中冷器的选用
水冷中冷器标准

水冷中冷器是汽车涡轮增压系统中重要的组成部件,其标准包括以下方面:冷却效率:水冷中冷器能够有效地冷却空气,使其在进入气缸之前能够有较低的温度,从而提高进气密度,增加发动机的功率和扭矩。
空气流量:水冷中冷器需要保证足够的空气流量,以满足发动机在高负荷和低负荷下的需求。
体积和质量:水冷中冷器的体积和质量需要适中,以确保其能够适应车辆的空间和重量限制。
耐久性:水冷中冷器需要能够在恶劣的工作条件下长时间工作,并且不会出现泄漏、堵塞等问题。
噪音和振动:水冷中冷器需要尽可能地减少噪音和振动,以确保驾驶舒适性。
维护和保养:水冷中冷器需要易于维护和保养,例如更换冷却液等。
总之,水冷中冷器的标准需要根据具体的车辆和发动机需求来确定。
qct 828-2010 汽车水冷中冷器标准

QCT 828-2010是汽车行业的一项标准,全称为《汽车水冷中冷器性能要求及台架试验方法》。
该标准规定了汽车水冷中冷器的性能要求和试验方法,旨在确保汽车发动机的正常运行和可靠性。
下面是对该标准的详细介绍。
一、背景与意义汽车水冷中冷器是汽车冷却系统中的重要组成部分,负责将发动机的热量传递给冷却液,再通过散热器将热量散发到大气中。
水冷中冷器性能的好坏直接影响到汽车发动机的性能和寿命。
因此,制定一套科学、合理的性能要求及试验方法,对于保证汽车水冷中冷器的质量和可靠性具有重要意义。
二、主要内容1. 性能要求QCT 828-2010标准对汽车水冷中冷器的性能要求包括以下几个方面:(1)传热性能:水冷中冷器应具有足够的传热能力,确保发动机的热量能够被及时传递给冷却液。
(2)阻力性能:水冷中冷器应具有较低的阻力,以减小冷却液流经水冷中冷器时的压力损失。
(3)耐腐蚀性能:水冷中冷器应具有较好的耐腐蚀性能,能够承受冷却液和大气中的有害物质侵蚀。
(4)密封性能:水冷中冷器应具有较好的密封性能,防止冷却液漏出。
(5)结构与外观:水冷中冷器应具有合理的结构和外观,方便安装和维护。
2. 试验方法为了验证水冷中冷器的性能是否符合要求,QCT 828-2010标准规定了相应的试验方法。
具体试验项目包括:传热性能试验、阻力性能试验、耐腐蚀性能试验、密封性能试验以及外观质量检查等。
这些试验方法旨在全面评估水冷中冷器的各项性能指标,确保其在实际使用中的可靠性。
三、应用与影响QCT 828-2010标准的实施对于提高汽车水冷中冷器的质量和可靠性具有重要影响。
通过该标准的规定,汽车制造商可以更加明确地了解水冷中冷器的性能要求,从而在生产过程中采取相应的质量控制措施。
此外,该标准也为客户在选择汽车水冷中冷器时提供了参考依据,有助于推动汽车零部件行业的健康发展。
YN490ZLQ汽车散热器、中冷器(冷却系统)的设计计算

YN490ZLQ发动机,其额定功率为60KW/3200rpm。
现用《传热学》对其中冷器的散热性能进行简单的理论计算。
由于缺乏台架试验的有关数据,在这里则用类比的方法确定。
即:假设发动机的进气量与其功率成正比。
一、发动机的参数⑴进气量6BTAA:Ne=210hp,⊿M =0.305kg/sCY4102BZLQ:Ne=82hp,⊿M =0.119kg/s⑵中冷器的参数进气温度t1a=110℃出气温度t2a=45℃环境温度t0=27℃热空气流速u=25km/h⑶冷却空气进风速度va=12m/s二、中冷器结构选择散热管:见图一截面宽×长=6.5×38,7孔,管数27散热管平壁厚0.5~0.6散热带:见图二波高×波距×波数×带宽=8.95×5×80×38散热带根数:28中冷器结构初步设计如下:芯部尺寸:芯高×芯宽×芯厚= H×B×N =400×425×38 三、简单计算⑴单根散热管通流面积a=153.3mm2所有散热管通流面积A=27a=4139.1 mm2单根管内流体浸润周长l=180.56mm所有管内流体浸润周长L=27l=4875.12mm当量直径de=4×a/l=3.396mm⑵所有散热管内表面积FL=2.023 m2所有散热管外表面积FW=0.935m2散热带表面积F带=3.474 m2中冷器冷空气侧散热面积FΣ=FW+F带=4.409 