菱形的判定练习题

合集下载

菱形的判定同步练习(含答案)

菱形的判定同步练习(含答案)

第六章特殊平行四边形1 菱形的性质与判定第2课时菱形的判定基础闯关知识点一:利用定义判定菱形1.如图,四边形ABCD是平行四边形,延长BA到点E,使AE=AB,连接ED,EC,AC.添加一个条件,能使四边形ACDE成为菱形的是( )A.AB=ADB.AB=EDC.CD=AED.EC=AD2.如图,在△ABC中,点D,E,F分别是边BC,CA,AB的中点,要使四边形AFDE为菱形,△ABC应满足的条件是.(添加一个条件即可)知识点二:利用对角线的位置关系判定菱形3.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,DE=DF.在下列条件中,使四边形BECF是菱形的是( )A.EB⊥ECB.AB⊥ACC.AB=ACD.BF∥CE4.从下图入口处进入,最后到达的是( )A.甲B.乙C.丙D.丁知识点三:利用边的关系判定菱形5.如图,将平行四边形ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是( )A.AF=EFB.AB=EFC.AE=AFD.AF=BE6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是( )A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°7.如图,在△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.如果AE=4cm,那么四边形AEDF的周长为( )A.12cmB.16cmC.20cmD.22cm8.如图,两条笔直的公路l₁,l₂相交于点O,村庄C的村民在公路的旁边建了三个加工厂A,B,D,已知AB=BC=CD=DA=5千米,村庄C到公路l₁的距离为4千米,则村庄C到公路l₂的距离为.知识点四:菱形判定方法的综合应用9.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件,不能判定▱ABCD是菱形的是( )A.AC⊥BDB.AB=BCC.AC=BDD.∠1=∠210.如图,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判断四边形AECF为菱形的是( )A.AE=AFB.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线能力提升11.如图,在小正方形组成的网格图中,四边形ABCD的顶点都在格点上,则下列结论错误的是( )A.AD∥BCB.DC=ABC.四边形ABCD是菱形D.将边AD向右平移3格,再向上平移7格就与边BC重合12.如图,▱ABCD中,对角线AC,BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论:①BE ⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是( )A.2B.3C.4D.513.如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,若∠C=100°,则∠BAD的度数为.14.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,D为斜边AB上一点,以CD,CB为边作▱CDEB,当AD=时,▱CDEB为菱形.15.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA,DC的延长线分别交于点E,F.(1)求证:AE=CF.(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.16.如图,▱ABCD中,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连接AF,CE.(1)求证:△ABE≌△CDF.(2)求证:当AB=AD时,四边形AECF是菱形.17.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB,BC,CD,DA 于点P,M,Q,N.(1)求证:△PBE≌△QDE.(2)顺次连接点P,M,Q,N,求证:四边形PMQN是菱形.培优创新【求解中点四边形的关键——中位线】18.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,则四边形ABCD只需要满足一个条件,是( )A.四边形ABCD是梯形B.四边形ABCD是菱形C.对角线AC=BDD.AD=BC19.如图,在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P,Q,M,N分别为AB,BC,CD,DA的中点,求证:四边形MNPQ是菱形.参考答案1.B2.示例:AB=AC3.C4.D5.C6.A7.B8.4千米9.C 10.C 11.C 12.C 13.50° 14.2.815.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,BE∥DF,∴∠E=∠F.在△AOE和△COF中,CF.(2)解:示例:当EF⊥BD时,四边形BFDE是菱形.理由:如图,连接BF,DE.∵四边形ABCD是平行四边形,∴OB=OD.∵△AOE≌△COF,∴OE=OF,∴四边形BFDE是平行四边形.∵EF⊥BD,∴四边形BFDE是菱形.16.证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∠ABM=∠CDN,∴∠ABE=∠CDF.∵AM⊥BC,CN⊥AD,∴∠AMB=∠CND=90°,∴∠BAM=∠DCN,在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)如图,连接AC.当AB=AD时,四边形ABCD为菱形,则AC⊥BD,AD∥BC.∵△ABE≌△CDF,∴AE=CF.∵AM⊥BC,CN⊥AD,AD∥BC,∴AM∥CN,∴四边形AECF为平行四边形.∵AC⊥EF,∴四边形AECF为菱形.17.证明:(1)∵四边形ABCD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ.在△PBE和△QDE中,(2)如图所示,∵△PBE≌△QDE,∴EP=EQ.同理,△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形.∵PQ⊥MN,∴四边形PMQN是菱形.18.D19.证明:如图,连接BD,AC.∵△ADE和△BCE都是等边三角形,∴AE=DE,EC=BE,∠AED=∠BEC=60°,∴∠AEC=∠DEB=120°,∴△AEC≌△DEB(SAS),∴AC=BD.∵M,N是CD,DA的中点,∴MN是△ACD的中位线,即同理可得NP=QM,∴四边形MNPQ是菱形.。

菱形判定练习题

菱形判定练习题

菱形判定练习题一、选择题1. 下列哪个条件不能判定一个四边形是菱形?A. 对角线互相垂直平分B. 四边相等C. 一组邻边相等D. 对角线相等2. 如果一个四边形的对角线互相垂直,那么这个四边形可能是:A. 矩形B. 菱形C. 平行四边形D. 梯形3. 菱形的对角线长度之和是:A. 等于边长B. 等于对角线长度的两倍B. 不能确定D. 等于对角线长度的四倍4. 在菱形中,对角线将菱形分成四个部分,这四个部分的面积是:A. 相等B. 互为倍数关系C. 不能确定D. 互为倒数关系5. 一个四边形的对角线互相平分,且一组对边相等,这个四边形是:A. 矩形B. 菱形C. 平行四边形D. 梯形二、填空题6. 菱形的对角线互相________,并且每条对角线平分一组对角。

