直线和平面垂直的判定与性质
直线与平面垂直的判定与性质(共26张PPT)

目 录
• 直线与平面垂直的判定 • 直线与平面垂直的性质 • 直线与平面垂直的证明 • 直线与平面垂直的应用 • 总结与展望 • 参考文献
01
直线与平面垂直的判定
直线与平面垂直的定义
01
直线与平面垂直是指直线与平面 内的任意一条直线都垂直。
02
如果一条直线与平面内的任意一 条直线都垂直,则这条直线与该 平面垂直。
建筑设计
在建筑设计中,直线与平面垂直的应用非常重要, 如确定建筑物的垂直度和水平面等。
机械制造
在机械制造中,直线与平面垂直的应用可以帮助 制造出精确的机械部件。
道路建设
在道路建设中,直线与平面垂直的应用可以帮助 确保道路的平直度和坡度等。
05
总结与展望
总结直线与平面垂直的判定与性质
判定方法 通过直线与平面内两条相交直线垂直来判定直线与平面垂直。
通过直线与平面内无数条直线垂直来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
• 通过直线与平面垂直的性质定理来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
01
性质定理
02
03
04
直线与平面垂直,则该直线与 平面内任意一条直线都垂直。
直线与平面垂直,则该直线所 在的所有直线都与该平面垂直
证明
假设有一条直线l与平面α垂直,那么直线l与平面α内的任意一条直线m都垂直。 由于直线l与平面α内的直线m都垂直,所以它们之间的夹角为90°,即直线l与平 面α内的任意一条直线都垂直。
直线与平面垂直的性质推论
推论1
证明
推论2
证明
如果一条直线与平面内的两 条相交直线都垂直,那么这
直线、平面垂直的判定及性质

第3讲直线、平面垂直的判定及性质1.直线与平面垂直:(1)方法1:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.(2)方法2:如果两条直线平行,其中一条直线垂直于一个平面,那么另一条直线垂直于该平面.(3)方法3:如果两个平面垂直,那么一个平面内垂直于它们的交线的直线垂直于另一个平面.2.面面垂直:(1)方法1:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2) 方法2:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.考向一直线与平面垂直的判定与性质【1】如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.【2】(2012·南通调研)如图,平面P AC⊥平面ABC,点E、F、O分别为线段P A、PB、AC的中点,点G 是线段CO的中点,AB=BC=AC=4,P A=PC=2 2.求证:(1)P A⊥平面EBO;(2)FG∥平面EBO.【3】(2012·福建卷)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE;若存在,求出AP的长;若不存在,说明理由.【4】(2012·镇江调研)如图所示,四棱锥P-ABCD的底面是一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,P A⊥底面ABCD,E为PC的中点.(1)证明:EB∥平面P AD;(2)若P A=AD,证明:BE⊥平面PDC.【5】(2011·扬州调研)如图,在平行四边形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD 垂直,点H是BE的中点,点G是AE、DF的交点.(1)求证:GH∥平面CDE;(2)求证:BD⊥平面CDE.【6】(2012·扬州调研)在正三棱柱ABC-A1B1C1中,点D是BC的中点,BC=BB1.(1)求证:A1C∥平面AB1D;(2)试在棱CC1上找一点M,使MB⊥AB1.考向二平面与平面垂直的判定与性质【7】如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,EC=CA=2BD,M是EA的中点.求证:(1)DE=DA;(2)平面BDM⊥平面ECA.【8】(2011·江苏卷)如图在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面P AD .考向三 线面、面面垂直的综合应用【9】(2012·广东)如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积; (3)证明:EF ⊥平面P AB .【10】(2012·南通市第一学期期末考试)在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且AD =PD =2MA .(1)求证:平面EFG ⊥平面PDC ; (2)求三棱锥P -MAB 与四棱锥P -ABCD 的体积之比.考向四 求线段的长度问题【11】(2011·浙江卷)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【12】(2011·江西卷)如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D ,现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′-PBCD 的体积最大时,求P A 的长;(2)若点P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE .【训练达标】【1】如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ; (2)PD ⊥平面ABE .【2】(2012·江苏)如图,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .【3】如图所示,在四棱锥P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5.(1)设M 是PC 上的一点,求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积.【4】如图所示,已知长方体ABCD —A 1B 1C 1D 1的底面ABCD 为正方形,E 为线段AD 1的中点,F 为线段BD 1的中点,(1)求证:EF ∥平面ABCD ;(2)设M 为线段C 1C 的中点,当D 1D AD的比值为多少时,DF ⊥平面D 1MB ?并说明理由.【5】如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.(1)求PB 和平面P AD 所成的角的大小;(2)证明AE ⊥平面PCD ;(3)求二面角A —PD —C 的正弦值.【6】如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.【7】如图所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,A1B1=A1C1,侧面BB1C1C⊥底面A1B1C1.(1)若D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C.【8】如图,在正方体ABCD—A1B1C1D1中,E、F分别是CD、A1D1的中点.(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP?若存在,确定点P的位置,若不存在,说明理由.【9】如图所示,在三棱锥P—ABC中,△P AB是等边三角形,∠P AC=∠PBC=90°.(1)证明:AB⊥PC;(2)若PC=4,且平面P AC⊥平面PBC,求三棱锥P—ABC的体积.【10】如图,在三棱柱ABC—A1B1C1中,AA1⊥BC,∠A1AC=60°,A1A=AC=BC=1,A1B= 2.(1)求证:平面A1BC⊥平面ACC1A1;(2)如果D为AB中点,求证:BC1∥平面A1CD.。
直线、平面垂直的判定及其性质

2.如图所示,已知 AB 为圆 O 的直径,点 D 为线 段 AB 上一点,且 3AD=DB,点 C 为圆 O 上一 点,且 BC= 3AC,PD⊥平面 ABC,PD=DB. 求证:PA⊥CD. 证明:因为 AB 为圆 O 的直径,所以 AC⊥BC. 在 Rt△ABC 中,由 BC= 3AC,得∠ABC=30°. 设 AD=1,由 3AD=DB 得,DB=3,BC=2 3. 由余弦定理得 CD2=DB2+BC2-2DB·BCcos 30°=3, 所以 CD2+DB2=BC2,即 CD⊥AB. 因为 PD⊥平面 ABC,CD⊂平面 ABC,所以 PD⊥CD. 因为 PD∩AB=D,所以 CD⊥平面 PAB, 又 PA⊂平面 PAB,所以 PA⊥CD.
找 共 性
[过关训练] 1.如图所示,在四棱锥 P-ABCD 中,PA⊥底面
ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA =AB=BC,E 是 PC 的中点.求证: (1)CD⊥AE; (2)PD⊥平面 ABE.
证明:(1)∵PA⊥底面 ABCD,CD⊂平面 ABCD, ∴PA⊥CD.∵AC⊥CD,PA∩AC=A, ∴CD⊥平面 PAC.又 AE⊂平面 PAC,∴CD⊥AE. (2)由 PA=AB=BC,∠ABC=60°,可得 AC=PA. ∵E 是 PC 的中点,∴AE⊥PC. 由(1)知,AE⊥CD,且 PC∩CD=C,∴AE⊥平面 PCD. 又 PD⊂平面 PCD,∴AE⊥PD. ∵PA⊥底面 ABCD,∴PD 在底面 ABCD 内的射影是 AD, 又∵AB⊥AD,∴AB⊥PD.又 AB∩AE=A,∴PD⊥平面 ABE.
考点——在细解中明规律
题目千变总有根,梳干理枝究其本
考点一 线面垂直的判定与性质 [全析考法过关]
直线平面垂直的判定及性质

(2)延长B1A1与BM交于N,连结C1N. ∵AM=MA1,∴NA1=A1B1. ∵A1B1=A1C1,∴A1C1=A1N=A1B1. ∴C1N⊥C1B1. ∵截面NB1C1⊥侧面BB1C1C, 面NB1C1∩面BB1C1C=C1B1, ∴C1N⊥侧面BB1C1C.∵C1N 面C1NB, ∴截面C1NB⊥侧面BB1C1C. 即截面MBC1⊥侧面BB1C1C.
解析 当两个平面相交时,一个平面内的两条直 线可以平行于另一个平面,故①不对;由平面与 平面垂直的判定可知②正确;空间中垂直于同一 条直线的两条直线可以相交也可以异面,故③ 不对;若两个平面垂直,只有在一个平面内与它 们的交线垂直的直线才与另一个平面垂直,故④ 正确. 答案 D
4.(2008·湖南文,5)已知直线m、n和平面α、
题型三 线面角的求法 【例3】(12分)如图所示,在四棱锥P—
ABCD中,底面为直角梯形,AD∥BC, ∠BAD=90°,PA⊥底面ABCD,且 PA=AD=AB=2BC,M、N分别为PC、PB的中点. (1)求证:PB⊥DM; (2)求BD与平面ADMN所成的角. 思维启迪 (1)易证PB⊥平面ADMN. (2)构造直线和平面所成的角,解三角形. (1)证明 ∵N是PB的中点,PA=AB, ∴AN⊥PB.∵∠BAD=90°,∴AD⊥AB. ∵PA⊥平面ABCD,∴PA⊥AD.