m2四、散热管内放热系数的计算⑴中冷器的散热量QnQn=Cpa×⊿T×⊿M定性温度T=(t1a+t2a)/2=100℃Cpa——定压比热,1.005kj/kg℃⊿M——单位时间内的质量流量,⊿M =0.119kg/s ⊿T——中冷器进出气口温差,⊿T= t1a-t2a=65℃ρa——空气密度,1.060kg/m3γ——运动粘度,18.97×10-6 m2/sPr——普朗特数,Pr=0.696λ——空气导热系数,λ=2.90×10-2w/(m×℃) 得: Qn=7.77kW⑵热空气在散热管中的流速v⊿M=⊿V×ρa⊿V——体积流量,⊿V=0.112m3/s⊿V= A×vA——散热管通流面积A=4139.1 mm2V=27.06m/s⑶散热管内的雷诺数ReRe= V×de/γde——当量直径,de=3.396mmRe=4844⑷散热管内放热系数αg努谢尔数Nu=0.023×Re0.8×Pr0.3Nu=18.31Nu=αg×de/λ得: αg=156.36 w/(m2×℃)五、散热管外放热系数的计算⑴散热管外出风温度t aˊ①芯子总成的净面比ζζ=0.551②冷空气的体积流量⊿Vˊ⊿Vˊ=ζ×H×B×va=1.124m3/s③冷空气质量流量⊿Mˊ取定性温度为环境温度,t=t0=27℃Cpa——定压比热,1.005kj/kg℃⊿Mˊ——单位时间内的质量流量,kg/s⊿Tˊ——冷空气进出气温差,⊿Tˊ= t aˊ-t0ρa——空气密度,1.165kg/m3Pr——普朗特数,0.701得:⊿Mˊ=⊿Vˊ×ρa=1.310 kg/s④Qn=Cpa×⊿Tˊ×⊿Mˊ得: ⊿Tˊ=6℃得:t aˊ=33℃反馈,取定性温度为t=(t0+ t aˊ)/2 =30℃查表得:Cpa——定压比热,1.005kj/kg℃ρa——空气密度,1.165kg/m3得:⊿Mˊ=⊿Vˊ×ρa=1.310kg/sQn=Cpa×⊿Tˊ×⊿Mˊ得: ⊿Tˊ=6℃得:t aˊ=33℃得:η=(33-33)×2/(33+33)=0%所以,可以用环境温度近似地作为定性温度,此时空气的一些参数如下:Cpa——定压比热,1.005kj/kg℃ρa——空气密度,1.165kg/m3γ——运动粘度,16×10-6m2/sPr——普朗特数,Pr=0.701λ——空气导热系数,λ=2.67×10-2w/(m×℃)⑵冷空气外掠管的雷诺数ReRe= V×de`/γde——当量直径,de`=11.41mmV——空气流速,V=12m/sRe=6838⑷散热管外的放热系数αw努谢尔数Nu=C×Re n查《传热学》[3]表7-6得:C=0.424,n=0.588Nu=0.424×Re0.588Nu=87.02Nu=αw×de`/λ得:αw=203.63 w/(m2×℃)⑸散热带的效率ηη=th(mh)/(mh)散热带的参数m=(2×αw/λ×δ)0.5δ为散热带厚度,δ=0.135×10-3mλ为散热带的传热系数,假设散热管和散热带之间焊接良好。
船用中冷器工作原理

船用中冷器工作原理一、冷却原理船用中冷器是一种用于冷却发动机中高温气体的设备。
其冷却原理基于热传导和热对流的基本原理。
当高温气体通过中冷器内部时,气体会与中冷器的冷却表面进行热交换,将热量传递给冷却表面。
同时,冷却水在中冷器的外部流动,将热量带走,从而使高温气体得到冷却。
二、传热过程船用中冷器的传热过程主要包括热传导和热对流两种方式。
热传导是指热量在物质内部通过分子或原子之间的相互作用进行传递。
在船用中冷器中,高温气体与中冷器内部的冷却表面之间的热量传递主要是通过热传导方式进行的。
热对流是指热量通过流体流动进行传递。
在船用中冷器中,冷却水在中冷器的外部流动,将热量从冷却表面带走,这个过程就是热对流。
三、空气流动船用中冷器的空气流动包括两个方面:一是高温气体的流动,二是冷却空气的流动。
高温气体在发动机排气管路中经过中冷器内部,通过热传导和热对流的方式将热量传递给冷却表面。
同时,冷却空气在中冷器的外部流动,将热量带走。
为了提高冷却效率,通常会采用强制通风的方式,通过风扇等装置增加冷却空气的流量和流速。
四、流体动力学船用中冷器的流体动力学涉及到气体和水的流动特性。
为了获得更好的传热效果,需要合理设计中冷器的结构,使气体和水的流动均匀、顺畅,避免出现死区、涡流等现象。
