数字图像处理实验报告[邻域平均法和中值滤波法]
数字图像处理实验报告

目录实验一数字图像滤波处理 (2)实验二数字图像锐化处理 (10)实验三数字图像平滑处理 (14)实验四数字图像的直方图规定化 (16)实验五数字图像的傅立叶变换 (20)实验一 数字图像滤波处理一、 实验目的(一) 掌握数字图像滤波处理的算法原理。
(二) 熟悉数字图像滤波处理的算法原理。
二、 实验原理和方法(一)均值滤波平滑线形空间滤波的输出(响应)是包含在滤波掩模邻域内像素的简单平均值。
因此,这些滤波器也称均值滤波器,指的是低通滤波器。
它是用滤波掩模确定的邻域内像素的平均灰度值代替图像中每个像素点的值,这种处理减小了图像灰度的“尖锐”变化。
图1-1显示了两个33⨯的平滑滤波器。
第一个滤波器产生掩模下的标准像素平均值,把掩模系数代入式z w z w z w z w i i i R ∑==+++=91992211 (1.1)(w 为掩模系数,z 为与该系数对应的灰度值)即可得∑=911i z R (1.2)图1-1 两个33⨯均值滤波器掩模。
R 是由掩模定义的33⨯邻域像素灰度的平均值。
一个n m ⨯掩模应有mn 1的归一化常数。
图1-1第二种掩模更重要,也称加权平均,处于掩模中心位置的像素比其他任何像素就显得不太重要 。
由于对角项离中心比离正交方向相邻的像素更远,所以它的重要性比与中心直接相邻的四个像素低。
把中心点加强的最高,而随着距中心加强为最高,而随着距中心点距离的增加减小系数值,是为了减小平滑处理中的模糊。
所有系数的和是16,2的整数次幂,便于计算机的实现。
一幅N M ⨯的图像经过一个n m ⨯(m 和n 是奇数)的加权均值滤波器滤波的过程可由下式给出:)())(()(∑∑∑∑-=-=-=-=++=a a s bbt a a s bbt t s w t y s x f t s w y x g ,,,, (1.3)可理解为一幅完全滤波的图像是由对1,2,1,0-=M x 和1,2,1,0-=N y 执行式(1.3)得到的。
数字图像处理实验报告

数字图像处理试验报告实验二:数字图像的空间滤波和频域滤波姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日1.实验目的1. 掌握图像滤波的基本定义及目的。
2. 理解空间域滤波的基本原理及方法。
3. 掌握进行图像的空域滤波的方法。
4. 掌握傅立叶变换及逆变换的基本原理方法。
5. 理解频域滤波的基本原理及方法。
6. 掌握进行图像的频域滤波的方法。
2.实验内容与要求1. 平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。
2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。
3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。
4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。
5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。
2. 锐化空间滤波1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波。
2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对进行锐化滤波,并利用式g(x, y) ?f (x, y) ? ?2 f (x, y) 完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。
数字图像处理实验报告3

实验报告实验项目名称:数字图像的空间滤波法 (所属课程: 数字图像处理 )院 系: 专业班级: 姓 名 学 号: 实验日期: 实验地点:A07-602指导教师: 本实验项目成绩: 教师签字: 日期: 1.实验目的1. 掌握图像滤波的基本定义及目的。
2. 理解空间域滤波的基本原理及方法。
3. 掌握进行图像的空域滤波的方法。
2.实验环境(软件、硬件及条件)Windows XP 系统MATLAB 软件3.实验方法1. 平滑空间滤波:1) 读出eight.tif 这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。
2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。
3) 使用函数imfilter 时,分别采用不同的填充方法(或边界选项,如零填充、’replicate ’、’symmetric ’、’circular ’)进行低通滤波,显示处理后的图像。
4) 运用for 循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。
5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。
2. 锐化空间滤波1) 读出moon.tif 这幅图像,采用3×3的拉普拉斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波。
2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5×5 的拉普拉斯算子。
3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif进行锐化滤波,并利用式2(,)(,)(,)g x y f x y f x y =-∇完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。
数字图像处理实验教学报告.doc