(2)连接PM、CM,∵∠PDA=45°,PA⊥AD, ∴AP=AD. ∵四边形ABCD为矩形,∴AD=BC,∴PA=BC. 又∵M为AB的中点,∴AM=BM. 而∠PAM=∠CBM=90°,∴PM=CM. 又N为PC的中点,∴MN⊥PC. 由(1)知,MN⊥CD,PC∩CD=C, ∴MN⊥平面PCD. 探究提高 垂直问题的证明,其一般规律是“由已 知想性质,由求证想判定”,也就是说,根据已 知条件去思考有关的性质定理;根据要求证的结 论去思考有关的判定定理,往往需要将分析与综 合的思路结合起来.
直线、平面垂直的判定及其性质

2.3 直线、平面垂直的判定及其性质线面垂直→线线垂直:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。
【线面垂直定义】线线垂直→线面垂直:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
【判定】线面垂直→线线平行:如果两条直线同时垂直于一个平面,那么这两条直线平行。
【性质】线面垂直→面面垂直:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
【判定】面面垂直→线面垂直:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
【性质】三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
一、选择题1.给定空间中的直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件【解析】直线l与平面α内两条相交直线都垂直,是线面垂直判定定理的条件,故为充要条件.【答案】 C2.空间四边形ABCD中,若AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是( ) A.面ABD⊥面BDC B.面ABC⊥面ABDC.面ABC⊥面ADC D.面ABC⊥面BED【解析】在等腰三角形ABC、ADC中,E为底边AC的中点,则BE⊥AC,DE⊥AC.又∵BE∩DE=E,∴AC⊥面BDE,故面ABC⊥面BDE,面ADC⊥面BDE.【答案】 D3.对两条不相交的空间直线a和b,必定存在平面α,使得 ( )A.a⊂α,b⊂α B.a⊂α,b∥αC.a⊥α,b⊥α D.a⊂α,b⊥α【解析】当a,b异面时,A不成立;当a,b不平行时,C不成立;当a,b不垂直时,D不成立.故选B.【答案】 B4.设直线m与平面α相交但不垂直,则下列说法中正确的是( )A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直【解析】在平面α内有无数条彼此平行的直线与直线m垂直,与直线m垂直的直线可能与平面α平行,与直线m平行的平面可能与平面α垂直.故A,C,D错误.【答案】 B5.设a,b,c是空间三条直线,α,β是空间两个平面,则下列命题中,逆命题不成立...的是( )A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bC.当b⊂α时,若b⊥β,则α⊥βD.当b⊂α,且c⊄α时,若c∥α,则b∥c【解析】α⊥β,b⊂α,b不一定垂直于β.故C错误.【答案】 C6.命题p:若平面α⊥β,平面β⊥γ,则必有α∥γ;命题q:若平面α上不共线的三点到平面β的距离相等,则必有α∥β.对以上两个命题,下列结论中正确的是( ) A.命题“p且q”为真 B.命题“p或綈q”为假C.命题“p或q”为假 D.命题“綈p且綈q”为假【解析】命题p,命题q皆为假,所以命题C正确.【答案】 C7.如图,已知△ABC 为直角三角形,其中∠ACB =90°,M 为AB 的中点,PM 垂直于△ABC 所在的平面,那么( )A .PA =PB >PCB .PA =PB <PCC .PA =PB =PCD .PA ≠PB ≠PC【解析】 ∵M 为AB 的中点,△ACB 为直角三角形,∴BM =AM =CM ,又PM ⊥平面ABC ,∴Rt △PMB ≌Rt △PMA ≌Rt △PMC ,故PA =PB =PC .【答案】 C二、填空题8.m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m ∥α,则m ⊥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥n ,n ⊂α,则m ∥α.其中真命题的序号是________.【解析】 由平面平行的传递性知①正确,由面面垂直的判定定理知③正确.【答案】 ①③9.P 为△ABC 所在平面外一点,AC =2a ,连接PA 、PB 、PC ,得△PAB 和△PBC 都是边长为a 的等边三角形,则平面ABC 和平面PAC 的位置关系为________.