同时,还需要考虑流体动力学对压力损失的影响,以确保发动机的正常运行。
五、压力平衡船用中冷器的压力平衡涉及到气体和水的压力变化。
在正常工作状态下,中冷器的入口和出口处气体的压力会有一定的差异。
为了保持压力平衡,需要合理设计中冷器的进出气管路和排水系统。
同时,还需要考虑冷却水的压力变化,以确保冷却水的正常循环。
关于载货汽车中冷器的设计分析

关于载货汽车中冷器的设计分析摘要:柴油机中冷器实际上是一种热交换器。
在载货汽车中,发动机的中冷却器起到降温作用,与此同时增加空气密度,提高发动机的进气压力,发动机的进气流量得以改善。
当热负载增大时,采用中冷器能有效提高发动机的工作效率,达到最大限度节约能源,降低废气排放。
本文对柴油机的中冷却器进行优化设计,能够更加全面利用该装置的优点,实现载货汽车柴油机性能的而进一步提高和优化。
关键词:载货汽车中冷器设计结构1中冷器的作用与工作原理1.1中冷器的作用自从进入新世纪以来,世界各国纷纷出台相关法律提高民众的环境保护意识。
在工业上,除对发动机的动力特性进行研究以外,对其环境保护也有新需求。
采用中冷却器能有效改善发动机的启动性能,与此同时还可以有效减少一氧化碳和NOx的排放量。
结果表明:在柴油机中,后入气流的温度对其性能起决定性作用,提高排气压力可以提高输出功率,对中冷器的结构进行优化设计可以降低废气的排放量。
1.2中冷器的工作原理在载货汽车正处于运行状态的时候,利用中冷器可以将不同流体进行热交换,而不会产生任何接触。
更准确地说,是空气首先进入到增压系统里面,然后再通过中冷器进行冷却,从而提高引擎的充气效果。
中冷器是柴油机的重要部件,其内部设计与气流的流动情况与压缩空气的传热有关,这两种影响因素对发动机的工作造成直接影响,从而对发动机的动力特性和废气排放具有重要影响。
中冷器的功能主要有两个。
第一点,当气体通过增压器的时候,随着压力的增大,其内部温度也随之升高。
这会对引擎内部的空气流通产生一定的干扰。
利用中冷器的降温效果,可以降低气体温度,提高气体浓度,发动机气缸里面的气体容量也会相对增加,从而发动机的性能以及运行效率也会有所改善。
第二,在没有通过中冷器进行降温的情况下,经过加压的气体则会直接流入到汽缸里面,降低引擎的推力作用,冲量系数就会变得比较低。
同时,这些高温低密度的气体也会增加引擎的温度,甚至会引起引擎爆燃等问题,从而造成引擎超温,降低热效率。
汽车中冷器的设计与应用分析

汽车中冷器的设计与应用分析摘要:涡轮增压的工作原理,就是将引擎排放的废气,通过涡轮将新鲜的空气与涡轮一起压缩,送入发动机的燃烧室。
最后,发动机的动力性能得到了改善,发动机的油耗和排放得到了一定程度的降低,但是发动机的排气温度很高,会通过进气歧管和进气门流入气缸燃烧室,造成发动机的温度升高,引起燃料的异常预燃,从而造成发动机的爆震,降低增压效果。
中冷器能够良好的解决发动机温度过高的问题,基于此,本文向大家分析了中冷器的相关要点及设计。
关键词:汽车中冷器中冷器设计中冷器应用1中冷器的作用中冷器的工作原理与“水箱式散热器”相似,因为这种“散热器”是在引擎的进气管和增压装置中间的,因此也被称为“中冷器”[1]。
该装置用于对增压机排出的加压空气进行降温(其可使燃气的温度低于50摄氏度),使其流经该增压机后,气压增大、气温上升。
采用中冷机进行制冷可以使发动机的进气温度下降,增加进气浓度,增加进气效率,进而实现发动机的动力输出,减少废气排放量。
引擎的排气温度一般都在八九百度以上,再加上涡轮本身就是在高温环境下,所以吸气的温度会更高。
另外,由于压缩空气的密度会增加(由于压缩的气体分子之间的距离越来越近,会产生相互挤压、摩擦产生热量),这就不可避免地会造成空气的温度上升。
同时由于热膨胀,压缩的空气中的氧气含量会急剧下降,从而影响到引擎的充气效率。
所以,为了使充气效果更好,必须要降低进气温度。
试验结果表明,在同样的空燃比下,每降低10摄氏度,发动机的功率就会增加3一5%[2]。
若没有经过冷却的增压气流进入燃烧室,不仅会降低引擎的充气效率,而且极易引起引擎的高温而发生爆炸,还会导致引擎排气中氮、氧化合物的浓度升高,从而导致大气污染[3]。