7. 如果一个四边形的四条边都相等,那么这个四边形是________形。

8. 菱形的面积可以通过________来计算,公式为S=d1*d2/2,其中d1和d2是两条对角线的长度。

9. 在菱形ABCD中,如果AC=6,BD=8,那么菱形的面积是________。

10. 菱形的对角线将菱形分成四个________形。

三、判断题11. 菱形的对角线一定相等。

()12. 菱形的对角线相互垂直。

()13. 菱形的对角线平分一组对角。

()14. 菱形的面积可以通过边长和高来计算。

()15. 菱形的对角线将菱形分成四个全等三角形。

()四、简答题16. 请简述菱形的判定方法有哪些?17. 菱形的对角线有哪些性质?18. 为什么菱形的对角线将菱形分成四个全等的三角形?19. 如果已知菱形的边长,如何计算其面积?20. 菱形的对称性有哪些特点?五、计算题21. 已知菱形ABCD的边长为5cm,求其对角线AC和BD的长度。

22. 已知菱形ABCD的对角线AC=8cm,BD=6cm,求菱形的面积。

六、证明题23. 证明:菱形的对角线互相垂直。

24. 证明:菱形的对角线互相平分。

菱形的判定练习题及其详解

菱形的判定练习题及其详解

菱形的判定01基础题知识点1有一组邻边相等的平行四边形是菱形1.如图,若要使▱ABCD成为菱形,则可添加的条件是(C)A.AB=CD B.AD=BCC.AB=BC D.AC=BD第1题图第2题图2.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED 为菱形的是(B)A.AB=BC B.AC=BCC.∠B=60°D.∠ACB=60°3.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形.∴∠FAD=∠EDA.∵AD是∠BAC的平分线,∴∠EAD=∠FAD.∴∠EDA=∠EAD.∴AE=ED.∴四边形AEDF是菱形.知识点2对角线互相垂直的平行四边形是菱形4.如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件BO=DO(答案不唯一),使四边形ABCD成为菱形.(只需添加一个即可)5.(2017·岳阳)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD.求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO.∵AC⊥BD,∴AC垂直平分BD.∴AB=AD.∴四边形ABCD为菱形.知识点3四条边相等的四边形是菱形6.(2016·大庆)下列说法正确的是(D)A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形7.(2017·宁夏)在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B 落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.证明:∵AB∥DM,∴∠BAM=∠AMD.由折叠性质得:∠CAB=∠CAD,AB=AD,BM=DM.∴∠DAM=∠AMD.∴DA=DM=AB=BM.∴四边形ABMD是菱形.02中档题8.(2017·聊城)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是(D)A .AB =ACB .AD =BDC .BE ⊥ACD .BE 平分∠ABC9.如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是(B )A .矩形B .菱形C .一般的四边形D .平行四边形第9题图 第10题图10.(2016·兰州)如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD ,DE ∥AC ,AD =23,DE =2,则四边形OCED 的面积为(A)A .2 3B .4C .4 3D .811.(2016·沈阳)如图,△ABC ≌△ABD ,点E 在边AB 上,CE ∥BD ,连接DE. 求证:(1)∠CEB =∠CBE ;(2)四边形BCED 是菱形.证明:(1)∵△ABC ≌△ABD ,∴∠ABC =∠ABD.∵CE ∥BD ,∴∠CEB =∠ABD.∴∠CEB =∠CBE.(2)∵△ABC ≌△ABD ,∴BC =BD.由(1)得∠CEB =∠CBE ,∴CE =CB.∴CE =BD.又∵CE ∥BD ,∴四边形BCED 是平行四边形.又∵BC =BD ,∴四边形BCED 是菱形.12.(2016·聊城)如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF ∥BC ,连接DE 并延长交AF 于点F ,连接FC.求证:四边形ADCF 是菱形.证明:∵AF ∥CD ,∴∠AFE =∠CDE.在△AFE 和△CDE 中,⎩⎨⎧∠AFE =∠CDE ,∠AEF =∠CED ,AE =CE ,∴△AFE ≌△CDE(AAS ).∴AF =CD.∵AF ∥CD ,∴四边形ADCF 是平行四边形.∵点E 是AC 的中点,AC =2AB ,∴AE =AB.∵AD 平分∠BAC ,∴∠EAD =∠BAD.又∵AD =AD ,∴△AED ≌△ABD(SAS ).∴∠AED =∠B =90°,即DF ⊥AC.∴四边形ADCF 是菱形.03 综合题13.如图,在四边形ABCD 中,AB ∥CD ,AB ≠CD ,BD =AC.(1)求证:AD =BC ;(2)若E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,求证:线段EF 与线段GH 互相垂直平分.证明:(1)延长DC 至K ,使CK =AB.连接BK.∵AB ∥ CK ,∴四边形ABKC 是平行四边形.∴AC ∥ BK.∴∠ACD =∠K.∵BD =AC ,AC =BK ,∴BD =BK.∴∠BDC =∠K.∴∠ACD =∠BDC.在△ACD 和△BDC 中,⎩⎨⎧AC =BD ,∠ACD =∠BDC ,CD =DC ,∴△ACD ≌△BDC(SAS ).∴AD =BC.(2)分别连接EH ,HF ,FG 和GE. ∵E ,H 分别是AB ,BD 的中点, ∴EH 为△ABD 的中位线.∴EH =12AD. 同理:GF =12AD ,EG =12BC ,HF =12BC. 又由(1)知AD =BC ,∴EH =HF =FG =GE. ∴四边形EHFG 是菱形.∴线段EF 与线段GH 互相垂直平分.。