【解析】如图所示,由题意知PA =PB =PC =AB =BC =a ,取AC 中点D ,连接PD 、BD ,则PD ⊥AC ,BD ⊥AC ,则∠BDP 为二面角P -AC -B 的平面角,又∵AC =2a ,∴PD =BD =22a , 在△PBD 中,PB 2=BD 2+PD 2,∴∠PDB =90°.【答案】 垂直10.(精选考题·四川高考)如图所示,二面角α-l -β的大小是60°,线段AB ⊂α,B ∈l ,AB 与l 所成的角为30°,则AB 与平面β所成的角的正弦值是________________________________________________________________________.【解析】 如图,过点A 作平面β的垂线,垂足为C ,在β内过C 作l 的垂线,垂足为D ,连接AD ,由线面垂直关系可知AD ⊥l ,故∠ADC 为二面角α-l -β的平面角,∴∠ADC =60°.连接CB ,则∠ABC 为AB 与平面β所成的角.设AD =2,则AC =3,CD =1,AB =AD sin30°=4,∴sin ∠ABC =AC AB =34. 【答案】34 三、解答题11.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.求证:(1)CD ⊥AE ;(2)PD ⊥平面ABE .【证明】 (1)在四棱锥P -ABCD 中,∵PA ⊥底面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .∵AC ⊥CD ,PA ∩AC =A ,∴CD ⊥平面PAC .而AE ⊂平面PAC ,∴CD ⊥AE .(2)由PA =AB =BC, ∠ABC =60°,可得AC =PA .∵E 是PC 的中点,∴AE ⊥PC .由(1)知,AE ⊥CD ,且PC ∩CD =C ,∴AE ⊥平面PCD ,而PD ⊂平面PCD ,∴AE ⊥PD .∵PA ⊥底面ABCD ,∴PA ⊥AB .又∵AB ⊥AD 且PA ∩AD =A ,∴AB ⊥平面PAD ,而PD ⊂平面PAD ,∴AB ⊥PD .又∵AB ∩AE =A ,∴PD ⊥平面ABE .12.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.【解析】 (1)证明:∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC .由∠BCD =90°,得BC ⊥DC .又PD ∩DC =D ,∴BC ⊥平面PCD .∵PC ⊂平面PCD ,∴PC ⊥BC .(2)如图,连接AC .设点A 到平面PBC 的距离为h .∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°.从而由AB =2,BC =1,得△ABC 的面积S △ABC =1.由PD ⊥平面ABCD 及PD =1,得三棱锥P -ABC 的体积V =13S △ABC ·PD =13.∵PD ⊥平面ABCD ,DC ⊂平面ABCD ,∴PD ⊥DC .又PD =DC =1,∴PC =PD 2+DC 2= 2.由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC =22.由V =13S △PBC h =13×22h =13,得h = 2.因此点A 到平面PBC 的距离为 2.。
直线、平面垂直的判定与性质

2021年新高考数学总复习第八章《立体几何与空间向量》直线、平面垂直的判定与性质1.直线与平面垂直(1)定义如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α互相垂直,记作l⊥α,直线l叫做平面α的垂线,平面α叫做直线l的垂面.(2)判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a,b⊂αa∩b=Ol⊥al⊥b⇒l⊥α性质定理垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b2.直线和平面所成的角(1)定义平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角.(2)范围:⎣⎡⎦⎤0,π2.3.平面与平面垂直(1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.(2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α概念方法微思考1.若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面吗?提示垂直.若两平行线中的一条垂直于一个平面,那么在平面内可以找到两条相交直线与该直线垂直,根据异面直线所成的角,可以得出两平行直线中的另一条也与平面内的那两条直线成90°的角,即垂直于平面内的这两条相交直线,所以垂直于这个平面.2.