第一册数学期末练习题

合集下载

小学数学第一册期末试卷

小学数学第一册期末试卷

小学数学第一册期末试卷一、填空题(第1小题 2分, 第2小题 5分, 3-4每题 6分, 5-6每题 9分, 共 37分)1. (1).15里面有( )个十和( )个一.(2).3个一和1个十合起来是( ).2. 苹果比梨多( )个,桃比苹果少( )个,梨比桃多( )个.去掉( )个苹果,去掉( )个梨,三种水果的个数就同样多.3. 在○里填上“+”或“-”.11>8○5 8○7<9 16○4=2014○4=1014○10<8 12>6○54. 从6、7、8、15四个数中选出三个数,列出两道加法算式.5.6. 在○里填上“<”、“>”或“=”.9-3○9 11+4○15 14+4○14-4 7○6+3 6-6○12 3+9○5+7 7+8○10 5+2○10-7 7+4○6+6二、口算题(每道小题 10分共 20分 )1.14-4-3= 18-8-2=9+2+6= 6+6+6=16-10+4= 3+9+5=9+4+5= 4+4+4=4+0+6= 16-6-9=2.3+9= 5+9=5+8= 4+7=6+9= 12-10=8+8= 18-3=5+7= 6+11=三、应用题(1-7每题 5分, 第8小题 8分, 共 43分)1.□○□=□(本)2.原来有7只猴子,又跑来了6只,现在有()只?□○□=□(只)3. 小军吃了5个苹果,还剩下3个,小军原有多少个苹果?□○=□(个)口答:小军原有_____个苹果.4. 同学们要种14棵树,已经种了10棵,还要种多少棵?□○□=□(棵)口答:还要种_____棵.5. 同学们在马路两边各插了8面小旗,一共插了多少面?□○=□(面)口答:一共插了______面.6.7.□○□=□(支)8. 看图列出两个加法算式和两个减法算式并计算.(其中1只大猴子,6只小猴子)。

人教A版数学选择性必修第一册 期末综合测评2(课件PPT)

人教A版数学选择性必修第一册 期末综合测评2(课件PPT)
新教材 •数学(RA) 选择性必修• 第一册
综合微评(二)
第1页
新教材 •数学(RA) 选择性必修• 第一册
(时间:120 分钟 分数:150 分) 一、单项选择题(本大题共 8 小题,每小题 5 分,共 40 分,在每小题给出的四个选项 中,只有一项是符合题目要求的) 1.直线 x+y=0 的倾斜角为( D ) A.45° B.60° C.90° D.135° 解析:因为直线的斜率为-1,所以 tan α=-1,即倾斜角为 135°.
四、解答题(本大题共 6 小题,满分 70 分,解答时应写出文字说明,证明过程或演算 步骤)
17.(10 分)已知点 A(-2,2),直线 l1:3x-4y+2=0. (1)求过点 A 且与直线 l1 垂直的直线方程; (2)直线 l2 为过点 A 且和直线 l1 平行的直线,求平行直线 l1,l2 的距离.
第22页
新教材 •数学(RA) 选择性必修• 第一册
18.(12 分)(2021·江西宜春高二期中)已知圆 C:x2+y2-6x-8y+m=0,其中 m∈R. (1)如果圆 C 与圆 x2+y2=1 外切,求 m 的值; (2)如果直线 x+y-3=0 与圆 C 相交所得的弦长为 4 5,求 m 的值.
第13页
新教材 •数学(RA) 选择性必修• 第一册
11.已知圆 C:(x-3)2+(y-3)2=72,若直线 l:x+y-m=0 垂直于圆 C 的一条直径, 且经过这条直径的一个三等分点,则直线 l 的方程是( AD )
A.x+y-2=0 B.x+y-4=0 C.x+y-8=0 D.x+y-10=0 解析:根据题意,圆 C:(x-3)2+(y-3)2=72,其圆心 C(3,3),半径 r=6 2,若直线 l:x+y-m=0 垂直于圆 C 的一条直径,且经过这条直径的一个三等分点,则圆心到直线 的距离为 2 2,则有 d=|61-+m1|=2 2,变形可得|6-m|=4,解得 m=2 或 10,即 l 的方程 为 x+y-2=0 或 x+y-10=0.

人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)

