PAB平面ABC ,2PBPC ,4AC ,求二面角B PA C 的平面角的正弦值.20.在某校歌咏比赛中,甲班、乙班、丙班、丁班均可从A 、B 、C 、D 四首不同曲目中任选一首.(1)求甲、乙两班选择不同曲目的概率;(2)设这四个班级总共选取了X 首曲目,求X 的分布列及数学期望EX .21.已知函数1ln f x ax x (aR ).(1)讨论函数f x 极值点的个数,并说明理由;(2)若1x,2xf xaxax a 恒成立,求a 的最大整数值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程是3212xt m yt (t 为参数).以坐标原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是2cos.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设点,0P m ,若直线l 与曲线C 交于A ,B 两点,且1PA PB ,求实数m 的值.23.选修4-5:不等式选讲已知函数1f x x x a .(1)若0a,求不等式0f x的解集;f x x有三个不同的解,求实数a的取值范围. (2)若方程0第二学期期末考试高二数学(理)试题答案一、选择题1-5:BCDDC 6-10:ABABD 11、12:AC二、填空题13.210xy 14.45 15.17 16.01nna a 三、解答题17.解:(1)第n 个等式为135121nn L1nn (*nN );(2)用数学归纳法证明:①当1n时,等式显然成立;②假设当n k (*kN )时,等式成立,即1351k L211kk k 则当1n k时,135L 1121121kk k k 11121kk k k1121k kk111k k 所以当1n k 时,等式成立. 由①②知,135121nn L1n(*nN )18.解:(1)依据上述数据,甲厂产品质量指标值的平均值为:1301040405011560165500x70120804590560,所以60,2142,即甲企业生产的零件质量指标值X 服从正态分布~60,142X N ,又14211.92,则,6011.926011.92P X48.0871.920.6827P X,148.0871.9271.922P X P X 10.68270.158650.1592,所以,甲企业零件质量指标值不低于71.92的产品的概率为0.159.(2)由以上统计数据填写22列联表,如下:计算2210004001403601008.772 6.635760240500500K对照临界值表得出,在犯错的概率不超过0.01的前提下,认为“两个分厂生产的产品的质量有差异”.19.解:(1)设AB 中点为O ,连接PO ,EO ,因为PAPB ,所以PO AB ,又E 为AC 的中点,所以EO BC ∥. 因为ABBC ,所以EO AB ,因为PO OE O I ,所以AB平面POE ,又PE平面POE ,所以PEAB(2)由(1)知PO AB ,因为平面PAB 平面ABC ,平面PAB I 平面ABCAB ,PO平面PAB ,所以PO平面ABC ,又EO AB .以O 为坐标原点,分别以OE uu u r ,OB uu u r ,OP uu u r为x 轴,y 轴,z 轴的正方向建立空间直角坐标系Oxyz ,如图所示,因为ABBC ,4AC ,2BC ,得2223AB ACBC,由O 为AB 中点,PO AB ,2PB,得3OAOB ,221POPBOB,则,0,0,0O ,1,0,0E ,0,0,1P ,0,3,0A ,0,3,0B ,2,3,0C设平面PAC 的一个法向量为,,nx y z r,由00n PA n PC r uu r ruu u r,即30230y zx y z取3y,可得3,3,3nr,因为平面PAB 平面ABC ,平面PAB I 平面ABCAB ,OE平面ABC ,所以EO平面PAB ,所以平面PAB 的一个法向量为1,0,0OEuu u r,∴321cos ,721OE n OE nOE nuu u r r uu u r ruu u r r ,设二面角B PA C 的大小为,则21cos7所以247sin 1cos7,∴二面角B PA C 的平面角的正弦值为477.20.解:(1)在某校歌咏比赛中,甲班、乙班、丙班、丁班均可从A 、B 、C 、D 四首不同曲目中任选一首,共有2416种选法,甲、乙两班选择不同的曲目共有2412A 种选法,∴甲、乙两班选择不同曲目的概率为34.(2)依题意可知,X 的可能取值为1,2,3,4,则4411464P X,244422212464C P X ,23444363464C A P X ,44464464A P X ∴X 的分布列为:12136123646464EX 61754646421.解:(1)f x 的定义域为0,,且11ax fx axx.当0a 时,0f x在0,上恒成立,函数f x 在0,上单调递减.∴f x 在0,上没有极值点;当0a 时,令0fx 得10,xa;列表所以当1x a时,f x 取得极小值.综上,当0a 时,f x 在0,上没有极值点;当0a时,f x 在0,上有一个极值点.