数字图像处理实验报告实验内容:主要实现以下几个内容:⑴直方图均衡化(histogram equalization ) ⑵直方图匹配(histogram matching ) ⑶邻域平均(neighborhood averaging ) ⑷局域增强(local enhancement ) ⑸中值滤波(median filtering )。
二.实验目的:下载安装MATLAB 图像处理工具箱,对图像进行处理;学会用Matlab 中的下列函数对输入图像进行上述5类运算;感受各种不同的图像处理方法对最终图像效果的影响。
Imhist :对灰度图像画直方图 Histeq :是图像直方图均衡化处理 Nlfilter :实现双边滤波器mean2:图像处理工具箱中的函数,用来计算矩阵元素的平均数 std2:计算矩阵元素的标准差 fspecial :建立预定义的滤波算子 filter2:使用指定的滤波器进行滤波 medfilt2:中值滤波三.实验步骤1.仔细阅读Matlab 帮助文件中有关以上函数的使用说明,能充分理解其使用方法并能运用它们完成实验内容。
2.将桌面上文件1(a).jpg 图像文件用函数imread 读入Matlab 中,对其作直方图均衡化和直方图匹配运算,显示运算前后该图像的直方图,处理后的图像和灰度变换函数。
直方图反映灰度等级的分布情况,本实验指定的直方图如下:1400×rr ≤5 7000-310×r 5<r ≤20 900-5×r 20<r ≤180 -1440+8×r 180<r ≤225 3060-12×r225<r ≤2553.将文件2.jpg 图像文件读入Matlab ,用nlfilter 对其进行3×3邻域平均和计算邻域标准差,再对其黑暗部分的特征进行局域增强而保持明亮部分图像不变,显示增强后的效果图。
在进行局域增强时,应按下列算法进行:E ·f (x ,y ) if m Sxy ≤k 0M G and k 1D G ≤σSxy ≤k 2D G f (x ,y )otherwisen =g (x ,y )=适当调整k 0,k 1和k 2的值,使局域增强达到最佳效果。
邻域平均实验报告

一、试验内容:1.熟悉程序基本框架;2.读取位图,转换为灰度图;3.完成灰度图像的平滑和锐化处理。
二、试验方法:1. 图像平滑(1)邻域平均法算法思想:邻域平均法是用像素及其指定邻域内像素的平均值或加权平均值作为该像素的新值,以便除去突变的像素点,从而滤除一定的噪声。
本试验采用3*3高斯模板对图像进行处理,主要程序如下:void CWvltDoc::Onsmo(){// TODO: Add your command handler code hereLPBITMAPINFOHEADER lpBitmapInfoHeader = (LPBITMAPINFOHEADER)(m_pBitmap+14);//信息头LPBITMAPFILEHEADER lpBitmapFileHeader = (LPBITMAPFILEHEADER)m_pBitmap;//文件头unsigned char *lpData = m_pBitmap + lpBitmapFileHeader->bfOffBits;//指向实际位图信息数据unsigned long biHeight = lpBitmapInfoHeader->biHeight;unsigned long biWidth = lpBitmapInfoHeader->biWidth;unsigned long biAlign = ( biWidth*3+3) /4 *4;//实际宽度unsigned long bmSize = biHeight * biAlign;if (m_pTransfered == NULL)m_pTransfered = (unsigned char*)malloc(bmSize);if (m_pTransfered2 == NULL)m_pTransfered2 = (unsigned char*)malloc(bmSize);if (m_pTransfered2 == NULL)return ;int tem_height,tem_width,tem[3][3]={1,2,1,2,4,2,1,2,1};double tem_xishu;tem_height=3;tem_width=3;tem_xishu=16;int x, y, cur;for (y = 0; y < (int)biHeight; y++){for (x = 0; x < (int)biWidth; x++){cur = y*biAlign+3*x; //current pixel当前像素位置m_pTransfered[cur]=(lpData[cur]+lpData[cur+1]+lpData[cur+2])/3;m_pTransfered[cur+1]=m_pTransfered[cur];m_pTransfered[cur+2]=m_pTransfered[cur];}}for (int j = 0; j < (int)biHeight; j++){for (int i = 0; i < (int)biWidth; i++){cur = j*biAlign+3*i;m_pTransfered2[cur]=(m_pTransfered[cur-biAlign-3]*tem[0][0]+m_pTransfered[cur-3]*tem [0][1]+m_pTransfered[cur-3+biAlign]*tem[0][2]+m_pTransfered[cur-biAlign]*tem[1][0]+m_pTr ansfered[cur]*tem[1][1]+m_pTransfered[cur+biAlign]*tem[1][2]+m_pTransfered[cur-biAlign+3] *tem[2][0]+m_pTransfered[cur+3]*tem[2][1]+m_pTransfered[cur+3+biAlign]*tem[2][2])/tem_xi shu;m_pTransfered2[cur+1]= m_pTransfered2[cur];m_pTransfered2[cur+2]= m_pTransfered2[cur];}}UpdateAllViews(NULL);}(2)中值滤波法算法思想:把以某像素为中心的小窗口内的所有像素的灰度按从小到大排序,取排序结果的中间值作为该像素的灰度值。