专项练习:菱形的判定

专项练习:菱形的判定

菱形的判定一、选择题1. 下列条件能判断四边形ABCD是菱形的条件是()A.对角线互相平分 B.对角线互相垂直C.邻边相等D.对角线互相垂直且平分2. 若平行四边形对角线的平方和等于它一边平方的四倍,则该平行四边形一定为()A.矩形.B.菱形.C.矩形和菱形.D.正方形.3. 满足下列()的是菱形.A.两对角线相等B.两对角线垂直C.两条对角线垂直且互相平分D.两条对角线相等且互相垂直4. 顺次连结四边形各边中点得到的四边形是一个菱形,则原来的四边形必是()A.等腰梯形B.矩形C.对角线相等D.菱形5. 将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是()A.矩形B.三角形C.正方形D.菱形6. 已知四边形的两条对角线相等,那么顺次连结四边形各边中点,得到的四边形是()A.梯形B.矩形C.菱形D.正方形7. 用两根等宽的木条交叉重叠在一起,则重叠部分的图形一定是()A.矩形B.菱形C.正方形D.无法确定8. 已知四边形ABCD 是平行四边形,下列结论中不一定正确的是( ) A .AB CD = B .AC BD =C .AC BD ⊥时,它是菱形 D .当90ABC ∠=时,它是矩形 二、填空题9. 依次连结等腰梯形各边中点所成的四边形是.10. 在四边形ABCD 中,对角线AC 、BD 交于点O ,从(1)AB CD =;(2)AB CD ∥;(3)OA OC =;(4)OB OD =;(5)AC BD ⊥;(6)AC 平分BAD ∠这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5)⇒ABCD是菱形,再写出符合要求的两个: ⇒ABCD 是菱形;⇒ABCD 是菱形.11. 延长等腰ABC △顶角平分线AD 到E 使DE AD =,连结BE CE ,,则四边形ABEC 是_________形.12. 对角线__________的四边形是菱形.13. 将矩形ABCD 绕对角线交点逆时针方向旋转一角度后,使A 与B 重合,得矩形BFDE ,BF 交AD 于M ,DE 交BC 于N ,则四边形BMDN 是______(填特殊四边形的名称). 三、证明题14. 已知,如图,从菱形ABCD 对角线的交点O 分别向各边引垂线,垂线分别是E ,F ,G ,H .求证:四边形EFGH 是矩形.15. 已知四边形ABCD 的四边分别为a ,b ,c ,d ,且满足A DMBCE NFAB44444a b c d abcd +++=,求证:四边形ABCD 是菱形.16. 已知ABCD 是对角线AC BD 、相交于O,如图,且6AD AC ==,4BD =,你能说明四边形ABCD 是菱形吗17. 如图所示,ABC Rt △中,90ACB ∠=,ABC ∠的角平分线BD 交AC 于点D ,CH AB ⊥交BD 于F ,DE AB ⊥于E ,四边形CDEF 是菱形吗18. 如图,在五边形ABCDE 中,AB BC CD DE EA ====,2ABC DBE ∠=∠.请说明:四边形ACDE 是菱形.AODBADCBHEFAB19. 如图,在ABC △中,AD 是BAC ∠的平分线,EF 垂直平分AD 交AB 于E ,交AC 于F ,求证:四边形AEDF 是菱形.20. 如图,矩形ABCD 中,O 是两对角线的交点,AF 垂直平分线段OB ,垂足为E ,CH 垂直平分线段OD ,垂足为G . 求证:(1)AOB △是等边三角形; (2)四边形AFCH 是菱形.21. 如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB ,CD 的延长线分别交于E ,F . (1)求证:BOE DOF △≌△;(2)当EF 与AC 满足什么条件时,四边形AECF 为菱形并证明你的结论.22. 如图所示,AD 是Rt△ABC 斜边BC 上的高,B ∠的平分线交AD 于M ,交AC 于E ,DAE ∠的平分线交CD 于N .求证:四边形AMNE 为菱形.CDBCFBEB23. 如图所示,在四边形ABCD 中,对边AB CD =,M ,N ,P ,Q 分别是AD ,BC ,AC ,BD 的中点,求证:MN PQ ⊥.24. 如图,四边形ABCD 中,点E 在AB 上,且△ADE 与△BCE 都是正三角形,点P ,Q ,M ,N 分别为边AB ,BC ,CD ,DA 的中点.求证:四边形PQMN 为菱形.25. 如图,四边形ABCD 中,90ABC ADC ∠=∠=,M 为AC 中点,且MN BD ⊥与MD 的平行线BN 交于N ,求证:四边形BNDM 为菱形.CNDBCNBAP EBQCMDN26. 如图Rt△ABC 中,90BAC ∠=,AD BC ⊥于D ,CE 平分ACB ∠交AD 于G ,交AB 于E ,EF BC ⊥于F ,求证:四边形AEFG 为菱形. 27.ABCD 的对角线的垂直平分线与边AD BC ,分别交于E F ,,求证:四边形AFCE 是菱形.28. 已知:如图,过ABCD 的对角线交点O 作互相垂直的两条直线EG FH,与平行四边形ABCD 各边分别相交于点E F G H ,,,. 求证:四边形EFGH 是菱形.BCCDF B29. 如图,在ABCD中,O是对角线AC的中点,过点O作AC的垂线与边A D,BC分别交于E,F.求证:四边形AFCE是菱形.四、应用题30. 如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.AB C DOEGF H参考答案一、选择题 1. D 2. B 3. C 4. C 5. D 6. C 7. B 8. B 二、填空题 9. 菱形10. (1)(2)(6) (3)(4)(5)[或(3)(4)(6)] 11. 菱12. 互相平分且垂直 13. 菱形 三、证明题14. 先证四边形HEFG 为平行四边形,再证HF EG =.15. 解:因为44444a b c d abcd +++=,所以4444222280a b c d abcd +++-=,所以422442244224422422222222(2)(2)(2)(2)2(2)2(2)0a a b b b a c c c c d d d a d a a b abcd c d a d abcd b c -++-++-++-++-++-+=所以22222222222222()()()()2()2()0a b b c c d d a ab cd ad bc -+-+-+-+-+-=由非负数性质得,220a b -=,220b c -=,220c d -=,220d a -=,0ab cd -=,0ad bc -=.所以a b c d ===. 所以四边形ABCD 是菱形.16. 解:四边形ABCD 是平行四边形,64AC BD ==,.32OA OC OB OD ∴====,. 又13AD =.222.90AD OA OD AOD AC BD∴=+∴∠=即,:⊥∴ABCD 是菱形.17. 解:四边形CDEF 是菱形.理由如下: DE AB CH AB ⊥,⊥,DE CH ∴∥. 即:DE CF ∥. 又BD 是角平分线,DE DC ∴=, 且.BDE BDC ∠=∠....DE CH BDE CFD CDF DFC CD CF CF DE ∴∠=∠∴∠=∠∴=∴=∥, ∴四边形CDEF 是平行四边形,又因DC DE =. ∴四边形CDEF 是菱形.18. 提示:只需证四边形EACD 为平行四边形,只需证明AE CD ∥,过B 作BM AE ∥经证BM CD ∥即可.19. EF ∵垂直平分AD ,AE DE =∴,AF DF =,AD ∵平分BAC ∠,AED AFD ∴△≌△,AE AF =∴,AE DE AF DF ===∴,故四边形AEDF 是菱形. 20. (1)可证12OA AC =,12OB BD =,OA OB =∴.AF ∵垂直平分OB ,OA AB OB ==∴,故AOB △为等边三角形. (2)在等边AOB △中,AF OB ⊥,30OAE BAE ∠=∠=∴, 可证明FCA DAC ∠=∠,FCA EAO ∠=∠,AF CF =∴,可证明四边形AFCH 是平行四边形,而AF CF =,故四边形AFCH 是菱形. 21. (1)∵在矩形ABCD 中,AB CD ∥,E F ∠=∠∴,EBO FDO ∠=∠,又BO OD =,BOE DOF ∴△≌△.(2)当EF 与AC 垂直时,四边形AECF 为菱形. 证明:BOE DOF ∵△≌△,EO FO =∴. 又AO OC =,∴四边形AECF 为平行四边形. 又EF AC ⊥,∴四边形AECF 为菱形.22. 证明:设AN 与ME 交于点O ,因为AD 是Rt△ABC 斜边BC 上的高, 所以ABD CAD ∠=∠.又BE ,AN 分别平分ABD ∠和CAD ∠, 所以EAN ABE ∠=∠.所以在Rt△ABE 中,90AOB ∠=,△AME 是等腰三角形,AN 平分ME , 又因为ABO NBO =∠∠,OB OB =,所以Rt△AOB ≌Rt△NOB ,AO ON =,即ME 垂直平分AN ,四边形AMNE 是菱形.23. 证明四边形MQNP 是菱形即可.24. 连结AC ,BD ,△ADE 与△BCE 都是正三角形,AE DE ∴=,CE BE =,60AED BEC ∠=∠=,60AEC DEC DEB ∴∠=+∠=∠证△AEC ≌△DEB(SAS )AC DB ∴=,又P ,Q ,M ,N 分别为各边中点,得12PQ MN AC ==,12QM PN BD ==PQ QM MN NP ∴===.∴四边形PQMN 为菱形. 25. 设MN 与BD 交于O ,易证MB MD =,再证△DOM ≌△BON ,从而BN DM =,又由BN DM ∥,可证得四边形BNDM 为菱形.26. 易证AE FE =,而且AD EF ∥,AEG AGE ∠=∠AG EA EF ∴==又AG EF ∥AEFG ∴为菱形.27. 证明:EF 垂直平分AC ,AF FC ∴=,AE EC =,FAC FCA ∴∠=∠,EAC ECA ∠=∠.AD BC ∥,EAC FCA ∴∠=∠,ECA FCA ∴∠=∠.EF AC ⊥,CEF CFE ∴∠=∠,FC EC ∴=,AF FC CE AE ∴===,∴四边形AFCE 是菱形.28.略29. 先证明四边形AFCE 为平行四边形,再由AC ⊥EF 即可得证.四、应用题30. 添加的条件是:AC BD =.理由略.。