(2)对1x,2xf x axax a 恒成立等价于ln 1x x xax 对1x 恒成立,设函数ln 1x x xg xx (1x),则2ln 21x x g xx (1x ),令函数ln 2xx x,则11x x(1x),当1x 时,110xx,所以x 在1,上是增函数,又31ln30,42ln 40,所以存在03,4x ,使得0x ,即00g x ,且当01,xx 时,0x ,即0g x ,故g x 在01,x 在上单调递减;当0,xx 时,0x,即0g x,故g x 在0,x 上单调递增;所以当1,x时,g x 有最小值000ln 1x x x g x x ,由00x 得00ln 20x x ,即0ln 2x x ,所以00000021x x x g x x x ,所以0a x ,又03,4x ,所以实数a 的最大整数值为 3.22.解:(1)直线l 的参数方程是3212x t m y(t 为参数),消去参数t 可得直线l 的普通方程为30xy m 曲线C 的极坐标方程是2cos ,化为22cos ,所以曲线C 的直角坐标方程为2211x y .(2)将3212xt m yt (t 为参数)代入方程2211x y ,得22311122t m t ,即223320tm t m m .由0,解得13m ,所以2122t t m m ∵121PA PB t t ,∴221m m ,解得12m 或12或1,都满足0,所以12m 或1m 或12m . 23.解:(1)当0a ,1f x x x 1,012,011,1x x x x所以当0x时,10f x ,满足题意;当01x 时,12f x x ,由0f x 得120x ,得12x ,所以102x ;当1x 时,10f x ,不合题意. 综上,不等式0f x的解集为1,2(2)由0f x x 得1a x x x ,则方程0f x x 有三个不同的解等价于函数y a 的图象和函数1yx x x 的图象有三个不同交点,因为1y x x x 1,01,011,1x x x x x x ,画出其图象,如图所示,结合图象可知,函数ya 的图象和函数1y x x x 的图象有三个不同交点时,则有01a 即10a ,所以实数a 的取值范围为1,0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二理科数学试题2016.07本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.
注意事项:
1.答卷前,考生务必将自己的班级、姓名、准考证号、考试科目及试卷类型用中性笔和2B铅笔分别涂写在答题卡上;
2.将所有试题答案及解答过程一律填写在答题卡上.试题不交,只交答题卡.
参考:
P(K2≥k0)0.050.0250.0100.0050.001
k0 3.841 5.024 6.6357.87910.828
第I卷(选择题共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设为虚数单位,则复数的虚部为
A.B.C.D.
2. 将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法的种数为
A. 6
B.10
C.20
D.30
3. 用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,反设正确的是
A.a,b都不能被5整除B.a,b都能被5整除
C.a,b中有一个不能被5整除D.a,b中有一个能被5整除
4. 在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为,,,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为
A.0.998
B.0.046
C.0.002
D.0.954
5. 由曲线,直线及轴所围成的图形的面积为
A. B. C. D.
6. 从编号为的个大小相同的球中任取4个,则所取的4个球中,球的最大号码是6 的概率为
A. B. C. D.
7.设函数,若,,则等于
A.3
B.
C.
D.
8. 若,
则的值为
A. B. C.0 D. 1
9. 有25人排成方阵,从中选出3人,要求其中任意2人既不同行也不同列,则不同的选出方法种数为
A. 600
B.300
C.100
D.60
10. 设是定义在上的奇函数,且,当时,有恒成
立,则不等式的解集为
A. B.
C. D.
第II卷(非选择题共100分)
二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填在答题纸给定的横线上.
11.已知,则________.
12.具有线性相关关系的变量,满足一组数据如下表所示:
0 1 2 3
1 8
若与的回归直线方程为,则的值是.
13.公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的.设男子身高服
从正态分布(单位:),参考以下概率,
,,则车门的高度(单位:)至少应设计为.
14. 若函数在上有两个零点,则实数的取值范围是.