数字图像处理实验报告.doc

数字图像处理试验报告实验二:数字图像的空间滤波和频域滤波姓名: XX学号: 2XXXXXXX实验日期:2017年4月26日1. 实验目的1. 掌握图像滤波的基本定义及目的。
2. 理解空间域滤波的基本原理及方法。
3. 掌握进行图像的空域滤波的方法。
4. 掌握傅立叶变换及逆变换的基本原理方法。
5. 理解频域滤波的基本原理及方法。
6. 掌握进行图像的频域滤波的方法。
2. 实验内容与要求1. 平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。
2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。
3)使用函数 imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’ replicate ’、’ symmetric ’、’ circular ’)进行低通滤波,显示处理后的图像。
4) 运用 for 循环,将加有椒盐噪声的图像进行10 次, 20 次均值滤波,查看其特点, 显示均值处理后的图像(提示 : 利用 fspecial 函数的’ average ’类型生成均值滤波器)。
5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
6)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。
2.锐化空间滤波1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 81;1,1, 1]对其进行滤波。
2) 编写函数 w = genlaplacian(n) ,自动产生任一奇数尺寸n 的拉普拉斯算子,如 5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]3) 分别采用5×5,9×9,15×15 和 25×25 大小的拉普拉斯算子对blurry_moon.tif进行锐化滤波,并利用式 g(x, y)2 f (x, y) 完成图像的锐化增强,观察其有何f (x, y)不同,要求在同一窗口中显示。
数字图像处理实验三(邻域平均法和中值滤波)

数字图像处理 实验三
邻域平均法(box 模板)和中值滤波处理
加入脉冲噪声后的图像:testnoise.bmp 去噪过程 结果图像
请设计程序,分别用邻域平均法,其模板为:
和中值滤波法对testnoise 图像进行去噪处理(中值滤波的模板的大小也设为3×3)。
得出实验结果图像后,比较这两种方法去噪的效果好坏,并分析具体原因。
完成上述工作后,使用程序进行验证分析:使用邻域平均法时,3×3和5×5模板大小对图像进行处理的效果有何差别?并分析原因。
附加说明:程序框架可以参考第二次实验指导书上给出的示例程序。
邻域平均法 中值滤波法
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡1111*1111191。
数字图像处理 实验报告(完整版)

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理实验报告班级:姓名:学号:日期:邻域平均法和中值滤波处理一、实验目的图像变换是数字图像处理中的一种综合变换,如直方图变换、几何变换等。
通过本实验,使得学生掌握两种变换的程序实现方法。
二、实验任务请设计程序,分别用邻域平均法,其模板为:和中值滤波法对testnoise图像进行去噪处理(中值滤波的模板的大小也设为3×3)。
三、实验环境本实验在Windows平台上进行,对内存及cpu主频无特别要求,使用VC或者MINGW(gcc)编译器均可。
四、设计思路介绍代码的框架结构、所用的数据结构、各个类的介绍(类的功能、类中方法的功能、类的成员变量的作用)、各方法间的关系写。
在此不进行赘述。
五、具体实现实现设计思路中定义的所有的数据类型,对每个操作给出实际算法。
对主程序和其他模块也都需要写出实际算法。
代码:<邻域平均法>(3*3)#include <stdio.h>#include <stdlib.h>#include <memory.h>#include "hdr.h" /*------定义结构指针------*/struct bmphdr *hdr;//定义用于直方图变量unsigned char *bitmap,*count,*new_color; /*------main()函数编------*/int main(){ //定义整数i,j 用于函数循环时的,nr_pixels为图像中像素的个数int i, j ,nr_pixels,nr_w,nr_h; //定义两个文件指针分别用于提取原图的数据和生成直方图均衡化后的图像FILE *fp, *fpnew; //定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。