菱形的性质与判定经典例题练习

菱形的性质与判定经典例题练习

1、叫菱形2、菱形的性质1)边2)角3)对角线4)对称性5)菱形的面积计算方法:练一练:、1菱形具有而矩形不一定具有的性质是().A.对边相等 B.对角相等 C.对角线互相垂直 D.对角线相等2、能够找到一点使该点到各边距离相等的图形为().A.平行四边形 B.菱形 C.矩形 D.不存在3、如图所示,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()A.80°B.70°C.65°D.60°3.如在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有()A.1个B.2个C.3个D.4个4、菱形的周长为12 cm,相邻两角之比为5∶1,那么菱形对边间的距离是()A.6 cmB.1.5 cmC.3 cmD.0.75 cm5.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.75° B.60° C.45° D.30°6、菱形的边长是2 cm,一条对角线的长是23 cm,则另一条对角线的长是()A.4 cmB.3 cmC.2 cmD.23 cm例1、如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.2、如图,菱形ABCD的对角线AC、BD交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离为_______.3、如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.12. 如图,菱形OABC 在直角坐标系中,点A 的坐标为(5,0),对角线OB =45,反比 例函数xky(k ≠0,x >0)经过点C .则k 的值等于( ) A .12 B .8 C .15 D .94变式:菱形ABCD 的周长为20 cm ,两条对角线的比为3∶4,求菱形的面积.5如图,在菱形ABCD 中,∠BAD=60°,BD=4,则菱形ABCD 的周长是_________.6、如图,菱形ABCD 中,E 是AB 中点,DE ⊥AB ,AB=4.求(1)∠ABC 的度数; (2)AC 的长; (3)菱形ABCD 的面积.例7:如图,在菱形ABCD 中,AB=4,E 在BC 上,BE=2,角ABC=120度,P 点在AC 上,求PE+PC 的最小值。