15.若函数的导数仍是的函数,就把的导数叫
做函数二阶导数,记做.同样函数的阶导数叫做的阶导数,表示.在求的阶导数时,已求得
,,,根据以上推理,函数的第阶导数为
三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程16.(本小题满分12分)
临沂市某高二班主任对全班50名学生进行了作业量多少的调查:喜欢玩游戏的27人中,认为作业多的有18人,不喜欢玩游戏的同学中认为作业多的有8人.
(1)根据以上数据建立一个的列联表;
(2)试通过计算说明在犯错误的概率不超过多少的前提下认为喜欢玩游戏与作业量的多少有关系?
17.(本小题满分12分)
设数列的前项和为,对一切,点都在函数的图象上.
(1)求的值,猜想的表达式;
(2)并用数学归纳法证明你的猜想.
18. (本小题满分12分)
甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个.甲、乙二人依次各抽一题.
(1)甲抽到选择题、乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一人抽到选择题的概率是多少?
19.(本小题满分12分)
已知函数.
(1)若函数的图象在处的切线斜率为1,求实数的值;
(2)若函数在上是减函数,求实数的取值范围.
20.( 本小题满分13分)
某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品,乙组研发新产品.设甲、乙两组的研发相互独立.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品研发成功,预计企业可获利润120万元;若新产品研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.
21.(本小题满分14分)
已知函数.
(1)求;
(2)求的单调区间和极值;
(3)设,函数,若对于任意,总存在
使得成立,求的取值范围.
高二理科数学试题答案
一、选择题:本大题共10小题,每小题5分,共50分.
DBADC BCDAB
二、填空题:本大题共5小题,每小题5分,共25分.
11. 12. 4 13.14.15.
三、解答题:本大题共6小题,共75分.
16.解(1)
认为作业多认为作业不多合计
喜欢玩游戏18927
不喜欢玩游戏81523
合计262450 ………………………………5分
(2)将表中的数据代入公式
得到K2的观测值≈5.059>5.024, (10)

查表知P(K2≥5.024)=0.025,
即说明在犯错误的概率不超过0.025的前提下认为喜欢玩游戏与作业量的多少有关系.………………………………12分
17.(1)解:因为点在函数的图象上,
故,∴.…………………………………2分
令,得,∴;令,得,∴;
令,得,所以.…………………………4分
由此猜想:.………………………………………6分
(2)证明:
①当时,由上面的求解知,猜想成立.………………………7分
②假设时猜想成立,即成立,………………………8分
则当时,注意到,
故,.两式相减,得,∴.由归纳假设得,,
故.
这说明时,猜想也成立.……………………………11分
由①②知,对一切,成立.……………………………12分
18. 解:(1)甲从选择题中抽到一题的可能结果有个,
乙依次从判断题中抽到一题的可能结果有个,
故甲抽到选择题、乙依次抽到判断题的可能结果有个.…………2分
又甲、乙依次抽一题的可能结果有个,……………………………4分
∴所求概率为,……………………………6分
因此甲抽到选择题、乙依次抽到判断题的概率为. ……………………8分(2)甲、乙二人依次都抽到判断题的概率为,…………10分
故所求概率为,
因此甲、乙二人中至少有一人抽到选择题的概率为. …………………12分19.解:(1)由已知,得.
由题意,得,解得. ……………………………4分(2)由,得
根据题意,在上恒成立,
即在上恒成立.……………………………8分令,在上,因为=
∴在上为减函数,
从而,因此,. ……………………………12分20.解:(1)记={甲组研发新产品成功} ,={乙组研发新产品成功}.
由题设知,,,,
且事件与,与,与,与都相互独立.
记={至少有一种新产品研发成功},则,于是

故所求的概率为. ……………………………6分(2)设企业可获利润为(万元),
则的可能取值为0,100,120,220.
又,,

……………………………10分
故所求的分布列为
0 100 120 220
……………………………11分
数学期望为=140. …………13分21.解:(1)函数的定义域为,
∵,∴,
∴,. ……………………………4分
(2)由,得,
当时,,∴是函数增区间,
当,,∴是函数减区间,
∴函数的极大值为. ……………………………8分(3)∵,
∴当时,,在上单调递减,
此时的值域为,
由(1)得当时,的值域为,
欲满足题意,则需,∴.
即的取值范围为. ……………………………14分。

相关文档
最新文档