2中冷器的分类中冷机一般是用铝合金制造的。
根据制冷介质的不同,常用的中冷器有两类:空气冷却器和水冷型。
2.1风冷式中冷器风冷中冷器是利用外部空气来冷却经过的中冷器。
风冷型中冷器通常安装在车身上,比如前保险杠内,发动机上方(这里有一个特别的特征,就是发动机盖上有一个很明显的进气口,比如奥拓发动机的左边进气口)。
中冷器材料选择与强度匹配

1、中冷器使用过程中的失效
进气端气室与主片脱焊
或开裂 进气端主片与管头脱焊 或开裂 散热管开裂
2、中冷器制造过程中芯子钎焊失效
内翅片 未焊合
内翅片焊接不良:内
翅片焊合率不足或几 乎没有形成焊接接头; 外翅片焊接率不够, 或外翅片与散热管未 形成焊缝连接; 接触不紧密造成的
内翅片焊合率低
元素
CK NK FK Al K Si K 总量
元素 浓度 0.23 0.24 1.09 46.10 4.76
强度 校正 1.3398 0.1837 0.6671 1.3031 0.6471
重量 百分比 0.38 2.89 3.58 77.11 16.05
100.00
重量百分比 Sigma 0.08 0.57 0.21 0.52 0.22
3、管与翅片强度匹配模拟试验
模拟夹紧试验(焊管 在外端)
装内翅片的管
焊管:0.45mm厚度、H14和H24状态的高频焊管,规格64×8.08mm 内翅片:0.09mm、0.11mm、0.12mm、0.13mm厚度,状态H14,规 格7.15mm 外翅片:0.10mm、0.12mm、0.13mm、0.15mm厚度,状态H14,规 格8.9mm
Y:内、外翅片没有塑性变 形,焊管末端尺寸达到设 定值,内、外翅片与管壁 贴合。 H:内翅片没有塑性变形, 外翅片有塑性变形,焊管 末端尺寸未达到设定值, 内、外翅片与管壁有间隙。 F:内翅片有塑性变形,外
翅片没有塑性变形,焊管 末端尺寸达到设定值。 N:内翅片有塑性变形,外 翅片没有塑性变形,焊管 末端尺寸未达到设定值。
正常焊料共晶成分起始熔点
577℃; Si元素含量16%-17%的铝硅 合金熔点约650℃-660℃
汽车空-空中冷器技术条件

汽车空-空中冷器技术条件汽车空-空中冷器技术条件1范围本标准规定了空-空中冷器的技术要求、试验方法、检验规则、标志、包装、运输、贮存以及质量保证。
本标准适用于本公司设计开发的汽车所装用的空-空中冷器总成(以下简称“中冷器”)。
2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB 191—2000包装储运图示标志GB/T 2828.1—2003计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划GB/T 3190—1996变形铝及铝合金化学成分GB/T 3194—1998铝及铝合金板、带材的尺寸允许偏差GB/T 3614—1999铝合金箔GB/T XXX及铝合金轧制板材GB/T 4437.1—2000铝及铝合金热挤压管第一部分:无缝园管YS/T 69—1993钎接用铝合金板材Q/XX B102车辆产品零部件追溯性标识规定3技术要求3.1中冷器应按经规定程序批准的图样和技术文件进行制造。
3.2材料要求中冷器所用的相应材料,应分别满足GB 3880、YS/T 69、GB 4437.1、GB 3614、GB 3194、GB 3190的要求。
3.3外观表面质量及尺寸3.3.1铝合金板材的表面质量a)板材表面不允许有裂纹、裂边、腐蚀、穿通气孔、硝盐痕,不允许有扩散斑点;b)板材表面答应有轻微的压划痕等缺陷,但缺陷深度不得跨越板材厚度的答应偏差,并应保证最小厚度。
13.3.2钎接用铝合金板材的表面质量a)板材表面不答应有裂纹、腐蚀、穿通气孔;b)板材表面允许有轻微的压划痕。
3.3.3铝合金管的表面质量a)管材表面应光滑,不允许有裂纹;b)管材表面的缺陷深度不得超过管材内、外径的允许偏差范围,并应保证管材的最小尺寸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中冷器的选用
中冷器的作用
中冷器的作用是降低发动机的进气温度。
那么为什么要降低进气温度呢?