菱形的判定专项练习题

菱形的判定专项练习题

菱形的判定专项练习30题(有答案)1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点.(1)求证:四边形ABED是菱形;(2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长.2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD.求证:BC=2DN.3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)若AB=12cm,求菱形AEDF的周长.4.如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.(1)求证:AF=DC;(2)若∠BAC=90°,求证:四边形AFBD是菱形.6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE.(1)求证:四边形ADCE是菱形.(2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么?8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形.9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作▱ADFE交BC于点G,H,且EH=EC.求证:(1)∠B=∠C;(2)▱ADFE是菱形.10.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于F,EG⊥AB于G.(1)求证:△AEG≌△AEC;(2)△CEF是否为等腰三角形,请证明你的结论;(3)四边形GECF是否为菱形,请证明你的结论.11.如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.求证:四边形ADEF是菱形.12.如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF 为菱形.13.已知:如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.求证:四边形ABED是菱形.14.如图,在△ABC中,AB=AC,M、O、N分别是AB、BC、CA的中点.求证:四边形AMON是菱形.15.如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.16.如图,矩形ABCD绕其对角线交点旋转后得矩形AECF,AB交EC于点N,CD交AF于点M.求证:四边形ANCM是菱形.17.如图,四边形ABCD、DEBF都是矩形,AB=BF,AD、BE交于M,BC、DF交于N,那么四边形BMDN是菱形吗?如果是,请写出证明过程;如果不是,说明理由.18.已知如图所示,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF是菱形吗?说明理由.19.已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.20.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.21.如图,在矩形ABCD中,EF垂直平分BD.(1)判断四边形BEDF的形状,并说明理由.(2)已知BD=20,EF=15,求矩形ABCD的周长.22.如图所示,在▱ABCD中,点E在BC上,AE平分∠BAF,过点E作EF∥AB.求证:四边形ABEF为菱形.23.已知,如图,矩形ABCD中,AB=4cm,AD=8cm,作∠CAE=∠ACE交BC于E,作∠ACF=∠CAF交AD于F.(1)求证:AECF是菱形;(2)求四边形AECF的面积.24.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.问四边形AFCE是菱形吗?请说明理由.25.如图:在平行四边形ABCD中,E、F分别是边AB、CD的延长线上一点,且BE=DF,连接EF交AC于O.(1)AC与EF互相平分吗?为什么?(2)连接CE、AF,再添加一个什么条件,四边形AECF是菱形?为什么?26.已知:如图,△ABC和△DBC的顶点在BC边的同侧,AB=DC,AC=BD交于E,∠BEC的平分线交BC于O,延长EO到F,使EO=OF.求证:四边形BFCE是菱形.27.如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由;(3)在(2)下要使BECF是菱形,则△ABC应满足何条件?并说明理由.28.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.29.如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F.求证:四边形AEDF是菱形.30.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA 的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.矩形的判定专项练习30题参考答案:1.1)证明:∵点E为BC的中点,∴BE=CE=BC,∵BA=AD=DC=BC,∴AB=BE=ED=AD,∴四边形ABED是菱形;(2)解:过点D作DH⊥BC,垂足为H,∵CD=DE=CE,∴∠DEC=60°,∴∠DBE=30°,在Rt△BDH中,BD=4cm,∴DH=2cm,∵AF=DH,∴AF=2cm.2.∵AO=ON,BM=MO,∴四边形AMND是平行四边形,∵AC⊥BD,∴平行四边形AMND是菱形,∴MN=DN,∵ON=NC,BM=MO,∴MN=BC,∴BC=2DN 3.(1)∵D,E分别是BC,AB的中点,∴DE∥AC且DE=AF=AC.同理DF∥AB且DF=AE=AB.又∵AB=AC,∴DE=DF=AF=AE,∴四边形AEDF是菱形.(2)∵E是AB中点,∴AE=AB=6cm,因此菱形AEDF的周长为4×6=24cm.4.(1)∵BE=BP,∴∠E=∠BPE,∵BC∥AF,∴∠BPE=∠F,∴∠E=∠F.(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是平行四边形,∴□ABCD是菱形.5.1)证明:∵E是AD的中点,∴∠1=∠2,在△AEF和△DEC 中,∴△AFE≌△DCE(AAS),∴AF=DC;(2)证明:∵D是BC的中点,∴DB=CD=BC,∵AF=CD,∴AF=DB,∵AF∥BD,∴四边形AFBD是平行四边形,∵∠BAC=90°,D为BC中点,∴AD=CB=DB,∴四边形AFBD是菱形.6.∵对角线BD平分∠ABC,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠3=∠1,∴∠3=∠2,∴DC=BC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.7.(1)∵三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,∴△ABC≌△ABF,且∠BAC=∠BAF=30°,∴∠FAC=60°,∴AD=DC=AC,又∵△ABC≌△EFC,∴CA=CE,又∵∠ECF=60°,∴AC=EC=AE,∴AD=DC=CE=AE,(2)证明:由(1)可知:△ACD,△AFC是等边三角形,△ACB≌△AFB,∴∠EDC=∠BAC=∠FAC=30°,且△ABC为直角三角形,∴BC=AC,∵EC=CB,∴EC=AC,∴E为AC中点,∴DE⊥AC,∴AE=EC,∵AG∥BC,∴∠EAG=∠ECB,∠AGE=∠EBC,∴△AEG≌△CEB,∴AG=BC,(7分)∴四边形ABCG是平行四边形,∵∠ABC=90°,∴四边形ABCG是矩形8.在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形9.(1)∵在▱ADFE中,AD∥EF,∴∠EHC=∠B(两直线平行,同位角相等).∵EH=EC(已知),∴∠EHC=∠C(等边对等角),∴∠B=∠C(等量代换);(2)∵DE∥BC(已知),∴∠AED=∠C,∠ADE=∠B.∵∠B=∠C,∴∠AED=∠ADE,∴AD=AE,∴▱ADFE是菱形.10.1)证明:∵∠ACB=90°,∴AC⊥EC.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL);(2)解:△CEF是等腰三角形.理由如下:∵CD是AB边上的高,∴CD⊥AB.又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA.又由(1)知,Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,即△CEF是等腰三角形;(3)解:四边形GECF是菱形.理由如下:∵由(1)知,Rt△AEG≌Rt△AEC,则GE=EC;由(2)知,CE=CF,∴GE=EC=FC.又∵EG∥CD,即GE∥FC,∴四边形GECFR是菱形.11.∵D、E、F分别是△ABC三边的中点,∴DE AC,EF AB,∴四边形ADEF为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF为菱形.12.∵M、E、分别为AD、BD、的中点,∴ME∥AB,ME=AB,同理:FH∥AB,FH=AB,∴四边形MENF是平行四边形,∵M.F是AD,AC中点,∴MF=DC,∵AB=CD,∴MF=ME,∴四边形MENF为菱形13.∵AE平分∠BAD,∵,∴△BAE≌△DAE(SAS)…(2分)∴BE=DE,…(3分)∵AD∥BC,∴∠DAE=∠AEB,…(4分)∴∠BAE=∠AEB,∴AB=BE,…(5分)∴AB=BE=DE=AD,…(6分)∴四边形ABED是菱形.14.∵AB=AC,M、O、N分别是AB、BC、CA的中点,∴AM=AB=AC=AN,M0∥AC,NO∥AB,且MO=AC=AN,NO=AB=AM(三角形中位线定理),∴AM=MO=AN=NO,∴四边形AMON是菱形(四条边都相等的四边形是菱形)15.证法一:∵AD⊥BC,∴∠ADB=90°,∵∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵CE平分∠ACB,EF⊥BC,∠BAC=90°(EA⊥CA),∴AE=EF(角平分线上的点到角两边的距离相等),∵CE=CE,∴由勾股定理得:AC=CF,∵△ACG和△FCG中,∴△ACG≌△FCG,∴∠CAD=∠CFG,∵∠B=∠CAD,∴∠B=∠CFG,∴GF∥AB,∵AD⊥BC,EF⊥BC,∴AD∥EF,即AG∥EF,AE∥GF,∴平行四边形AEFG是菱形.证法二:∵AD⊥BC,∠CAB=90°,EF⊥BC,CE平分∠ACB,∴AD∥EF,∠4=∠5,AE=EF,∵∠1=180°﹣90°﹣∠4,∠2=180°﹣90°﹣∠5,∴∠1=∠2,∵AD∥EF,∴∠2=∠3,∴∠1=∠3,∴AG=AE,∵AE=EF,∴AG=EF,∵AG∥EF,∴四边形AGFE是平行四边形,∵AE=EF,∴平行四边形AGFE是菱形.16.∵CD∥AB,∴∠FMC=∠FAN,∴∠NAE=∠MCF(等角的余角相等),在△CFM和△AEN中,,∴△CFM≌△AEN(ASA),∴CM=AN,∴四边形ANCM为平行四边形,在△ADM和△CFM中,,∴△ADM≌△CFM(AAS),∴AM=CF,∴四边形ANCM是菱形17.四边形BMDN是菱形.∵AM∥BC,∴∠AMB=∠MBN,∵BM∥FN∴∠MBN=∠BNF,∴∠AMB=∠BNF,又∵∠A=∠F=90°,AB=BF,∴△ABM≌△BFN,∴DM=DN,∵ED=BF=AB,∠E=∠A=90°,∠AMB=∠EMD,∴△ABM≌△EDM,∴BM=DM,∴MB=MD=DN=BN,∴四边形BMDN是菱形18.如图,由于DE∥AC,DF∥AB,所以四边形AEDF 为平行四边形.∵DE∥AC,∴∠3=∠2,又∠1=∠2,∴∠1=∠3,∴AE=DE,∴平行四边形AEDF为菱形.19.∵EF是BD的垂直平分线,∴EB=ED,∴∠EBD=∠EDB.∵BD是△ABC的角平分线,∴∠EBD=∠FBD.∴∠FBD=∠EDB,∴ED∥BF.同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED,∴四边形BFDE是菱形.20.方法一:∵AE∥FC.∴∠EAC=∠FCA.(2分)又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF.(5分)∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线.(8分)∴AF=AE,CF=CE,又∵EA=EC,∴AF=AE=CE=CF.∴四边形AFCE为菱形.(10分)方法二:同方法一,证得△AOE≌△COF.(5分)∴AE=CF.∴四边形AFCE是平行四边形.(8分)又∵EF是AC的垂直平分线,方法三:同方法二,证得四边形AFCE是平行四边形.(8分)又EF⊥AC,(9分)∴四边形AFCE为菱形21.(1)四边形BEDF是菱形.在△DOF和△BOE中,∠FDO=∠EBO,OD=OB,∠DOF=∠BOE=90°,所以△DOF≌△BOE,所以OE=OF.又因为EF⊥BD,OD=OB,所以四边形BEDF为菱形.(5分)(2)如图,在菱形EBFD中,BD=20,EF=15,则DO=10,EO=7.5.由勾股定理得DE=EB=BF=FD=12.5.S菱形EBFD =EF•BD=BE•AD,即所以得AD=12.根据勾股定理可得AE=3.5,有AB=AE+EB=16.由2(AB+AD)=2(16+12)=56,故矩形ABCD的周长为5622.∵四边形ABCD是平行四边形,∴AF∥BE,又∵EF∥AB,∴四边形ABEF为平行四边形,∵AE平分∠BAF,∴∠BAE=∠FAE,∵∠FAE=∠BEA,∴∠BAE=∠BEA,∴BA=BE,∴平行四边形ABEF为菱形23.(1)证明:在矩形ABCD中,∵AB∥CD,∴∠BAC=∠DCA,又∠CAE=∠ACE,∠ACF=∠CAF,∴∠EAC=∠FCA.∴AE∥CF.∴四边形AECF为平行四边形,又∠CAE=∠ACE,∴AE=EC.∴▱AECF为菱形.(2)设BE=x,则EC=AE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,所以EC=5,即S菱形AECF=EC×AB=5×4=20.24.四边形AFCE是菱形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴=,∵AO=OC,∴OE=OF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴平行四边形AFCE是菱形25.(1)AC与EF互相平分,连接CE,AF,∵平行四边形ABCD,∴AB∥CD,AB=CD,又∵BE=DF,∴AB+BE=CD+DF,∴AE=CF,∴AE∥CF,AE=CF,∴四边形AECF是平行四边形,∴AC与EF互相平分;(2)条件:EF⊥AC,∵EF⊥AC,又∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.26.∵AB=DC AC=BD BC=CB,∴△ABC≌△DCB,∴∠DBC=∠ACB,∴BE=CE,又∵∠BEC的平分线是EF,∴EO是中线(三线合一),∴BO=CO,∴四边形BFCE是平行四边形(对角线互相平分),又∵BE=CE,∴四边形BFCE是菱形.27.(1)证明:∵CF∥BE,∴∠EBD=∠FCD,D是BC边的中点,则BD=CD,∠BDE=∠CDF,∴△BDE≌△CDF.(2)如图所示,由(1)可得CF=BE,又CF∥BE,所以四边形BECF是平行四边形;(3)△ABC是等腰三角形,即AB=AC,理由:当AB=AC 时,则有AD⊥BC,又(2)中四边形为平行四边形,所以可判定其为菱形.28.(1)∵DE为BC的垂直平分线,∴∠EDB=90°,BD=DC,又∵∠ACB=90°,∴DE∥AC,∴E为AB的中点,∴在Rt△ABC中,CE=AE=BE,∴∠AEF=∠AFE,且∠BED=∠AEF,∠DEC=∠DFA,∴AF∥CE,又∵AF=CE,∴四边形ACEF为平行四边形;(2)要使得平行四边形ACEF为菱形,则AC=CE即可,∵DE∥AC,∴∠BED=∠BAC,∠DEC=∠ECA,又∵∠BED=∠DEC,∴∠EAC=∠ECA,∴AE=EC,又EB=EC,∴AE=EC=EB,∵CE=AB,∴AC=AB即可,在Rt△ABC中,∠ACB=90°,∴当∠B=30°时,AB=2AC,故∠B=30°时,四边形ACEF为菱形.29.∵AD平分∠BAC∴∠BAD=∠CAD又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中,∴△AEO≌△AFO(ASA),∴EO=FO即EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形30.1)解:OE=OF.理由如下:∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠ECD,∴∠OFC=∠COF,∴OF=OC,∴OE=OF;(2)解:当∠ACB=90°,点O在AC的中点时,∵OE=OF,∴四边形AECF是正方形;(3)答:不可能.解:如图所示,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.。