第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若命题 p:∃x 0∈Z ,e x 0<1,则 ¬p 为 ( ) A . ∀x ∈Z ,e x <1 B . ∀x ∈Z ,e x ≥1 C . ∀x ∉Z ,e x <1D . ∀x ∉Z ,e x ≥12. 已知 a,b ∈R ,则“1<b <a ”是“a −1>∣b −1∣”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件3. 命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题是 ( ) A .若 a ,b 都是偶数,则 a +b 不是偶数 B .若 a ,b 都是偶数,则 a +b 不是偶数 C .若 a ,b 不全是偶数,则 a +b 不是偶数 D .若 a +b 不是偶数,则 a ,b 不全是偶数4. 已知 x ∈R ,则“x 2>x ”是“x >1”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既非充分也非必要条件5. 下列表示正确的个数是 ( )(1)0∉∅;(2)∅⊆{1,2};(3){(x,y )∣∣∣{2x +y =10,3x −y =5}={3,4};(4)若 A ⊆B 则 A ∩B =A A . 3 B . 4 C . 2 D . 16. 命题“∀x ∈R ,(13)x>0”的否定是 ( ) A . ∃x 0∈R ,(13)x 0<0B . ∀x ∈R ,(13)x≤0 C . ∀x ∈R ,(13)x<0D . ∃x 0∈R ,(13)x 0≤07. 已知集合 A ={x∣x ≤1},B ={x∣−1<x <2},则 (∁RA )∩B 等于 ( ) A . {x∣1<x <2}B . {x∣x >1}C . {x∣1≤x <2}D . {x∣x ≥1}8. 已知集合 M 中的元素 x 满足 x =a +√2b ,其中 a,b ∈Z ,则下列实数中不属于集合 M 中元素的个数是 ( )① 0;② −1;③ 3√2−1;④ 3−2√2;⑤ √8;⑥ 1−√2A . 0B . 1C . 2D . 39. 设 x ,y 均为实数,则“x =0”是“xy =0”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件10. 已知集合 U =R ,A ={x ∣x 2<5,x ∈Z },B ={x ∣∣x <2且x ≠0},则图中阴影部分表示的集合为( )A . {2}B . {1,2}C . {0,2}D . {0,1,2}11. 已知集合 A ={x∣ x =3n +2,n ∈N },B ={6,8,10,12,14},则集合 A ∩B 中元素的个数为 ( ) A . 5 B . 4 C . 3 D . 212. 命题“∀x ∈R ,2x 2−1≤0”的否定是 ( ) A . ∀x ∈R ,2x 2−1≥0 B . ∃x ∈R ,2x 2−1≤0 C . ∃x ∈R ,2x 2−1>0D . ∀x ∈R ,2x 2−1>0二、填空题(共4题)13. 若对于两个由实数构成的集合 X ,Y ,集合的运算 X ⊕Y 定义为:X ⊕Y ={x +y∣ x ∈X,y ∈Y };集合的运算 X ⊗Y 定义为:X ⊗Y ={x ⋅y∣ x ∈X,y ∈Y },已知实数集合 X ={a +b √2∣ a,b ∈Q},X ={a +b √3∣ a,b ∈Q}.试写出一个实数 m ,使得 m ∈X ⊗Y 但 m ∉X ⊕Y ,则 m = .14. 在平面直角坐标系 xOy 中,若直线 y =2a 与函数 y =∣x −a ∣−1 的图象只有一个交点,则 a的值为 .15. 若 f (x ) 是偶函数,其定义域为 (−∞,+∞),且在[0,+∞) 上单调递减,设 f (−32)=m ,f (a 2+2a +52)=n ,则 m ,n 的大小关系是 .16. 已知集合 M ={x∣ x >2},集合 N ={x∣ x ≤1},则 M ∪N = .三、解答题(共6题)17.判断下列命题中p是q的什么条件.(1) p:x>1,q:x2>1;(2) p:△ABC有两个角相等,q:△ABC是正三角形;(3) 若a,b∈R,p:a2+b2=0,q:a=b=0.18.设集合A={x∈N∣ x<4},B={3,4,5,6}.(1) 用列举法写出集合A.(2) 求A∩B和A∪B.19.已知集合A={x∣ x2−ax+a2−19=0},B={x∣ x2−5x+6=0},是否存在a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)∅⫋(A∩B).若存在,求出a的值;若不存在,请说明理由.20.用列举法表示下列给定的集合.(1) 大于1且小于6的整数组成的集合A.(2) 方程x2−9=0的实数根组成的集合B.(3) 小于8的质数组成的集合C.(4) 一次函数y=x+3与y=−2x+6的图象的交点组成的集合D.21.真子集对于两个集合A,B,如果,并且B中至少有一个元素不属于A,那么集合A称为集合B 的真子集,记为或,读作“ ”或“ ”.问题:真子集与子集有什么区别?22.已知集合A={x∣ −4<x<6},B={x∣ x2−4ax+3a2=0}.(1) 若A∩B=∅,求实数a的取值范围;(2) 若A∪B=A,求实数a的取值范围.答案一、选择题(共12题) 1. 【答案】B【解析】若命题为 p:∃x 0∈Z ,e x 0<1, 则 ¬p:∀x 0∈Z ,e x ≥1. 故选:B .【知识点】全(特)称命题的否定2. 【答案】B【解析】因为 a −1>∣b −1∣⇔1−a <b −1<a −1⇔{2<a +b,b <a,所以当 1<b <a 时,a −1>∣b −1∣ 成立;当 a −1>∣b −1∣ 成立时,如取 b =12,a =2,此时 1<b <a 不成立, 所以 1<b <a 是 a −1>∣b −1∣ 的充分不必要条件. 【知识点】充分条件与必要条件3. 【答案】C【解析】否命题就是对原命题的条件和结论同时进行否定,则命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题为:若 a ,b 不都是偶数,则 a +b 不是偶数. 【知识点】全(特)称命题的否定4. 【答案】A【知识点】充分条件与必要条件5. 【答案】A【知识点】交、并、补集运算6. 【答案】D【解析】全称命题“∀x ∈R ,(13)x>0”的否定是把量词“∀”改为“∃”,并对结论进行否定,把“>”改为“≤”,即“∃x 0∈R ,(13)x 0≤0”.【知识点】全(特)称命题的否定7. 【答案】A【知识点】交、并、补集运算8. 【答案】A【解析】当 a =b =0 时,x =0;当 a =−1,b =0 时,x =−1; 当 a =−1,b =3 时,x =−1+3√2;3−2√2=√2)(3−2√2)(3+2√2)=6+4√2,即 a =6,b =4;当 a =0,b =2 时,x =2√2=√8;1−√2=√2(1−√2)(1+√2)=−1−√2,即 a =−1,b =−1.综上所述:0,−1,3√2−1,3−2√2,√8,1−√2 都是集合 M 中的元素. 【知识点】元素和集合的关系9. 【答案】A【知识点】充分条件与必要条件10. 【答案】C【解析】因为集合 U =R ,A ={x ∣x 2<5,x ∈Z }={−2,−1,0,1,2},B ={x ∣∣x <2且x ≠0},∁U B ={x ∣∣x ≥2且x =0}, 所以图中阴影部分表示的集合为 A ∩(∁U B )={0,2}. 【知识点】集合基本运算的Venn 图示11. 【答案】D【知识点】交、并、补集运算12. 【答案】C【知识点】全(特)称命题的否定二、填空题(共4题)13. 【答案】可填“(1+√2)(1+√3)”等【知识点】交、并、补集运算14. 【答案】 −12【知识点】函数的零点分布15. 【答案】 m ≥n【知识点】抽象函数、函数的奇偶性、函数的单调性16. 【答案】 (−∞,1]∪(2,+∞)【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) 因为“x>1”能推出“x2>1”,即p⇒q,但“x2>1”推不出“x>1”,如x=−2,即q⇏p,所以p是q的充分不必要条件.(2) 因为“△ABC有两个角相等”推不出“△ABC是正三角形”,即p⇏q,但“△ABC是正三角形”能推出“△ABC有两个角相等”,即q⇒p,所以p是q的必要不充分条件.(3) 若a2+b2=0,则a=b=0,即p⇒q;若a=b=0,则a2+b2=0,即q⇒p,故p⇔q,所以p是q的充要条件.【知识点】充分条件与必要条件18. 【答案】(1) 因为集合A={x∈N∣ x<4},所以A={0,1,2,3}.(2) 因为B={3,4,5,6},所以A∩B={3},A∪B={0,1,2,3,4,5,6}.【知识点】交、并、补集运算、集合的表示方法19. 【答案】假设存在a使得A,B满足条件,由题意得B={2,3}.因为A∪B=B,所以A⊆B,即A=B或A⫋B.由条件(1)A≠B,可知A⫋B.又因为∅⫋(A∩B),所以A≠∅,即A={2}或{3}.当A={2}时,代入得a2−2a−15=0,即a=−3或a=5.经检验a=−3时,A={2,−5},与A={2}矛盾,舍去;a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,代入得a2−3a−10=0,即a=5或a=−2.经检验a=−2时,A={3,−5},与A={3}矛盾,舍去;a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B满足条件.【知识点】包含关系、子集与真子集、交、并、补集运算20. 【答案】(1) A={2,3,4,5}.(2) B={−3,3}.(3) C={2,3,5,7}.(4) D={(1,4)}.【知识点】集合的概念21. 【答案】A⊆B;A⫋B;B⫌A;A真包含于B;B真包含A在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个元素x满足x∈B,但x∉A,也就是说集合B至少要比集合A多一个元素.【知识点】包含关系、子集与真子集22. 【答案】(1) a≤−4或a≥6.<a<2.(2) −43【知识点】交、并、补集运算。

高一数学选择性必修第一册第二章《直线和圆的方程》章末练习题卷含答案解析 (20)

高一数学选择性必修第一册第二章《直线和圆的方程》章末练习题卷含答案解析 (20)