//argc=3; //argv[1]="test.bmp"; //argv[2]="testzf.bmp"; //参数输入出错显示/* if (argc != 3) {printf("please input the name of input and out bitm ap files\n");exit(1);}*/// 获取位图文件相关信息//hdr = get_header(argv[1]);hdr = get_header("testnoise.bmp");if (!hdr) exit(1); //以二进制可读方式打开输入位图文件fp = fopen("testnoise.bmp", "rb");if (!fp) {printf("File open error!\n");exit(1);} // 文件指针指向数据区域fseek(fp, hdr->offset, SEEK_SET); //计算位图像素的个数nr_pixels = hdr->width * hdr->height;nr_w = hdr->width;nr_h = hdr->height;bitmap = malloc(nr_pixels);new_color = malloc(nr_pixels);count = malloc((nr_w+2)*(+nr_h+2));//读取位图数据到bitmap中fread(bitmap, nr_pixels, 1, fp);fclose(fp);//因为图像边缘无法使用邻域平均,所以根据邻近颜色填补图像的周围一圈,存入count[]数组中//中心图像存入count[]for(i=nr_w+3;i<(nr_w+2)*(+nr_h+2)-nr_w-3;i++) {j=i/(nr_w+2);if(i%(nr_w+2)!=0&&(i+1)%(nr_w+2)!=0) count[i]=bitmap[i-nr_ w-1-2*j];}//填补第一排for(i=1;i<nr_w+1;i++) {count[i]=bitmap[i-1];} //填补最后一排for(i=1;i<nr_w+1;i++) {count[(nr_w+2)*(nr_h+1)+i]=bitmap[nr_w*(nr_h-1)+i-1];} //填补左边一排for(i=0;i<nr_h+3;i++) {count[i*(nr_w+2)]=count[i*(nr_w+2)+1];} //填补右边一排for(i=0;i<nr_h+3;i++){ count[(i+1)*(nr_w+2)-1]=count[(i+1)*(nr_w+2)-2];}//邻域平均3*3for(j=nr_w+3,i=0;j<(nr_w+2)*(+nr_h+2)-nr_w-3;j++) {if(j%(nr_w+2)!=0&&(j+1)%(nr_w+2)!=0)new_color[i]=(count[j]+count[j-1]+count[j+1]+count[j-nr_w-2 ]+count[j-1-nr_w-2]+count[j+1-nr_w-2]+count[j+nr_w+2]+count [j-1+nr_w+2]+count[j+1+nr_w+2])/9,i++; } //结果存入bitmap[]中for (i = 0; i < nr_pixels; i++;bitmap[i]=new_color[i]; // 打开一个以输出文件名命名的文件,设为可写的二进制形式fpnew = fopen("test_lynoise.bmp", "wb+");//由于位图文件的头部信息并没有因直方图均衡化而改变,因此输出图像的头部信息从原位图文件中拷贝即可:fwrite(hdr->signature, 2, 1, fpnew);fwrite(&hdr->size, 4, 1, fpnew);fwrite(hdr->reserved, 4, 1, fpnew);fwrite(&hdr->offset, 4, 1, fpnew);fwrite(&hdr->hdr_size, 4, 1, fpnew);fwrite(&hdr->width, 4, 1, fpnew);fwrite(&hdr->height, 4, 1, fpnew);fwrite(&hdr->nr_planes, 2, 1, fpnew);fwrite(&hdr->bits_per_pixel, 2, 1, fpnew);fwrite(&hdr->compress_type, 4, 1, fpnew);fwrite(&hdr->data_size, 4, 1, fpnew);fwrite(&hdr->resol_hori, 4, 1, fpnew);fwrite(&hdr->resol_vert, 4, 1, fpnew);fwrite(&hdr->nr_colors, 4, 1, fpnew);fwrite(&hdr->important_color, 4, 1, fpnew);if (hdr->offset > 54)fwrite(hdr->info, (hdr->offset - 54), 1, fpnew); //直方图均衡化的数据(bitmap)赋值fwrite(bitmap, nr_pixels, 1, fpnew);//关闭fclose(fpnew);//释放内存(优化程序必需)free(hdr);free(bitmap);free(new_color);free(count);return 0;}<中值滤波>#include <stdio.h>#include <stdlib.h>#include <memory.h>#include "hdr.h"/*------定义结构指针------*/struct bmphdr *hdr;//定义用于直方图变量unsigned char *bitmap,*count,*new_color;/*------main()函数编写------*/int main(){ //定义整数i,j 用于函数循环时的,nr_pixels为图像中像素的个数int i, j, m, n, nr_pixels,nr_w,nr_h,temp,t[9]; //定义两个文件指针分别用于提取原图像的数据和生成直方图均衡化后的图像FILE *fp, *fpnew; //定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可.