初中数学九年级上册菱形的判定专项练习题

初中数学九年级上册菱形的判定专项练习题

第2课时菱形的判定一、选择题(共10小题)1、在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是()A、矩形B、菱形C、正方形D、梯形2、用两个全等的等边三角形,可以拼成下列哪种图形()A、矩形B、菱形C、正方形D、等腰梯形3、如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A、①③B、②③C、③④D、①②③4、红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图所示.红丝带重叠部分形成的图形是()A、正方形B、等腰梯形C、菱形D、矩形5、(在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()A、矩形B、菱形C、正方形D、梯形6、用两个边长为a的等边三角形纸片拼成的四边形是()A、等腰梯形B、正方形C、矩形D、菱形7、汶川地震后,吉林电视台法制频道在端午节组织发起“绿丝带行动”,号召市民为四川受灾的人们祈福.人们将绿丝带剪成小段,并用别针将折叠好的绿丝带别在胸前,如图所示,绿丝带重叠部分形成的图形是()A、正方形B、等腰梯形C、菱形D、矩形8、能判定一个四边形是菱形的条件是()A、对角线相等且互相垂直B、对角线相等且互相平分C、对角线互相垂直D、对角线互相垂直平分9、四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是()A、平行四边形B、矩形C、菱形D、正方形二、填空题(共8小题)11、(如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是_________ (只填一个你认为正确的即可).12、如图,如果要使平行四边形ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是_________ .13、(如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是_________ .(只需写出一个即可,图中不能再添加别的“点”和“线”)14、在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5)=>ABCD是菱形,再写出符合要求的两个:_________ =>ABCD是菱形;_________ =>ABCD是菱形.15、若四边形ABCD是平行四边形,请补充条件_________ (写一个即可),使四边形ABCD是菱形.16、在四边形ABCD中,给出四个条件:①AB=CD,②AD∥BC,③AC⊥BD,④AC平分∠BAD,由其中三个条件推出四边形ABCD是菱形,你认为这三个条件是_________ .(写四个条件的不给分,只填序号)17、要说明一个四边形是菱形,可以先说明这个四边形是_________ 形,再说明_________ (只需填写一种方法)18、如图,四边形ABCD是平行四边形,AC、BD相交于点O,不添加任何字母和辅助线,要使四边形ABCD 是菱形,则还需添加一个条件是_________ (只需填写一个条件即可).三、解答题(共11小题)19、(如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE, CE.(1)求证:△ABE≌△ACE;(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.20、如图,在▱ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.(1)求证:△ADE≌△CBF.(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.21、如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.22、已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.23、如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.24、如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连接AE、CD.(1)求证:AD=CE;(2)填空:四边形ADCE的形状是_________ .25、如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB(1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.26、如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C 处,折痕DE交BC于点E,连接C′E.求证:四边形CDC′E是菱形.27、已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.28、如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.29、如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求△ABC所扫过的图形的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.答案与评分标准一、选择题(共10小题)1、在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是()A、矩形B、菱形C、正方形D、梯形考点:坐标与图形性质;菱形的判定。

