高强高性能混凝土

高强高性能混凝土
高强高性能混凝土

一、前言

1824年,波特兰水泥发明,到目前混凝土材料已有近200年的历史,且混凝土也有了很大的发展,由普通混凝土向高性能混凝土发展。自20世纪以来,混凝土就己成为房屋建筑、桥梁、水利、公路等现代工程结构首选材料,混凝土作为土木工程中最大宗的人造材料,其用量巨大。进入21世纪以来,随着科学技术的快速发展,一种种新型混凝土不断出现。作为最主要的建筑结构材料,混凝土本身必须具有高强度、高工作性、高耐久性等性能,因此高性能混凝土是现代混凝土技术发展的必然结果,是混凝土的发展方向。

我国自从 1979年在湘桂铁路红水河斜拉桥的预应力箱梁中首次采用泵送

C60 混凝土以来,现代高性能混凝土在我国的应用已走过了30余年。现在,像北京、广州、上海、深圳等大城市已供应C80级别的预拌混凝土,C50~C60级高性能混凝土已在许多建筑和桥梁中得到应用,近年建成的大型桥梁的混凝土主体构件如主梁、刚架或索塔等,多数都采用了高性能混凝土。

二、高性能混凝土的概念

《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。《普通混凝土配合比设计规程》(JGJ55-2011)规定强度等级不低于C60级别的混凝土称为高强混凝土。它采用高性能的外加剂,如高效减水剂或者高性能引气剂、其它特种外加剂和掺入足够的超细活性混合材料,如:超细磨粉煤灰、磨细矿粉、优质粉煤灰等达到低水胶比,并具有耐久性、体积稳定性和经济合理性等性能的新型混凝土。高性能混凝土以耐久性作为主要设计指标,针对不同用途要求,对耐久性、工作性、适用性、强度、体积稳定性和经济性等性能予以保证。

三、高性能混凝土的特性

(1) 高强度。由于高性能混凝土的强度高、弹模高,可以利用这一特性大幅度的减少高层和超高建筑物纵向受力结构的截面尺寸,扩大建筑使用面积,

很大程度上改善了建筑物的使用功能;另外由于结构截面尺寸的减小,大大减少了建筑物结构的自重,从而解决了建筑物的结构自重占主要因素的问题。不仅

如此,由于混凝土强度的提高,还能节约混凝土的原材料、加快施工进度提高

建筑工程的经济效益。

(2) 耐久性。高效减水剂和超细磨粉煤灰、磨细矿粉、优质粉煤灰等的配

合使用,能有效的减少用水量,减少混凝土内部的空隙,并且能够使混凝土结

构安全可靠地工作50~100年以上,这是高性能混凝土应用的主要目的。

(3) 稳定性。由于高性能混凝土的强度高,变形很,所以混凝土的钢度大

大增加,减少了混凝土预应力的损失。因此,高性能混凝土能适应现代化建筑

结构大跨度、超高层和承受恶劣等环境条件。

(4)工作性。坍落度是评价混凝土工作性的主要指标,高性能混凝土的坍落度控制功能很好,在振捣过程中,高性能混凝土粘性大,粗骨料的下沉速度慢,在相同的振动时间内,下沉距离短,稳定性和均匀性好。同时,由于高性能混

凝土的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少会产生离析的现象。

(5)经济性。高性能混凝土的高强度可以减少构件尺寸,减小自重,增加使用空间;高性能混凝土良好的耐久性和稳定性可以减少结构的维修费用,延长

结构的使用寿命,收到良好的经济效益;高性能混凝土良好的工作性可以减少

工人工作强度,加快施工速度,减少成本。

四、高性能混凝土原材料及其选用

1、骨料

高性能混凝土的骨料选择,对于保证高性能混凝土的物理力学性能和长期

耐久性至关重要,清华大学混凝土专家冯乃谦认为,要选择适宜的骨料配置高

性能混凝土,必须注意骨料的品种、表观密度、吸水率、粗骨料强度、粗骨料

最大粒径、粗骨料级配、浆骨比、砂率和碱活性组分含量等指标。

在混凝土中,骨料具有重要的技术作用和经济作用,正确的选择骨料的品种,是配制高性能混凝土的基础。在普通混凝土中,一般骨料的强度高于混凝土的3~4倍,虽然骨料不同,但混凝土的抗压强度差别很小;但在高性能混凝

土中,随着混凝土强度的提高,骨料的差别对混凝土的抗压强度影响很大,甚至骨料的粒径、粒形、表面状况、级配及最佳砂率、骨灰比都会成为影响高性能混凝土强度的因素。对于高性能混凝土来说,骨料的选择应考虑以下问题:

(1) 级配要好:混凝土骨料,既要求级配合格,也要粒径粗细、大小适中。空隙率尽可能低,这样当达到相同流动性时,水泥浆的用量低,混凝土的自收缩变形低,水化热低,体积稳定性好,对强度耐久性有利。