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面吗?提示垂直.在两个相交平面内分别作与第三个平面交线垂直的直线,则这两条直线都垂直于第三个平面,那么这两条直线互相平行.由线面平行的性质定理可知,这两个相交平面的交线与这两条垂线平行,所以该交线垂直于第三个平面.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.(×)(2)垂直于同一个平面的两平面平行.(×)(3)直线a⊥α,b⊥α,则a∥b.(√)(4)若α⊥β,a⊥β,则a∥α.(×)(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.(√)(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(×)题组二教材改编2.下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β。
直线、平面垂直的判定及其性质
(2)直线与平面垂直的判定定理及性质定理:
文字语言 一条直线与一个平
图形语言
符号语言
两条相交直 判定 面内的__________
定理 线 __都垂直,则该直 线与此平面垂直 性质 垂直于同一个平面 定理 的两条直线平行 ____
a,b⊂α a∩b=O l⊥ α ⇒_____ l⊥ a l⊥ b
两个平面垂直
两个平面垂直,则
α⊥β l⊂ β ⇒ l⊥ α α∩β=a l⊥ a
性质 一个平面内垂直于 定理 交线 ____的直线与另一 个平面垂直
课 前 ·双 基 落 实 课 堂 ·考 点 突 破
课后· 三维演练
直线、平面垂直的判定及其性质
结束
[小题体验] 1.已知平面 α⊥平面 β,直线 l⊥平面 β,则直线 l 与平面 α
课 前 ·双 基 落 实
课 堂 ·考 点 突 破
课后· 三维演练
直线、平面垂直的判定及其性质
结束
角度二:利用线面垂直的性质证明线线垂直 2. (2015· 江苏高考)如图, 在直三棱柱 ABCA1B1C1 中, 已知 AC⊥BC, BC=CC1.设 AB1 的中点为 D,B1C∩BC1=E. 求证:(1)DE∥平面 AA1C1C; (2)BC1⊥AB1.
课 前 ·双 基 落 实 课 堂 ·考 点 突 破 课后· 三维演练
直线、平面垂直的判定及其性质
结束
1.证明线面垂直时,易忽视面内两条线为相交线这一条件. 2. 面面垂直的判定定理中, 直线在面内且垂直于另一平面易忽视. 3. 面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目 套用造成失误.
其中正确的命题是________(填写所有正确命题的序号).
直线、平面垂直的判定与性质
直线、平面垂直的判定及其性质知识要点梳理知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义如果直线和平面内的任意一条直线都垂直.我们就说直线与平面互相垂直.记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足。
要点诠释:(1)定义中“平面内的任意一条直线”就是指“平面内的所有直线”.这与“无数条直线”不同.注意区别。
(2)直线和平面垂直是直线和平面相交的一种特殊形式。
(3)若.则。
2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直.则该直线与此平面垂直。
符号语言:特征:线线垂直线面垂直要点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语.不可忽视。
(2)要判定一条已知直线和一个平面是否垂直.取决于在这个平面内能否找出两条相交直线和已知直线垂直.至于这两条相交直线是否和已知直线有公共点.则无关紧要。
知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交.但不和这个平面垂直.这条直线叫做这个平面的斜线。
过斜线上斜足外的一点向平面引垂线.过垂足和斜足的直线叫做斜线在这个平面内的射影。
平面的一条斜线和它在平面上的射影所成的锐角.叫做这条直线和这个平面所成的角。
要点诠释:(1)直线与平面相交但不垂直.直线在平面的射影是一条直线。
(2)直线与平面垂直射影是点。
(3)斜线任一点在平面内的射影一定在斜线的射影上。
(4)一条直线垂直于平面.它们所成的角是直角;一条直线和平面平行或在平面内.它们所成的角是0°的角。
知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分.这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱.这两个半平面叫做二面角的面。
表示方法:棱为、面分别为的二面角记作二面角.有时为了方便.也可在内(棱以外的半平面部分)分别取点.将这个二面角记作二面角.如果棱记作.那么这个二面角记作二面角或。