高一数学选择性必修第一册第二章《直线和圆的方程》章末练习题卷(共22题)一、选择题(共10题)1.已知直线l过点(1,2)且到点A(3,3)和B(5,7)的距离相等,求直线l的方程.情况二、直线l过线段AB的中点(5,7),直线l的方程为( )A.32B.54C.5x−4y+3=0D.3x−2y+1=0 2.已知直线l过点(2,1)和点(4,0),则直线l的斜率为( )A.−2B.−12C.12D.23.“m=43”是“直线x−my+4m−2=0与圆x2+y2=4相切”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知实数x,y满足x2+y2+4x−6y+12=0,则y的最小值是( )A.4B.2C.−1D.−35.直线ax+by+a+b=0(ab≠0)和圆x2+y2−2x−5=0的交点个数为( )A.0B.1C.2D.与a,b有关6.对于平面直角坐标系内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:∣∣AB∣∣=∣x2−x1∣+∣y2−y1∣.给出下列三个命题:①若点C在线段AB上,则∣∣AC∣∣+∣∣CB∣∣=∣∣AB∣∣;②在△ABC中,∣∣AC∣∣+∣∣CB∣∣>∣∣AB∣∣;③在△ABC中,若∠A=90∘,则∣∣AB∣∣2+∣∣AC∣∣2=∣∣BC∣∣2.其中错误的个数为( )A.0B.1C.2D.37.圆x2+y2−2x=0与圆x2+y2+4y=0的位置关系是( )A.相离B.外切C.相交D.内切8.圆(x−2)2+(y+3)2=2上的点与点(0,−5)的最大距离为( )A.√2B.2√2C.4√2D.3√29.阿波罗尼斯(约公元前262∼190年)证明过这样一个命题:平面内到两定点距离之比为常数k(k>0且k≠1)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B间的距离为2,动点P与A,B距离之比为√2,当P,A,B不共线时,△PAB面积的最大值是( )A.2√2B.√2C.2√23D.√2310.下列关于直线倾斜角的说法中,正确的是( )A.任意一条直线都有唯一的倾斜角B.一条直线的倾斜角可以为−π6C.倾斜角为0的直线只有一条,即x轴D.若直线的倾斜角为α,则sinα∈(0,1)二、填空题(共6题)11.已知0<k<4,直线l1:kx−2y−2k+8=0和直线l2:2x+k2y−4k2−4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为.12.已知直线l的倾斜角为2α−20∘,则α的取值范围是.13.设圆(x−3)2+(y+5)2=r2上有且只有两个点到直线4x−3y−2=0的距离等于1,则半径r取值范围的区间为.14.两条直线的夹角的取值范围为.15.过点A(2,−1)与B(1,2)半径最小的圆的方程为.16.若两圆x2+y2=4与x2+y2−2ax+a2−1=0相内切,则a=.三、解答题(共6题)17.已知圆C经过点O(0,0),A(8,−4),且圆心C在直线l:x−y−7=0上,求圆C的一般方程.18.直线l的方程为(a+1)x+y+2−a=0(a∈R).(1) 若l在两坐标轴上的截距相等,求实数a的值;(2) 若l不经过第二象限,求实数a的取值范围.19.在平面直角坐标系xOy中,已知圆M:x2+y2−12x−14y+60=0及其上一点A(2,4).(1) 设圆N与x轴相切,与圆M内切,且圆心N在直线x=6上,求圆N的标准方程;(2) 设垂直于 OA 的直线 l 与圆 M 相交于 B ,C 两点,且 BC =OA ,求直线 l 的方程; (3) 设点 T (0,t ) 满足:存在圆 M 上的两点 P ,Q ,使得 TA ⃗⃗⃗⃗⃗ +TP ⃗⃗⃗⃗⃗ =TQ ⃗⃗⃗⃗⃗ ,求实数 t 的取值范围.20. 已知两条直线的方程分别为 x +y +a =0 和 x +y +b =0,设 a ,b 是方程 x 2+x +c =0 的两个实数根,其中 0≤c ≤18,求两条直线间距离的最大值和最小值.21. 已知 △ABC 的顶点 B (3,4) 、 AB 边上的高所在的直线方程为 x +y −3=0,E 为 BC 的中点,且 AE 所在的直线方程为 x +3y −7=0. (1) 求顶点 A 的坐标;(2) 求过 E 点且在 x 轴、 y 轴上的截距相等的直线 l 的方程.22. 已知直线 l 1:ax +by +1=0(a ,b 不同时为 0),l 2:(a −2)x +y +a =0.(1) 若 b =−3 且 l 1⊥l 2,求实数 a 的值.(2) 当 b =3 且 l 1∥l 2 时,求直线 l 1 与 l 2 之间的距离.答案一、选择题(共10题)1. 【答案】C【知识点】直线的一般式方程、两直线交点坐标与两点间距离公式2. 【答案】B【解析】由题意可知,直线l的斜率为0−14−2=−12.【知识点】直线倾斜角与斜率3. 【答案】A【解析】由直线x−my+4m−2=0与圆x2+y2=4相切,得√1+m2=2,解得m=0或m=43.则由m=43能推出直线x−my+4m−2=0与圆x2+y2=4相切,反之,由直线x−my+4m−2=0与圆x2+y2=4相切,不一定得到m=43,则“m=43”是“直线x−my+4m−2=0与圆x2+y2=4相切”的充分不必要条件.【知识点】直线与圆的位置关系4. 【答案】B【知识点】圆的一般方程5. 【答案】C【解析】因为直线ax+by+a+b=0(ab≠0)可化为a(x+1)+b(y+1)=0,所以直线恒过定点(−1,−1),而(−1,−1)在圆x2+y2−2x−5=0内,故直线ax+by+a+b=0过圆内的点,则直线与圆相交,且有2个交点,故选C.【知识点】直线与圆的位置关系6. 【答案】B【解析】不妨设直线AB的方程为y=kx+b(k>0),令x2>x0>x1,因为点C(x0,y0)在线段AB上,所以∣AC∣=∣x0−x1∣+∣y0−y1∣=(k+1)(x0−x1),同理可得,∣CB∣=(k+1)(x2−x0),∣AB∣=(k+1)(x2−x1),因为∣∣AC∣+∣CB∣∣=(k+1)(x0−x1)+(k+1)(x2−x0)=(k+1)(x2−x1)=∣AB∣,所以①正确.②取C(0,0),A(1,0),B(0,1),则∣AC∣+∣CB∣=∣AB∣=2,故②正确.③因为在△ABC中,若∠C=90∘,取C(1,1),A(3,2),则B在直线x+y=3上,不妨取B(0,3),∣CA∣=∣3−1∣+∣2−1∣=2+1=3,∣CB∣=∣0−1∣+∣3−1∣=1+2=3,∣AB∣=∣3−0∣+∣2−3∣=4,显然,∣AC∣+∣CB∣≠∣AB∣,所以③错误.综上所述,其中真命题的个数为1.【知识点】直线的点斜式与斜截式方程7. 【答案】C【解析】圆O1:(x−1)2+y2=1,圆心O1(1,0),半径r1=1.