完整版)菱形的性质和判定练习题

完整版)菱形的性质和判定练习题

完整版)菱形的性质和判定练习题1.这个菱形的高为9cm。

2.较短对角线长为10cm。

3.边长为5cm。

4.各角分别为72°和108°。

5.添加的条件可以是AB=AD或BC=CD。

6.错误的说法是A,即两组对边分别平行。

7.对角线互相垂直。

8.菱形。

9.不正确的说法是B,即菱形的对角线平分各内角。

10.周长为40cm。

11.互相垂直且不平分。

12.AB长为8cm。

13.CD的长为4.14.对角线BD的长为2.15.边长为5.16.OH的长为7.17.若菱形的周长为20cm,则它的边长为4cm。

18.在菱形ABCD中,由对角线AC和BD相交于点O可知,菱形的对角线相等,即AC=BD。

又已知BD=6,则AC=6.设菱形ABCD的边长为a,则2a=20,即a=10.由菱形对角线的长度公式可得。

$AC=\sqrt{a^2+a^2}=a\sqrt{2}$,代入AC=6可得a=6/$\sqrt{2}$,因此菱形ABCD的面积为36.19.在菱形ABCD中,由$\angle ADC=120^\circ$可知,$\angle ADB=60^\circ$。

设$\angle ABD=\theta$,则$\angle ADB=120^\circ-\theta$。

由余弦定理可得,$BD^2=15^2+15^2-2\times15\times15\times\cos\theta$,化简可得$\cos\theta=1/2$,因此$\sin\theta=\sqrt{3}/2$。

由正弦定理可得,$BD/\sin\theta=2a$,其中a为菱形的边长。

又已知BD=15,代入可得$a=15\sqrt{3}/4$。

设B、D两点之间的距离为h,则$h=\sqrt{(15\sqrt{3}/4)^2-(15/2)^2}=15\sqrt{3}/4$,因此选项D 正确。

20.设菱形的较长对角线为2x,较短对角线为x,则菱形的面积为$x^2$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菱形的判定课时测控
1.下列四边形中不一定为菱形的是()
A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形
C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形
2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC; ⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().
A.1种 B.2种 C.3种 D.4种
3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和43cm B.4cm和83cm C.8cm和83cm D.4cm和43cm 4.如图1所示,已知□ABCD,AC,BD相交于点O,•添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)
图1 图2
5.如图2所示,D,E,F分别是△ABC的边BC,CA,AB上的点,且DE∥AB,DF∥CA,要使四边形AFDE是菱形,则要增加的条件是________.(只写出符合要求的一个即可)6.菱形ABCD的周长为48cm,∠BAD: ∠ABC= 1:•2,•则BD=•_____,•菱形的面积是______.7.在菱形ABCD中,AB=4,AB边上的高DE垂直平分边AB,则BD=_____,AC=_____.8.如图所示,在四边形ABCD中,AB∥CD,AB=CD=BC,四边形ABCD是菱形吗?•说明理由.
9.如图,矩形ABCD的对角线相交于点O,PD∥AC,PC∥BD,PD,PC相交于点P,四边形PCOD 是菱形吗?试说明理由.
D
A
C F
H E B
K
D
A
C
F
H
G E B
D
A
C F
H G
E
B
10.(一题多解题)如图所示,△ABC 中,∠ACB=90°,∠ABC 的平分线BD•交AC 于点D ,CH⊥AB 于H ,且交BD 于点F ,DE⊥AB 于E ,四边形CDEF 是菱形吗?请说明理由.
11.(科内交叉题)如图所示,已知△ABC 中,AB=AC ,D 是BC 的中点,过点D•作DE⊥AB,DF⊥AC,垂足分别为E ,F ,再过E ,F 作EG⊥AC,FH⊥AB,垂足分别为G ,H ,且EG ,•FH 相交于点K ,试说明EF 和DK 之间的关系.
12.菱形以其特殊的对称美而备受人们喜爱,在生产生活中有极其广泛的应用.如图所示是一块长30cm ,宽20cm 的长方形的瓷砖,E ,F ,G ,H 分别是边BC ,CD ,DA ,•AB 的中点,涂黑部分为淡蓝色花纹,中间部分为白色.现有一面长4.2m ,宽2.8m•的墙壁准备贴这种瓷砖,试问:(1)这面墙壁最少要贴这种瓷砖多少块?
(2)全部贴满瓷砖后,这面墙壁最多会出现多少个面积相等的菱形?• 其中有花纹的菱形有多少个?
13.已知:如图所示,菱形ABCD 中,E ,F 分别是CB ,CD 上的点,且BE=DF . (1)试说明:AE =AF ;
(2)若∠B=60°,点E ,F 分别为BC 和CD 的中点,试说明:△AEF 为等边三角形.。

相关文档
最新文档