(1 )发动机排出的废气的温度非常高,通过增压器的热传导会提高进气的温度。
而且,空气在被压缩的过程中密度会升高,这必然也会导致空气温度的升高,从而影响发动机的充气效率。
如果想要进一步提高充气效率,就要降低进气温度。
有数据表明,在相同的空燃比条件下,增压空气的温度每下降1 O C,发动机功率就能提高3 %〜5 %。
(2 )如果未经冷却的增压空气进入燃烧室,除了会影响发动机的充气效率外,还很容易导致发动机燃烧温度过高,造成爆震等故障,而且会增加发动机废气中的NOX的含量,造成空气污染。
为了解决增压后的空气升温造成的不利影响,因此需要加装中冷器来降低进气温度。
中冷器的分类
中冷器一般由铝合金材料制成。
按照冷却介质的不同,常见的中冷器可以分为风冷式和水冷式2种。
图1风冷式中冷器
(1 )风冷式(图1 )利用外界空气对通过中冷器的空气进行冷却。
优点是整个冷却系统的组成部件少,结构比水冷式中冷器相对简单。
缺点是冷却效率比水冷式中冷器低,一般需要较长的连接管路,空气通过阻力较大。
图2散热芯体
风冷式中冷器主要由2部分组成,即散热芯体和两端的气室,散热芯体(图2 )主要由流通管和散热片(图3 )组成
图3流通管和散热片
流通管的功能是分割压缩空气并为压缩空气提供1个流通管路,两端与气室相连,因此压缩空气不会岀现泄漏的问题。
流通管的形状常见的有长方形、椭圆形以及长锥形3种。
由于流通管的形状不同,中冷器对压缩空气的阻力和冷却效率也不同。
许多中冷器为了提高冷却效率,会在流通管内壁上设置凸起,以增加压缩空气与流通管内壁的接触面积,但是这样会产生较大的气流阻力。
散热片位于上下两层流通管之间,并紧密地与流通管靠在一起,其功能是为流经流通管的压缩空气散热。
当外界较低温度的空气流经散热片时,就能将热量带走,从而达到冷却压缩空气的目的。
多个流通管和散热片组合在一起,并多层重叠,就构成了中冷器的散热芯体。
另外,为了使来自增压器的压缩空气,在进入中冷器的芯体之前有缓冲和蓄压的空间,且在流出芯体之后能提高空气流速,通常在芯体的两侧安装有气室。
气室的外形与漏斗相似,其端部还会设置圆形进岀口,以方便连接进气管路。
风冷式中冷器因其结构简单和制造成本低而得到了广泛应用,大部分涡轮增压发动机使用的都是风冷式中冷器,例如华泰特拉卡TCI越野车和一汽-大众宝来1 . 8 T轿车搭载的发动机都使用了风冷式中冷器。
(2 )水冷式中冷器(图4) 利用循环冷却水对通过中冷器的空气进行冷却。
优点是冷却效率较高,而且安装位置比较灵活,无需使用很长的连接管路,使得整个进气管路更加顺畅。
缺点是需要1个与发动机冷却系统相对独立的循环水系统与之配合,因此整个系统的组成部件较多,制造成本较高,而且结构复杂。
图4水冷式中冷器
水冷式中冷器主要由2个部分组成,即散热芯体和中冷器壳体,散热芯体主要由流通管和散热片组成。
与风冷式中冷器不同的是,水冷式中冷器的散热芯体完全包裹在中冷器壳体的内部,中冷器壳体上连接有循环水管,冷却水在水泵的作用下不断循环,将流通管内的压缩空气冷却。
冷却液将压缩空气冷却后温度会升高,因此需要1个独立的散热器图5 )为冷却水降温。
水冷式中冷器的应用比较少,一般用在发动机中置或
后置的车辆上,以及大排量发动机上,例如奔驰S 4 O O C D I轿车和奥迪A 8 T D I轿车搭载的发动机都使用了水冷式中冷器。
图5独立散热器
中冷器的选择
对于普通用户来说,当中冷器因为碰撞等原因损坏需要更换时,只要更换与原车相同的配件即可。