直线与平面垂直的判定和性质
直线与平面垂直的判定和性质
性质:如果两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另
一个平面(面面垂直线面垂直)。
判定:如果一个平面经过另一个平面的一条垂线,那么
这两个平面互相垂直(线面垂直面面垂直)。
判定定理:1.如果两个平面相交所成的二面角是直二面角,那么我们称这两个平面相
互垂直;2.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直;3.如果
一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直。
定理1
如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
定理2
如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在
第一个平面内。
定理3
如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
推断
三个两两垂直的平面的交线两两垂直。
定理4
如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
(判定定理推论1
的逆定理)。
推断
如果两个平面互相垂直,那么分别垂直于这两个平面的两条垂线也互相垂直。
(判定
定理推论2的逆定理)。
直线平面垂直的判定及其性质
如果一条直线与一个平面垂直,则这条直线垂直于这个平面内的任意一条直线 。
直线与平面垂直的判定定理
如果一条直线垂直于一个平面内的两条相交直线,则这条直 线与这个平面垂直。
如果一个平面内的一条直线垂直于这个平面外的一条直线, 则这个平面与这条直线垂直。
直线与平面垂直的充分必要条件
光学
直线与平面垂直的性质在光学中也有应用,例如光线从 一个介质射向另一个介质时会发生折射,而光线的折射 方向通常与光线所在的平面垂直。
05
直线与平面垂直的习题与解析
例题一:直线与平面垂直的判定
总结词
直线与平面垂直的判定定理是,如果一条直线垂直于 一个平面内的两条相交直线,则这条直线垂直于这个 平面。
利用判定定理证明
总结词
利用直线与平面垂直的判定定理证明。
详细描述
根据直线与平面垂直的判定定理,如果一条 直线垂直于平面内两条相交的直线,那么这 条直线与这个平面垂直。因此,要证明直线 与平面垂直,我们可以将直线与平面内两条 相交的直线垂直作为已知条件,然后利用判
定定理进行证明。利用性质来自明要点一关系。
垂直平分线
利用直线与平面垂直的性质,我们 可以找到一个图形的垂直平分线, 从而将图形分为两个相等的部分。
等腰三角形
在几何作图中,直线与平面垂直的 性质可以帮助我们证明一个三角形 是等腰三角形,以及找到它的腰和 底边。
在立体几何中的应用
空间直线与平面
在立体几何中,直线与平面垂直 的性质可以帮助我们确定空间直
线和平面之间的关系。
体积计算
通过利用直线与平面垂直的性质 ,我们可以计算某些立体图形的
体积。
投影问题
在立体几何中,直线与平面垂直 的性质可以帮助我们解决投影问 题,例如一个平面投影到一个直
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郸城二高高二年级集体备课教学案直线和平面垂直的判定与性质(一)一、素质教育目标(一)知识教学点1.直线和平面垂直的定义及相关概念.2.直线和平面垂直的判定定理.3.线线平行的性质定理(即例题1).(二)能力训练点1.要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加.2.讲直线和平面垂直时,应注意引导学生把直线和平面关系转化为直线和直线的关系.如直线和平面垂直,只须这条直线垂直于这个平面内的两条相交直线,向学生渗透转化思想的应用.二、教学重点、难点、疑点1.教学重点(1)掌握直线和平面垂直的定义:如果一条直线和一个平面内的任何一条直线垂直,那么这条直线就和这个平面垂直.(2)掌握直线和平面垂直的判定定理:(3)掌握线线平行的性质定理:若a∥b,a⊥α则b⊥α.2.教学难点:在于线、面垂直定义的理解和判定定理的证明;同时还要解决好定理证明过程中,辅助线添加的方法和原因,及为何可用经过B点的两条直线说明“任意”直线的问题.3.教学疑点:判定定理的条件中,“相交”是关键,“两条”也是一个重要条件,对于初学立体几何的学生来讲,是不好理解的,教师应该用实例说明这两个条件缺一不可.三、课时安排本课题共安排2课时,本节课为第一课时.四、学生活动设计(略)五、教学步骤(一)温故知新,引入课题1.空间两条直线有哪几种位置关系?(三种:相交直线、平行直线、异面直线)2.经过一点和一条直线垂直的直线有几条?(从两条直线互相垂直的定义可知:经过一点有无数多条直线和已知直线垂直)3.