圆O2:x2+(y+2)2=4,圆心O2(0,−2),半径r2=2.则有O1O2=√5,r2−r1<O1O2<r1+r2,故两圆相交.【知识点】圆与圆的位置关系8. 【答案】D【解析】圆(x−2)2+(y+3)2=2的圆心为(2,−3),点(0,−5)与圆心的距离为√(2−0)2+(−3+5)2=2√2,又圆的半径为√2,故所求的最大距离为2√2+√2=3√2.【知识点】圆的标准方程9. 【答案】A【解析】如图,以经过A,B的直线为x轴,线段AB的垂直平分线为y轴,建立直角坐标系:则:A(−1,0),B(1,0),设P(x,y),因为∣PA∣∣PB∣=√2,所以√(x+1)2+y2√(x−1)2+y2=√2,两边平方并整理得:x2+y2−6x+1=0⇒(x−3)2+y2=8.所以当点P在点C或点D时,△PAB面积的最大值是12×2×2√2=2√2.【知识点】圆的标准方程、轨迹与轨迹方程10. 【答案】A【解析】任意一条直线都有唯一的倾斜角,故A正确;若直线的倾斜角为α,则α的取值范围是[0,π),所以sinα∈[0,1],故B错误,D错误;倾斜角为0的直线不唯一,所有与x轴平行或重合的直线的倾斜角都是0,故C错误.【知识点】直线倾斜角与斜率二、填空题(共6题)11. 【答案】18【解析】直线l1:kx−2y−2k+8=0即k(x−2)−2y+8=0,过定点B(2,4),与y轴的交点为C(0,4−k);直线l2:2x+k2y−4k2−4=0,即2x−4+k2(y−4)=0,过定点(2,4),与x轴的交点为A(2k2+2,0).如图所示,由题意知,四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,故所求四边形的面积为12×4×(2k2+2−2)+2×(4−k+4)2=4k2−k+8,所以k=18时,所求四边形的面积最小.【知识点】直线的基本量与方程12. 【答案】 10°≤α<100°【解析】由 0∘≤2α−20∘<180∘,得 10∘≤α<100∘. 【知识点】直线倾斜角与斜率13. 【答案】 (4,6)【知识点】直线与圆的位置关系14. 【答案】 [0,π2]【知识点】直线倾斜角与斜率15. 【答案】 (x −32)2+(y −12)2=52【解析】设所求的圆的圆心为 C ,圆的半径为 R ,圆心到直线 AB 的距离为 d ,则 R 2=d 2+(AB 2)2,由已知得 AB =√(2−1)2+(−1−2)2=√10,要使半径 R 最小,则需 d 最小,d 最小是 0,此时圆的圆心为 AB 的中点,圆的直径为 AB , 圆的方程是 (x −32)2+(y −12)2=(√102)2,即(x −32)2+(y −12)2=52.【知识点】圆的标准方程16. 【答案】 ±1【知识点】圆与圆的位置关系三、解答题(共6题)17. 【答案】设圆 C 的一般方程为 x 2+y 2+Dx +Ey +F =0,则 {F =0,64+16+8D −4E +F =0,−D2−(−E2)−7=0,解得 {D =−6,E =8,F =0,所以圆 C 的一般方程为 x 2+y 2−6x +8y =0. 【知识点】圆的一般方程18. 【答案】(1) 当直线 l 过原点时,直线 l 在 x 轴和 y 轴上的截距都为 0,相等, 所以 2−a =0,a =2.所以直线 l 的方程为 3x +y =0.若 a ≠2,且 a ≠−1,则 a−2a+1=a −2,即 a +1=1, 所以 a =0,所以直线 l 的方程为 x +y +2=0. 所以实数 a 的值为 0 或 2.(2) 当直线 l 过原点时,直线 l 的方程为 y =−3x ,直线 l 经过第二象限,不合题意; 若直线 l 不过原点,且 l 不经过第二象限,则 {a +1=0,a −2<0. 或 {−(a +1)>0,a −2<0.解得 a ≤−1.故实数 a 的取值范围为 (−∞,−1].【知识点】直线的一般式方程、直线的两点式与截距式方程19. 【答案】(1) (x −6)2+(y −6)2=36. (2) y =−12x −32 或 y =−12x +132.(3) 4−4√6≤t ≤4+4√6.【知识点】圆的切线、直线与圆的位置关系、直线与圆的综合问题、圆与圆的位置关系20. 【答案】由一元二次方程根与系数的关系,得 a +b =−1,ab =c .易知两条直线平行,设两条平行直线间的距离为 d ,则 d =√2,所以 d 2=(a+b )2−4ab2=12−2c (0≤c ≤18),因为 d 2 是关于 c 的单调递减函数,所以当 c =0 时,d 2 有最大值,且 d max 2=12,即 d max =√22; 当 c =18 时,d 2 有最小值,且 d min 2=14,即 d min =12.所以两条直线间距离的最大值为√22,最小值为 12. 【知识点】两直线交点坐标与两点间距离公式21. 【答案】(1) 由题意得 k AB =1,所以直线 AB 的方程为 y −4=x −3,即 x −y +1=0. 已知 AE 所在的直线方程为 x +3y −7=0, 由 {x −y +1=0,x +3y −7=0, 解得 {x =1,y =2,所以 A 的坐标为 (1,2).(2) 设 E (x 0,y 0),则 C (2x 0−3,2y 0−4).因为点 E 在直线 AE 上,点 C 在直线 x +y −3=0 上, 所以 {x 0+3y 0−7=0,(2x 0−3)+(2y 0−4)−3=0, 解得 {x 0=4,y 0=1,即点 E 的坐标是 (4,1).因为直线 l 在 x 轴、 y 轴上的截距相等,所以当直线 l 经过原点时,设直线 l 的方程为 y =kx , 把点 E (4,1) 代入,得 1=4k ,解得 k =14,此时直线 l 的方程为 x −4y =0.当直线 l 不经过原点时,设直线 l 的方程为 xa +ya =1, 把点 E (4,1) 代入,得 4a+1a =1,解得 a =5,此时直线 l 的方程为 x +y −5=0.综上所述,所求直线 l 的方程为 x −4y =0 或 x +y −5=0.【知识点】直线的两点式与截距式方程、两直线交点坐标与两点间距离公式22. 【答案】(1) 当 b =−3 时,l 1:ax −3y +1=0,由 l 1⊥l 2 知 a (a −2)−3=0,解得 a =−1 或 a =3. (2) 当 b =3 时,l 1:ax +3y +1=0,当 l 1∥l 2 时,有 {a −3(a −2)=0,3a −1≠0, 解得 a =3,此时,l 1 的方程为:3x +3y +1=0,l 2 的方程为:x +y +3=0,即 3x +3y +9=0, 则它们之间的距离为 d =√32+32=4√23. 【知识点】直线与直线的位置关系、点到直线的距离与两条平行线间的距离。