但是对于希望将原装涡轮增压系统进行改装以提升发动机动力的用户来说,中冷器的选择和安装就有很多需要注意的地方。
下面以风冷式中冷器为例,简要介绍这方面的知识。
(1 ) 一般来说,中冷器可以分为原厂交换型和大容量改装型。
原厂交换型中冷器的规格和原厂中冷器相差不大,差异只在于内部流通管和散热片的结构不同,适合原厂未改装的车辆或改装幅度不大的情况。
对于大容量改装型中冷器,除了加大散热面积,还要兼顾进气的压力损失情况,但是一般需要重新匹配连接管路和紧固套件
(2 )在了解了中冷器的结构之后,我们应该清楚,中冷器是利用众多的流通管来分割压缩空气,然后通过外界的空气流通来达到冷却的目的。
因此想要提高中冷器的散热效率,只要通过增加流通管的长度和散热片的面积等方式就可以达到目的。
但实际情况并不是这么简单,因为散热管越长的中冷器,就越容易产生进气压力损耗的问题。
虽然大容量的中冷器有更好的冷却效果,但是因为压缩空气在中冷器内流动时间和流动阻力的增加,会产生更严重的空气压力损失,从而导致更严重的涡轮增压时滞现象。
尤其是当小型涡轮增压器匹配了大容量中冷器时,涡轮增压时滞现象会更严重。
(3 )中冷器的冷却效率和空气压力损失主要取决于中冷器散热芯体中的流通管和散热片,因此一个高
性能的中冷器应该具备以下特点。
①流通管使用管径较粗但管壁很薄的结构。
较粗的管径可以降低空气流通的阻力,很薄的管壁可以有效地提高散热能力。
②散热片为了提高中冷器的热交换效率,就需要增加散热片接触到外界空气的面积。
为了达到这个目的,散热片被设计成各种形状,其中以波浪形或百叶窗形的散热片最为常见。
中冷器的安装
(1)安装位置常见的安装位置有前置式、上置式以及侧置式3种。
图6前置式中冷器
①前置式中冷器(图6), 一般安装在前保险杆内侧,即冷凝器的前面偏下。
在风冷式中冷器中,前置式中冷器的散热效果最好。
②上置式中冷器(图7), 一般安装在发动机上部,即进气歧管附近,发动机舱盖上开有进风口,以利于中冷器的冷却。
因为距离进气歧管很近,所以对涡轮增压时滞性的控制相对较好。
图7上置式中冷器
③侧置式中冷器(图8 ),一-般安装在前保险杠的左内侧或右内侧,因此对车
身空间的占用比较小
图8侧置式中冷器
(2 )连接管路中冷器的连接管路与涡轮增压系统的整体搭配,也是安装中冷器时应该注意的要点。
①连接管路的长度应尽量短,还应尽可能采取直线连接,从而减少管路的弯曲和拐点,以提高空气流
动的顺畅性。
②中冷器岀口连接管路的直径应该比入口连接管路直径大,因为较大的岀口管径能使中冷器两端气室内的压缩空气以较快的速度流动。
③连接管路中的橡胶管应尽量采用3或5层包覆的矽橡胶制品,这种橡胶管的延展性非常好,而且在高温、高压的环境中也不会硬化。
连接管之间应采用宽型不锈钢卡箍固定,从而避免漏气的问题产生。
中冷器的维护
(1 )外部清洁前置或侧置的风冷式中冷器的散热片通常会被树叶或油泥(例如涡轮增压器机油)等杂物堵塞,使中冷器散热受阻,因此应定期进行外部清洗。
注意不要使用压力过高的水枪清洗,以免散热片变形。
(2 )内部清洗经过长时间使用后,中冷器内部管道通常会附着油泥或胶质等脏物,这不仅会使空气流通管变窄,而且会使热交换能力下降。
因此,中冷器需要定期进行内部清洗和维护。
如果发现中冷器内部脏污严重,应仔细检查空气滤清器和各进气管路是否有泄漏的部位。
注意在内部清洗后,应让中冷器内部干燥后再连接管路。