空间一条直线与一个平面有哪几种位置关系?(直线在平面内、直线和平面相交、直线和平面平行.)4.怎样判定直线和平面平行?我们已经知道,判定直线和平面平行的问题可以转化为考察直线和直线平行的关系.今天我们转入学习直线和平面相交的一种特殊情形——直线和平面垂直,这个问题同样可以从两条直线垂直的关系入手.(板书课题:§1.9直线和平面垂直)郸城二高杨雅莉- 1 -郸城二高 杨雅莉- 2 -(二)基本概念1.教师演示课本上的实例并指出书脊(想象成一条直线)、各书页与桌面的交线,由于书脊和书页底边(即与桌面接触的一边)垂直,得出书脊和桌面上所有直线垂直,书脊和桌面的位置关系给了我们以直线和平面垂直的形象.从而引入概念:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.2.指出:过一点有且只有一条直线和一个平面垂直;过一点有且只有一个平面和一条直线垂直.平面的垂线和平面一定相交,交点叫做垂足.3.说明直线和平面垂直的画法及表示.例1 如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面. 分析:首先写出已知条件和结论,并画图形.已知:a ∥b ,a ⊥α (如图1-68).求证:b ⊥α,要证明:b ⊥α,根据判定定理,只要证明在平面α内有两条相交直线m 、n 与b 垂直即可.证明:说明:1.本例可以作为直线和平面垂直的又一个判定定理.这样,判定一条直线与已知平面垂直,可以用这条直线垂直于平面内两条相交直线来证明,也可以用这条直线的平行直线垂直于平面来证明.2.课本书写的证明过程比较简洁,最好要求学生按照本教案示例书写.(三)证明定理 直线和平面垂直的判定定理.(板书)如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.指导学生写出已知条件和结论,并画出图形如右:求证:l ⊥α(学生叙述证明过程,教师板书主要步骤.)参看右图并作如下说明:1.当直线g 与m (或n )重合时,结论是显然的.2.如果直线l 、g 有一条或两条不经过点B ,那么可过点B 引它们的平行直线,由过点B 的这样两条直线所成的角,就是直线l 与g 所成的角,同理可证这两条直线垂直,因而l ⊥g .3.要判断一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,是无关紧要的.4.强调定理中“两条”和“相交直线”这两个条件的重要性,可举下面两个反例,加深学生的理解.(1)将一块木制的大三角板的一条直角边AC放在讲台上演示,这时另一条直角边BC就和讲台上的一条直线(即三角板与桌面的交线AC)垂直,但它不一定和讲台桌面垂直.(2)在讲台上放一根平行于大三角板直角边AC的木条EF,那么三角板的直角边BC也垂直于EF,但它不一定和讲台桌面垂直.(四)例题讲解1:判断下列命题是否正确。
(1)垂直于三角形两边的直线必垂直于第三边。
(2)垂直于梯形的两条边的直线必垂直于另外的两条边。
(3)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线所确定的平面。
2:(课后练习2)求证:如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.求证:OA⊥平面BOC,OB⊥平面AOC,OC⊥平面AOB.(五)归纳小结,强化思想今天这节课,我们学习了直线和平面垂直的定义,这个定义最初用在判定定理的证明上,但用得较多的则是,如果直线l垂直于平面α,那么l就垂直于α内的任何一条直线;对于判定定理,判定线、面垂直,实质是转化成线、线垂直,从中不难发现立体几何问题解决的一般思路.六、作业作为一般要求,完成习题9.4 1、2、3、4.提高要求,完成以下补充练习:1.如图1-70,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有____________________________A、AH⊥△EFH 所在平面B、AD⊥△EFH所在平面C、HF⊥△AEF所在平面D、HD⊥△AEF所在平面讲评作业时说明:应用折叠不变性设计的本题,目的是用于培养学生的空间想象能力和“转化”思想方法;折叠问题要注意应用折叠前、后平面图和立体图中,各个元素间大小和位置关系不变的量.2.如图1-71,MN是异面直线a、b的公垂线,平面α平行于a和b,求证:MN⊥平面α.3. △ABC中,∠ABC=90°,SA⊥平面ABC,AM⊥SB于M,AN⊥SC于N,求证:MN⊥SC郸城二高杨雅莉- 3 -郸城二高 杨雅莉- 4 -直线和平面垂直的判定与性质(二)一、素质教育目标(一)知识教学点1.直线和平面垂直的性质定理.2.点到平面的距离.3.直线和平面的距离.(二)能力训练点1.掌握直线和平面垂直的性质定理,并能应用它们灵活解题.2.掌握用反证法证明命题.二、教学重点、难点、疑点1.教学重点:(1)掌握直线和平面垂直的性质定理:若a ⊥α,b ⊥α,则a ∥b .