小学一年级数学第一册期末检测

小学一年级数学第一册期末检测

小学数学第一册期末检测一、填空。

(每题2分)1、( )个十和( )个一( )个十217,减数是53、按规律填数。

5 7 9 ()() 15 ()()4、8+()=11 16—()=10 15—()=85、由6个一和1个十组成的数是()。

6、一个数个位和十位都是1,这个数是()。

7、表示一个也没有的数是()8、○○○○○○○ △△△△△ ____ 比 ____ 多,多____ 个。

9、与19相邻的数是()和()。

10、做早操。

(1)做操的小动物和福娃一共有()个;福娃们在大树的()面做操。

(2)从右边数排第();在长得最高的小动物上面画“○”。

二、选择。

(每题2分)1、一个数由1个十,9个一组成的,这个数是()。

(1)91 (2)19 (3)10 (4)902、小明拿了5元钱,买了一把1元钱的尺子和一瓶2元的饮料,应找回()钱。

(1)2元(2)2元5角(3)0元(4)1元3、与18相邻的两个数是()(1)19、20 (2)17、19 (3)16、17 (4)18、284、下面各题中填“=”的有()(1)(2)16--8 (3)(4)5、被减数是16,减数是7,差是()(1)8 (2)7 (3)6 (4)96、小朋友站队,从前面数李红排第3,从后面数她排6,你知道这一队有多少人吗?()(1)10人(2)9人(3)8人(4)7人7、15-8=7,差是()(1)15 (2 )7 (3)88、接着画()(1)2(3)9、丁丁有12支铅笔,明明的铅笔数比丁丁的多一些,明明可能有()只铅笔。