// argc=3;// argv[1]="test.bmp";// argv[2]="testzf.bmp";//参数输入出错显示/* if (argc != 3) {printf("please input the name of input and out bi tmap files\n");exit(1);}*/// 获取位图文件相关信息//hdr = get_header(argv[1]);hdr = get_header("testnoise.bmp");if (!hdr) exit(1); //以二进制可读方式打开输入位图文件fp = fopen("test.bmp", "rb");if (!fp) {printf("File open error!\n");exit(1);} // 文件指针指向数据区域fseek(fp, hdr->offset, SEEK_SET);//计算位图像素的个数nr_pixels = hdr->width * hdr->height;nr_w = hdr->width;nr_h = hdr->height;bitmap = malloc(nr_pixels);new_color = malloc(nr_pixels);count = malloc((nr_w+2)*(+nr_h+2)); //读取位图数据到bitmap中fread(bitmap, nr_pixels, 1, fp);fclose(fp); //因为图像边缘无法使用邻域平均,所以根据邻近颜色填补图像的周围一圈,存入count[]数组中//中心图像存入count[]for(i=nr_w+3;i<(nr_w+2)*(+nr_h+2)-nr_w-3;i++) {j=i/(nr_w+2);if(i%(nr_w+2)!=0&&(i+1)%(nr_w+2)!=0) count[i]=bitmap[i-nr_ w-1-2*j];} //填补第一排for(i=1;i<nr_w+1;i++) { count[i]=bitmap[i-1]; } //填补最后一排for(i=1;i<nr_w+1;i++) {count[(nr_w+2)*(nr_h+1)+i]=bitmap[nr_w*(nr_h-1)+i-1];} //填补左边一排for(i=0;i<nr_h+3;i++) { count[i*(nr_w+2)]=count[i*(nr_w+ 2)+1]; }//填补右边一排for(i=0;i<nr_h+3;i++){ count[(i+1)*(nr_w+2)-1]=count[(i+1)*(nr_w+2)-2];} //中值平均3*3for(j=nr_w+3,i=0;j<(nr_w+2)*(+nr_h+2)-nr_w-3;j++) {if(j%(nr_w+2)!=0&&(j+1)%(nr_w+2)!=0){t[0]=count[j];t[1]=count[j-1];t[2]=count[j+1];t[3]=count[j-nr_w-2];t[4]=count[j-1-nr_w-2];t[5]=count[j+1-nr_w-2];t[6]=count[j+nr_w+2];t[7]=count[j-1+nr_w+2];t[8]=count[j+1+nr_w+2];for(m=0;m<9;m++)for(n=0;n<9-m;n++)if(t[n]>t[n+1]) {temp=t[n];t[n]=t[n+1];t[n+1]=temp;}new_color[i]=t[4];i++;}} //结果存入bitmap[]中for (i = 0; i < nr_pixels; i++)bitmap[i]=new_color[i]; // 打开一个以输出文件名命名的文件,设为可写的二进制形式fpnew = fopen("test_zznoise.bmp", "wb+");//由于位图文件的头部信息并没有因直方图均衡化而改变,因此输出图像的头部信息从原位图文件中拷贝即可:fwrite(hdr->signature, 2, 1, fpnew);fwrite(&hdr->size, 4, 1, fpnew);fwrite(hdr->reserved, 4, 1, fpnew);fwrite(&hdr->offset, 4, 1, fpnew);fwrite(&hdr->hdr_size, 4, 1, fpnew);fwrite(&hdr->width, 4, 1, fpnew);fwrite(&hdr->height, 4, 1, fpnew);fwrite(&hdr->nr_planes, 2, 1, fpnew);fwrite(&hdr->bits_per_pixel, 2, 1, fpnew);fwrite(&hdr->compress_type, 4, 1, fpnew);fwrite(&hdr->data_size, 4, 1, fpnew);fwrite(&hdr->resol_hori, 4, 1, fpnew);fwrite(&hdr->resol_vert, 4, 1, fpnew);fwrite(&hdr->nr_colors, 4, 1, fpnew);fwrite(&hdr->important_color, 4, 1, fpnew);if (hdr->offset > 54)fwrite(hdr->info, (hdr->offset - 54), 1, fpnew);//直方图均衡化的数据(bitmap)赋值fwrite(bitmap, nr_pixels, 1, fpnew);//关闭fclose(fpnew);//释放内存(优化程序必需)free(hdr);free(bitmap);free(new_color); free(count);return 0;。