(2)掌握点到平面的距离及一条直线和一个平面平行时这条直线和平面的距离的定义.2.教学难点:性质定理证明中反证法的学习和掌握,应让学生明确,对于一些条件简单而结论复杂的命题,可考虑使用反证法.3.教学疑点:设计一个综合题,引导学生思考点到平面的距离和直线到平面的距离问题的互化.三、课时安排 本课题共安排2课时,本节课为第二课时.四、学生活动设计(常规活动,略)五、教学步骤(一)温故知新,引入课题1 :直线和平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.2 : 线线平行的性质定理(即例题1)如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.(板书)若a ∥b ,a ⊥α则b ⊥α.郸城二高 杨雅莉- 5 -这个例题可以当作直线和平面垂直的又一个判定定理,现在请同学们改变这个定理的题设和结论,写出它的逆命题.若a ⊥α,b ⊥α,则a ∥b .下面就让我们看看这个命题是否正确?(二)猜想推测,证明定理教师写出已知条件并画出图形,作探讨性证明已知:a ⊥α, b ⊥α(如图1-73)求证:a ∥b .分析:a 、b 是空间中的两条直线,要证明它们互相平行,一般先证明它们共面,然后转化为平面几何中的平行判定问题,但这个命题的条件比较简单,想说明a 、b 共面就很困难了,更何况还要证明平行.我们能否从另一个角度来证明,比如,a 、b 不平行会有什么矛盾?这就是我们提到过的反证法. 用反证法证明命题的一般步骤否定结论→推出矛盾→肯定结论第一步,我们做一个反面的假设,假定b 与a 不平行,现在应该要推出矛盾,从已知条件中的垂直关系,让我们想起例题1(线线平行定理),在这个定理的已知条件中,平面有一条垂线,垂线有一条平行线,因此需要添加一条辅助线.证明: 见课本由此,我们得到:直线和平面垂直的性质定理;如果两条直线同垂直于一个平面,那么这两条直线平行.(三)基本概念1:点到平面的距离的定义:从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. 2:直线和平面的距离的定义:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(四)讲解例题1.例题2 已知:一条直线l 和一个平面α平行.求证:直线l 上各点到平面α的距离相等. 分析:首先,我们应该明确,点到平面的距离定义,在直线l 上任意取两点A 、B ,并过这两点作平面α的垂线段,现在只要证明这两条垂线段长相等即可.证明:见课本本例题的证明,实际上是把立体几何中直线上的点到平面的距离问题转化成平面几何中两条平行直线的距离问题.这种把立体几郸城二高 杨雅莉- 6 -何的问题转化成平面几何的问题的方法,是解决立体几何问题时常常用到的方法.2.思考(课后练习4)安装日光灯时,怎样才能使灯管和天棚、地板平行?只要两条吊线等长.转化为数学模型是,如图1-76已知:直线l 上A 、B 两点到平面α的距离相等,求证:l ∥α.本题仿照例题2方法很容易证明,但以下的论述却是假命题,你知道是为什么吗?直线l 上A 、B 两点到平面α的距离相等,那么l ∥α.3.如图1-77,已知E ,F 分别是正方形ABCD 边AD ,AB 的中点,EF 交AC 于M ,GC 垂直于ABCD 所在平面.(1)求证:EF ⊥平面GMC .(2)若AB =4,GC =2,求点B 到平面EFG 的距离.分析:第1小题,证明直线与平面垂直,常用的方法是判定定理;第2小题,如果用定义来求点到平面的距离,因为体现距离的垂线段无法直观地画出,因此,常常将这样的问题转化为直线到平面的距离问题.4.如图4,直角所在平面外有一点,,且为斜边的中点.求证:平面. 演练反馈1.是所在平面外一点,,平面,垂足为,则点是的____________心.2.下列命题中正确的是( )A.B.C.D.3.下列条件中,能使直线的是()A.,,,B.,C.,D.,4.如图1,已知是所在平面外一点,、、两两互相垂直,是的垂心,求证:平面(五)归纳小结,强化思想本节课,我们学习了直线和平面垂直的性质定理,以及两个距离的定义.定理的证明用到反证法,证明几何问题常规的方法有两种:直接证法和间接证法,直接证法常依据定义、定理、公理,并适当引用平面几何的知识;用直接法证明比较困难时,我们可以考虑间接证法,反证法就是一种间接证法.六、布置作业作为一般要求,完成习题9.4第5、6、7、8;提高要求,完成以下两个补充练习.1.已知矩形ABCD的边长AB=6cm,BC=4cm,在CD上截取CE=4cm,以BE为棱将矩形折起,使△BC′E的高C′F⊥平面ABED,求:(1)点C′到平面ABED的距离;(2)C′到边AB的距离;(3)C′到AD的距离.不2.如图1-79,已知:ABCD是矩形,SA⊥平面ABCD,E是SC 上一点.求证:BE不可能垂直于平面SCD.参考答案:用到反证法,假设BE⊥平面SCD,郸城二高杨雅莉- 7 -。