(1)10只(2 )15只(3)50 只10、要使13—()>6, ()里可能是下面哪个数?(1)7 (2)6 (3)5 (4)4三、计算题(共35分)。

1、直接写出得数(每题1分,共10分;)。

10+7= 20-10= 20-6= 1+8= 7+8=14+6= 16-7= 14+4= 16-7= 5+10=2、先算一算,再连一连。

高中数学 期末检测试卷(B)精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

期末检测试卷(B)C .充要条件D .既不充分又不必要条件8.设f (x )为偶函数,且x ∈(0,1)时,f (x )=-x +2,则下列说法正确的是( )A .f (0.5)<f ⎝ ⎛⎭⎪⎫π6B .f ⎝⎛⎭⎪⎫sin π6>f (sin 0.5)C .f (sin 1)<f (cos 1)D .f (sin 2)>f (cos 2)二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下面各式中,正确的是( )A .sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+32cos π4B .cos 5π12=22sin π3-cos π4cos π3C .cos ⎝ ⎛⎭⎪⎫-π12=cos π4cos π3+64D .cos π12=cos π3-cos π4 10.函数f (x )=log a |x -1|在(0,1)上是减函数,那么( ) A .f (x )在(1,+∞)上递增且无最大值 B .f (x )在(1,+∞)上递减且无最小值 C .f (x )在定义域内是偶函数 D .f (x )的图象关于直线x =1对称 11.下面选项正确的有( ) A .存在实数x ,使sin x +cos x =π3B .α,β是锐角△ABC 的内角,是sin α>cos β的充分不必要条件C .函数y =sin ⎝ ⎛⎭⎪⎫23x -7π2是偶函数D .函数y =sin 2x 的图象向右平移π4个单位,得到y =sin ⎝⎛⎭⎪⎫2x +π4的图象12.若函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象不可以是( )三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若扇形的面积为3π8、半径为1,则扇形的圆心角为________.14.设x >0,y >0,x +y =4,则1x +4y的最小值为________.15.定义在R 上的函数f (x )满足f (x )=3x -1(-3<x ≤0),f (x )=f (x +3),则f (2 019)=________.16.函数f (x )=⎩⎪⎨⎪⎧2x,x ≥0-x 2-2x +1,x <0,函数f (x )有________个零点,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值X 围是________.(本题第一空2分,第二空3分)四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)设函数f (x )=6+x +ln(2-x )的定义域为A ,集合B ={x |2x>1}. (1)求A ∪B ;(2)若集合{x |a <x <a +1}是A ∩B 的子集,求a 的取值X 围.18.(12分)已知sin ⎝ ⎛⎭⎪⎫β-π4=15,cos (α+β)=-13,其中0<α<π2,0<β<π2. (1)求sin 2β的值; (2)求cos ⎝ ⎛⎭⎪⎫α+π4的值.19.(12分)已知f (x )=⎩⎪⎨⎪⎧2x+1,x ≤0,log 2x +1,x >0.(1)作出函数f (x )的图象,并写出单调区间;(2)若函数y =f (x )-m 有两个零点,某某数m 的取值X 围.期末检测试卷(B)1.解析:因为A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2xx -2>1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +2x -2>0={x |x <-2或x >2},B ={x |1<2x <8}={x |0<x <3},因此A ∩B ={x |2<x <3}.故选A.答案:A2.解析:要使f (x )有意义,则⎩⎪⎨⎪⎧x +3≥0,x +1≠0,解得x ≥-3,且x ≠-1,∴f (x )的定义域为{x |x ≥-3,且x ≠-1}. 答案:A3.解析:sin 140°cos 10°+cos 40°sin 350° =sin 40°cos 10°-cos 40°sin 10° =sin (40°-10°)=sin 30°=12.答案:C4.解析:∵f (2)=log 32-1<0,f (3)=log 33+27-9=19>0,∴f (2)·f (3)<0,∴函数在区间(2,3)上存在零点. 答案:C5.解析:若命题p 是假命题,则“不存在x 0∈R ,使得x 20+2ax 0+a +2≤0”成立, 即“∀x ∈R ,使得x 2+2ax +a +2>0”成立,所以Δ=(2a )2-4(a +2)=4(a 2-a -2)=4(a +1)(a -2)<0,解得-1<a <2, 所以实数a 的取值X 围是(-1,2),故选B. 答案:B6.解析:x =ln π>ln e=1,y =log 52<log 55=12,z =1e >14=12,且z <1,故y <z <x . 答案:C7.解析:因为函数f (x )的图象向左平移π6个单位长度后得到函数g (x )的图象,所以g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ+π3, 因为g (x )为偶函数,所以φ+π3=π2+k π(k ∈Z ),即φ=π6+k π(k ∈Z ),因为φ=π6可以推导出函数g (x )为偶函数,而函数g (x )为偶函数不能推导出φ=π6,所以“φ=π6”是“g (x )为偶函数”的充分不必要条件.答案:A8.解析:x ∈(0,1)时,f (x )=-x +2,则f (x )在(0,1)上单调递减,A :0.5<π6,所以f (0.5)>f ⎝ ⎛⎭⎪⎫π6,A 错误;B :0.5<π6,∴0<sin 0.5<sin π6<1,∴f ⎝ ⎛⎭⎪⎫sin π6<f (sin 0.5),B 错误;C :∵0<cos 1<sin 1<1,∴f (sin 1)<f (cos 1),C 正确;D :-1<cos2<0,f (cos 2)=f (-cos 2),sin 2-(-cos 2)=sin 2+cos 2=2sin ⎝⎛⎭⎪⎫2+π4>0,所以1>sin2>(-cos 2)>0,所以f (sin 2)<f (-cos 2)=f (cos 2),D 错误.故选C.答案:C9.解析:∵sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+cos π4sin π3=sin π4cos π3+32cos π4,∴A 正确;∵cos 5π12=-cos 7π12=-cos ⎝ ⎛⎭⎪⎫π3+π4=22sin π3-cos π4cos π3,∴B 正确;∵cos ⎝ ⎛⎭⎪⎫-π12=cos ⎝ ⎛⎭⎪⎫π4-π3=cos π4cos π3+64,∴C 正确;∵cos π12=cos ⎝ ⎛⎭⎪⎫π3-π4≠cos π3-cos π4,∴D 不正确.故选ABC.答案:ABC10.解析:由|x -1|>0得,函数y =log a |x -1|的定义域为{x |x ≠1}.设g (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x >1-x +1,x <1,则g (x )在(-∞,1)上为减函数,在(1,+∞)上为增函数,且g (x )的图象关于直线x =1对称,所以f (x )的图象关于直线x =1对称,D 正确;因为f (x )=log a |x -1|在(0,1)上是减函数,所以a >1,所以f (x )=log a |x -1|在(1,+∞)上递增且无最大值,A 正确,B 错误; 又f (-x )=log a |-x -1|=log a |x +1|≠f (x ),所以C 错误.故选AD. 答案:AD11.解析:A 选项:sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,则sin x +cos x ∈[-2, 2 ].又-2<π3<2,∴存在x ,使得sin x +cos x =π3,可知A 正确; B 选项:∵△ABC 为锐角三角形,∴α+β>π2,即α>π2-β∵β∈⎝ ⎛⎭⎪⎫0,π2,∴π2-β∈⎝ ⎛⎭⎪⎫0,π2,又α∈⎝ ⎛⎭⎪⎫0,π2且y =sin x 在⎝ ⎛⎭⎪⎫0,π2上单调递增∴sin α>sin ⎝ ⎛⎭⎪⎫π2-β=cos β,可知B 正确;C 选项:y =sin ⎝ ⎛⎭⎪⎫23x -7π2=cos 2x 3,则cos2-x 3=cos 2x 3,则y =sin ⎝ ⎛⎭⎪⎫23x -7π2为偶函数,可知C 正确;D 选项:y =sin 2x 向右平移π4个单位得:y =sin 2⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫2x -π2=-cos 2x ,可知D 错误.本题正确选项ABC.答案:ABC12.解析:函数y =log a (|x |-1)是偶函数,定义域为(-∞,-1)∪(1,+∞), 由函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数, 得0<a <1.当x >1时,函数y =log a (|x |-1)的图象可以通过函数y =log a x 的图象向右平移1个单位得到,结合各选项可知只有D 选项符合题意.故选ABC.答案:ABC13.解析:设扇形的圆心角为α,则∵扇形的面积为3π8,半径为1,∴3π8=12·α·12,∴α=3π4. 答案:3π414.解析:∵x +y =4,∴1x +4y =14⎝ ⎛⎭⎪⎫1x +4y (x +y )=14⎝ ⎛⎭⎪⎫5+y x +4x y ,又x >0,y >0,则y x+4xy≥2y x ·4x y =4⎝ ⎛⎭⎪⎫当且仅当y x =4x y ,即x =43,y =83时取等号, 则1x +4y ≥14×(5+4)=94. 答案:9415.解析:∵f (x )=f (x +3), ∴y =f (x )表示周期为3的函数, ∴f (2 019)=f (0)=3-1=13.答案:1316.解析:作出函数f (x )的图象如下图所示,由图象可知,函数f (x )有且仅有一个零点,要使函数y =f (x )-m 有三个不同的零点,则需函数y =f (x )与函数y =m 的图象有且仅有三个交点,则1<m <2.答案:1 (1,2)17.解析:(1)由⎩⎪⎨⎪⎧6+x ≥02-x >0得,-6≤x <2;由2x>1得,x >0;∴A =[-6,2),B =(0,+∞);∴A ∪B =[-6,+∞); (2)A ∩B =(0,2);∵集合{x |a <x <a +1}是A ∩B 的子集; ∴⎩⎪⎨⎪⎧a ≥0a +1≤2;解得0≤a ≤1;∴a 的取值X 围是[0,1].18.解析:(1)因为sin ⎝ ⎛⎭⎪⎫β-π4=22(sin β-cos β)=15,所以sin β-cos β=25, 所以(sin β-cos β)2=sin 2β+cos 2β-2sin βcos β=1-sin 2β=225,所以sin 2β=2325.(2)因为sin ⎝ ⎛⎭⎪⎫β-π4=15,cos(α+β)=-13, 其中0<α<π2,0<β<π2,所以cos ⎝ ⎛⎭⎪⎫β-π4=265,sin(α+β)=223, 所以cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=cos(α+β)cos ⎝⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝⎛⎭⎪⎫β-π4=⎝ ⎛⎭⎪⎫-13×265+223×15=22-615.19.解析:(1)画出函数f (x )的图象,如图所示:由图象得f (x )在(-∞,0],(0,+∞)上单调递增. (2)若函数y =f (x )-m 有两个零点, 则f (x )和y =m 有2个交点,结合图象得1<m ≤2. 20.解析:(1)f (x )=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期为T =2π2=π.(2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.当2x +π6=π2,即x =π6时,f (x )取得最大值1;当2x +π6=7π6,即x =π2时,f (x )取得最小值-12.21.解析:(1)由题意可得处理污染项目投放资金为(100-x )百万元, 所以N (x )=0.2(100-x ),所以y =50x10+x +0.2(100-x ),x ∈[0,100].(2)由(1)可得,y =50x 10+x +0.2(100-x )=70-⎝ ⎛⎭⎪⎫50010+x +x 5=72-⎝⎛⎭⎪⎫50010+x +10+x 5≤72-20=52,当且仅当50010+x =10+x5,即x =40时等号成立.此时100-x =100-40=60.∴y 的最大值为52百万元,分别投资给植绿护绿项目、污染处理项目的资金为40百万元,60百万元.22.解析:(1)若y =f k (x )是偶函数,则f k (-x )=f k (x ),即2-x+(k -1)·2x =2x+(k -1)·2-x即2-x -2x =(k -1)·2-x -(k -1)·2x =(k -1)(2-x -2x),则k -1=1,即k =2; (2)∵f 0(x )+mf 1(x )≤4,即2x -2-x +m ·2x ≤4,即m 2x ≤4-2x +2-x, 则m ≤4-2x+2-x2x=4·2-x +(2-x )2-1,设t =2-x, ∵1≤x ≤2,∴14≤t ≤12.word- 11 - / 11 设4·2-x +(2-x )2-1=t 2+4t -1,则y =t 2+4t -1=(t +2)2-5, 则函数y =t 2+4t -1在区间⎣⎢⎡⎦⎥⎤14,12上为增函数, ∴当t =12时,函数取得最大值y max =14+2-1=54,∴m ≤54. 因此,实数m 的取值X 围是⎝⎛⎦⎥⎤-∞,54; (3)f 0(x )=2x -2-x ,f 2(x )=2x +2-x ,则f 2(2x )=22x +2-2x =(2x -2-x )2+2, 则g (x )=λf 0(x )-f 2(2x )+4=λ(2x -2-x )-(2x -2-x )2+2,设t =2x -2-x ,当x ≥1时,函数t =2x -2-x 为增函数,则t ≥2-12=32, 若y =g (x )在[1,+∞)有零点,即g (x )=λ(2x -2-x )-(2x -2-x )2+2=λt -t 2+2=0在t ≥32上有解,即λt =t 2-2,即λ=t -2t, ∵函数y =t -2t 在⎣⎢⎡⎭⎪⎫32,+∞上单调递增,则y min =32-2×23=16,即y ≥16.∴λ≥16,因此,实数λ的取值X 围是⎣⎢⎡⎭⎪⎫16,+∞.。

人教A版高一数学必修第一册《一元二次函数、方程和不等式》章末练习题卷含答案解析(48)

人教A版高一数学必修第一册《一元二次函数、方程和不等式》章末练习题卷(共22题)一、选择题(共10题)1.当a<0,−1<b<0时,则下列各式正确的是( )A.a>ab>ab2B.ab>a>ab2C.ab2>ab>a D.ab>ab2>a2.已知m>1,a=√m+1−√m,b=√m−√m−1,则以下结论正确的是( )A.a>b B.a=bC.a<b D.a,b的大小不确定3.关于x的不等式x2−(a+1)x+a<0的解集中恰有两个正整数,则实数a的取值范围是( )A.[2,4)B.[3,4]C.(3,4]D.(3,4)4.下列不等式一定成立的是( )A.x+y≥2√xy B.∣x∣+∣y∣≥2√xyC.∣x∣+∣y∣≥2∣√xy∣D.∣x∣+∣y∣≥2√∣xy∣5.若不等式ax2+bx+c>0的解集为{x∣ −2<x<1},则不等式ax2+(a+b)x+c−a<0的解集为( )A.{x∣ x<−√3或x>√3}B.{x∣ −3<x<1}C.{x∣ −1<x<3}D.{x∣ x<−3或x>1}6.设非零实数a,b,则“a2+b2≥2ab”是“ab +ba≥2”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知x>0,y>0,且x+y=10,则xy有( )A.最大值25B.最大值50C.最小值25D.最小值508.下列不等式中,正确的是( )A.若ac2>bc2,则a>b B.若a>b,则a+c<b+cC.若a>b,c>d,则ac>bd D.若a>b,c>d,则ac >bd9.设集合P={m∣ −1<m<0},Q={m∈R∣ mx2+4mx−4<0对任意实数x恒成立},则下列关系式中成立的是( )A.P⫋Q B.Q⫋P C.P=Q D.P∩Q=∅10.下列关于实数a,b的不等式中,不恒成立的是( )A.a2+b2≥2ab B.a2+b2≥−2abC.(a+b2)2≥ab D.(a+b2)2≥−ab二、填空题(共6题)11.设不等式x2−2ax+a+2≤0的解集为A,若A⊆{x∣ 1≤x≤3},则a的取值范围为.12.设x>0,则2xx2+1的最大值为.13.设实数a,b满足b<a<0,则1a 1b.(填“>”“<”或“=”)14.已知x>0,y>0,且x+2y=xy,若x+2y>m2+2m恒成立,则xy的最小值为,实数m的取值范围为.15.已知关于x的不等式(a2−4)x2+(a+2)x−1≥0的解集为空集,则实数a的取值范围是.16.已知正实数x,y满足12x+y +42x+3y=1,则x+y的最小值为.三、解答题(共6题)17.某居民小区欲在一块空地上建一面积为1200m2的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m,东西的人行通道宽4m,如图所示(图中单位:m),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?18.已知p:x2−2x−35≤0,q:x2−3mx+(2m−1)(m+1)≤0(其中实数m>2).(1) 分别求出p,q中关于x的不等式的解集M和N;(2) 若p是q的必要不充分条件,求实数m的取值范围.19.已知关于x的不等式x2−2x−1>a(a∈R).(1) 若a=1,求不等式的解集;(2) 若不等式的解集为R,求实数a的范围.<1”.20.设a,b均为实数,且a≠0.求证:“a(a−b)>0”的充要条件是“ba21.求证:无论实数m取何值,关于x的方程x2−2mx+m−2=0总有两个不相等的实数根.22.某大学要修建一个面积为216m2的长方形景观水池,并且在景观水池四周要修建出宽为2m和3m的小路(如图).问:如何设计景观水池的边长,能使总占地面积最小?并求出总占地面积的最小值.答案一、选择题(共10题)1. 【答案】D【解析】因为a<0,−1<b<0,所以ab>0,1−b>0,b2−1<0,所以ab−ab2=ab(1−b)>0,所以ab>ab2,又ab2−a=a(b2−1)>0,所以ab2>a,所以ab>ab2>a.故选D.【知识点】不等式的性质2. 【答案】C【知识点】不等式的性质3. 【答案】C【解析】由题意得x2−(a+1)x+a<0可化为(x−a)(x−1)<0的解集有两个正整数,则这两个解为2,3.【知识点】二次不等式的解法4. 【答案】D【知识点】均值不等式的应用5. 【答案】D【解析】由已知得方程ax2+bx+c=0的两根分别为x1=−2,x2=1,且a<0,所以ba =1,ca=−2.所以不等式ax2+(a+b)x+c−a<0可化为x2+(1+ba )x+ca−1>0,即x2+2x−3>0,解得x<−3或x>1.【知识点】二次不等式的解法6. 【答案】B【解析】因为a,b∈R时,都有a2+b2−2ab=(a−b)2≥0,即a2+b2≥2ab,而ab +ba≥2⇔ab>0,所以“a2+b2≥2ab”是“ab +ba≥2”的必要不充分条件.【知识点】均值不等式的应用7. 【答案】A【解析】因为 x >0,y >0,x +y =10, 所以 x +y ≥2√xy , 所以 xy ≤(x+y 2)2=25,当且仅当 x =y =5 时,等号成立.所以 xy 有最大值 25. 【知识点】均值不等式的应用8. 【答案】A【解析】若 a >b ,则 a +c >b +c ,故B 错; 设 a =3,b =1,c =−1,d =−2, 则 ac <bd ,ac<bd ,所以C ,D 错.【知识点】不等式的性质9. 【答案】A【解析】当 m =0 时,−4<0 对任意实数 x ∈R 恒成立;当 m ≠0 时,由 mx 2+4mx −4<0 对任意实数 x ∈R 恒成立可得 {m <0,Δ=16m 2+16m <0,解得 −1<m <0,综上所述,Q ={m∣ −1<m ≤0}, 所以 P ⫋Q .【知识点】二次不等式的解法10. 【答案】D【解析】根据不等式的性质,选项A ,B ,C 都是成立的,选项D 中当 a =−1,b =1 时,等式不成立,故答案选D . 【知识点】不等式的性质二、填空题(共6题) 11. 【答案】 −1<a ≤115【知识点】二次不等式的解法12. 【答案】 1【知识点】均值不等式的应用13. 【答案】 <【知识点】不等式的性质14. 【答案】 8 ; (−4,2)【解析】因为 x >0,y >0,x +2y =xy , 所以 2x +1y =1,所以 1=2x +1y ≥2√2x ⋅1y ,所以 xy ≤8,当且仅当 x =4,y =2 时取等号, 所以 x +2y ≥2√2xy ≥8(当 x =2y 时,等号成立), 所以 m 2+2m <8,解得 −4<m <2, 故答案为:8;(−4,2). 【知识点】均值不等式的应用15. 【答案】[−2,65)【解析】当 a =−2 时,原不等式可化为 0⋅x 2+0⋅x −1≥0,解集为空集,符合题意. 当 a =2 时,原不等式可化为 0⋅x 2+4x −1≥0,解集不能为空集. 当 {a 2−4<0,Δ=(a +2)2+4(a 2−4)<0. 不等式的解集为空集.所以 −2<a <65,综上 −2≤a <65.【知识点】二次不等式的解法16. 【答案】 94【解析】因为 x >0,y >0,所以 2x +y >0,2x +3y >0,x +y >0, 根据题意,12x+y +42x+3y =1,由于 x +y =14[(2x +y )+(2x +3y )],故x +y =(x +y )×1=14[(2x +y )+(2x +3y )]×(12x+y +42x+3y )=14(1+4(2x+y )2x+3y +4+2x+3y2x+y )=54+2x+y2x+3y +2x+3y4(2x+y ),因为 2x+y2x+3y +2x+3y4(2x+y )≥2√14=1,当且仅当 2x =y =32 时取等号, 所以 x +y ≥54+1=94,故 x +y 的最小值为 94. 【知识点】均值不等式的应用三、解答题(共6题)17. 【答案】设矩形停车场南北侧边长为x m,则其东西侧边长为1200xm,人行通道占地面积为S=(x+6)(1200x +8)−1200=8x+7200x+48(m2),由平均值不等式,得S=8x+7200x +48≥2√8x⋅7200x+48=2×24+48=96,当且仅当8x=7200x,即x=30(m)时,S min=96(m2),此时1200x=40(m).所以,设计矩形停车场南北侧边长为30m,则其东西侧边长为40m,人行通道占地面积最小,最小面积是528m2【知识点】均值不等式的实际应用问题18. 【答案】(1) 由x2−2x−35=(x−7)(x+5)≤0,得M=[−5,7];x2−3mx+(2m−1)(m+1)=[x−(2m−1)][x−(m+1)]≤0,因为m>2,所以2m−1>m+1,所以N=[m+1,2m−1].(2) 因为p是q的必要不充分条件,所以N⫋M,所以{−5<m+1,7≥2m−1或{−5≤m+1,7>2m−1,解得−6≤m≤4,又m>2,所以2<x≤4.【知识点】二次不等式的解法、充分条件与必要条件19. 【答案】(1) a=1时,原不等式为x2−2x−1>1,整理,得x2−2x−2>0,对于方程x2−2x−2=0,因为Δ=12>0,所以它有两个不等的实数根,解得x1=1−√3,x2=1+√3,结合函数y=x2−2x−2的图象得不等式的解集为{x∣ x<1−√3或x>1+√3}.(2) 原不等式可化为x2−2x−1−a>0,由于不等式解集为R,结合函数y=x2−2x−1−a图象可知,方程x2−2x−1−a=0无实数根,所以Δ=4+4(1+a)=8+4a<0,所以a的范围是{a∣ a<−2}.【知识点】二次不等式的解法20. 【答案】显然 a ≠0,从而 a (a −b )>0⇔a (a−b )a 2>0⇔a−b a>0⇔1>ba .【知识点】不等式的性质、充分条件与必要条件21. 【答案】因为 Δ=4m 2−4m +8=4(m −12)2+7>0,所以方程总有两个不相等的实数根. 【知识点】不等式的性质22. 【答案】设水池一边长 x m ,则另一边为216xm ,总占地面积为 (x +4)(216x+6).(x +4)(216x+6)=240+6x +864x≥240+144=384,当且仅当 6x =864x,即 x =12 时,取得等号.因此,水池一边长为 12 m ,另一边长为 18 m 时,总占地面积为最小,最小为 384 m 2. 【知识点】均值不等式的实际应用问题。

小学一年级数学第一册上学期期末试卷

小学20 至20 学年度第一册数学期末试卷 (完卷时间:50分钟) 一、看k àn 图t ú写xi ě数sh ù(每题1分,共4分) ( ) ( ) ( ) ( ) 二、填ti án 一y ī 填ti án 。

(每空1分,共28分) 1、一个两位数,它的个位上是3,十位上是1,这个数是( )。

2、15里面有( )个一和( )个十; 3、在○里填上“>”、“<”或“=” 13○12 9+5○15 15-4○10 2+7○7+2 4、在○里填上“+”或“-” 8○5=3 6○6=12 9○4>12 10○8<10 5、、 ①从左数,小猫m āo 排p ái 在第d ì( ),小猴h óu 排p ái 在第d ì( )。

②从右数,第( )是小猴h óu ,第( )是小鸭y ā。

③一共有( )种( zh ǒng )不同的 动d òng 物w ù。

6、从8、9、2、10、11中选xu ǎn 三个数写出四道d ào 不同的算式。

□○□=□ □○□=□ □○□=□ □○□=□7、( )+6=8 7+( )=1016-( )=10 20-10=( )8、①小马的上面是(),小象的下面是();②小鸭的前面是(),后面是()。

三、数s hù一yī数s hù。

(8分)长方体tǐ有( )个,正方体tǐ有( )个;圆柱z hù体有( )个,球有( )个。

四、写出钟面上的时间(8分)::::五、算su àn 一y ī 算su àn 。

(每题1分,共23分)2+6= 10-3= 4+9= 8-8= 9-4=3+4= 8+0= 7+6= 8+9= 10+6= 8+2= 7+7= 14-2= 7+5= 13-10= 4+4-6= 10-1-9= 8-4+9= 6+9-5= 9+1+5= 6+7-3= 9-3+8= 10-6+3=六、比b ǐ 一y ī 比b ǐ,画h u à 一y ī 画h u à。

高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)

高中数学必修第一册《一元二次函数、方程和不等式》期末复习专项训练一、单选题l. (2022·四川绵阳·高一期末〉下列结论正确的是(〉A.若的b,则。

c>bc c.若。

>b,则。

+c>b+cl I B.若α>b,则-〉-a D D.着。

>b,则。

2> b22.(2022·辽宁·新民市第一高级中学高一期末〉已知α<b<O,则(〉A.a2 <abB.ab<b2C.a1 <b1D.a2 >b i3.(2022·陕西汉中·高一期末〉若关于工的不等式,咐2+2x+m>O的解集是R,则m的取值范围是(〉A.(I, +oo)B.(0, I〕C.( -J, I)D.(J, +oo)4.(2022·广东珠海高一期末〉不等式。

+l)(x+3)<0的解集是(〉A.RB.②c.{对-3<x<-I} D.{xi x<-3,或x>-l}5. (2022·四川甘孜·高一期末〉若不等式似2+bx-2<0的解集为{xl-2<x<I},则。

÷b=( )A.-2B.OC.ID.26. (2022·湖北黄石·商一期末〉若关于X的不等式x2-ax’+7>。

在(2,7)上有实数解,则α的取值范围是(〉A.(唱,8)B.(叫8] c.(叫2./7) D.(斗)7.(2022·新疆乌市一中高一期末〉已知y=(x-m)(x-n)+2022(n> m),且α,β(α〈别是方程y=O的两实数根,则α,β,111,n的大小关系是(〉A.α<m<n<βC.m<α〈β<nB.m<α<n<βD.α<m<β<n8.(2022·浙江·杭州四中高一期末〉已失11函数y=κ-4+...2....(x>-1),当x=a时,y取得最小值b,则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一册数学期末练习题
班级:姓名:分数:一、填空。

1.看图写数。

2.按数的顺序填数。

579719
二、在正确的答案下的○里打“√”。

1.下图中哪枝铅笔长?
2.9-7=□
2178
○○○○
3.2>□-8
9101811
○○○○
4.比 12大的数是几?
12 13 11 15 9
○○○○○
5.13是怎样组成的?
10个十和 3个一3个一和 1个十1个一和 3个十13个十○○○○
6.把 0至 9按从小到大的顺序排列,从 0开始数,第 7个数是几?
6 789
○○○○
1/1
7.小明和冬冬看一本页数相同的书,小明看了 11页,冬冬看了 8页,谁剩下的页数多?
小明多冬冬多
○○
三、数一数
长方形有()个;正方形有()个;
三角形有()个;圆形有()个。

四、在()里填上合适的数。

6+()=109+()=17()+2=12
()+7=155+()=1216+()=19
五、在○里填上“>”、“<”或“=”。

17○20 13○11 8○10 9○15 7+7○15 5+8○14 9-2○11 7+6
○13 15-5○9
六、计算下列各题。

5+8+3=9-6+4=10+8-5=
16-0-5=3+9+2=10-5+7=
七、在○里填上数,使横、竖三个数相加的和是 16。

八、列式计算。

(1)一个加数是 8,另一个加数是 9,和是多少?
(2)被减数是 10,减数是 2,差是多少?
九、应用题。

2/2
________________(个)___________________(个)
3.白兔和黑兔共 15只,其中黑兔有 5只,白兔有多少只?
_________________(只)
4.小明有 16本课外读物,捐给校图书馆后,还剩 10本,小明捐给校图书馆多少本?
_________________(本)
5.妈妈买回一袋巧克力,送给奶奶 6块后,还剩 8块,这袋巧克力原来有多少块?
_________________(块)
十、智慧园
1.同学们做了 8个红色风车,4个黄色风车,6个纸船,同学们一共做了( )个风车。

2.玲玲的左边有 12个人,右边有 8个人,从左边移( )个人到玲玲的右边,玲玲就站在正中间了。

3/3。

相关文档
最新文档