(2) 物理性能好:骨料的表观密度和堆积密度要大、吸水率要低,表面要粗糙、粒径好。表观密度>2.65,堆积密度>1450kg/m3,这样可以降低骨料的空隙率,降低水泥浆用量,有利于流动性,耐久性和强度。吸水率<1.0%,说明岩石比较致密,稳定性好。

(3) 力学性能:不含有软弱颗粒的骨料或风化骨料。岩石抗压强度应为混凝土强度的1.5倍以上。骨料弹性模量越大,混凝土的弹性模量也相应增大。

(4) 化学性能:骨料应是无碱活性骨料,避免高性能混凝土中发生碱-骨料反应。不含泥块且含泥量<1.0%;不含有机物、硫化物和硫酸盐等杂质。

2、水

混凝土拌合用水是在混凝土搅拌时,加入其中赋予混凝土流动性,和水泥发生水化反应,使混凝土凝结、硬化及满足其强度发展。拌合用水对拌合料的性能、混凝土的凝结、硬化、强度发展、体积变化以及工作度等方面都有很大影响。

拌制或养护混凝土的用水,不能含有对混凝土中钢筋产生有害影响的物质。通常使用清洁的能饮用的河水、井水、自来水、湖水及溪涧水(pH值不得小于4)等。但沼泽水、工厂废水以及含矿物质较多的硬质水则不得使用;水中含有脂肪、糖类、酸类等有害物质时则应禁止使用。

《混凝土拌合用水标准》(JGJ63-2006)对混凝土拌合水有如下技术要求:

(1)对凝结时间的影响;用被检验水和生活用水,进行水泥凝结时间试验。两者的初凝和终凝时间差不得大于30min,而且要符合水泥国家标准的规定。

(2)对抗压强度的影响;被检验水样应与饮用水样进行水泥胶砂强度对比试验,被检验水样配制的水泥胶砂3d和28d强度不应低于饮用水配制的水泥胶砂

3d和28d强度的90%。

(3) 未经处理的海水严禁用于钢筋混凝土和预应力混凝土。

(4)拌和用水不得采用海水。当混凝土处于氯盐锈蚀环境时,拌和用水中Cl-含量不应大于200 mg/L。对于使用钢丝或经热处理钢筋的预应力混凝土,拌和水中Cl-含量不得超过350mg/L。

(5)养护用水除不溶物、可溶物可不作要求外,其他项目应符合规定。养护用水不得采用海水。

3、水泥

配制高性能混凝土时选用的水泥应符合以下要求:

(1)标准稠度的用水量要低,以获得较大的流动性。

(2)水化放热量和放热率均要低,以便最大限度地减少因温度应力引起的裂缝。

(3)水泥水化后的强度要高,以保证以最少的水泥用量获得较高的混凝土强度。水泥通常选用硅酸盐水泥或普通硅酸盐水泥,强度等级不宜低于42.5级。水泥亦可选择矿渣水泥、粉煤灰水泥或球状水泥、调粒水泥等低水灰比的特性水泥。水泥要有出厂合格证明以及复检合格证明,高性能混凝土拌制使用的水泥质量应严格控制,严禁使用不合格或过期的水泥。

4、矿物掺合料

矿物掺合料主要是粉煤灰、矿渣、硅粉等,它们是辅助胶凝材料,近几年来在普通混凝土应用中越来越普遍,一方面是由于经济效益显著,另一方面是因为使用这种材料可以得到技术效果。在高性能混凝土中,应用辅助胶凝材料的作用就更为突出。

高性能混凝土的高强度部分来源于其基材的密实,即使有一部分水泥被一种或者多种辅助胶凝材料代替,也不会对混凝土的早期强度有副作用。此外,化学活性较低的辅助胶凝材料代替部分水泥,从控制水化放热和流变性能的角度也是有益的。

对掺合料的要求。合理选用掺合料品种及合理控制其最优掺合用量,可提高混凝土强度20%以上,对提高混凝土的工作性和耐久性、抑制碱-骨料反应、减少泌水离析现象的产生、降低徐变和收缩等都有着重要作用。高性能混凝土

的矿物掺合料可选用优质粉煤灰、磨细矿渣、硅粉或天然沸石岩等材料。在配置高性能混凝土时,用作混凝土掺合料的硅粉用量一般为水泥的5%~15%,煤灰一般应选用Ⅰ级灰,同时用作掺合料的粉煤灰应该符合国家标准《用于水泥和混凝土中的粉煤灰》(GB/J1596-2005)的技术规范。

五、高性能混凝土的施工与质量控制

混凝土的制造和施工在很大程度上决定了混凝土的性能。加料顺序是否正确,拌和是否彻底、均匀、运输与搬运过程中混凝土拌合物是否离析、振捣是

否密实、养护是否充分等均是影响高性能混凝土质量的重要因素。

(1) 搅拌。混凝土原材料应严格按照施工配合比要求进行准确称量,称量最大允许偏差应符合下列规定(按重量计):胶凝材料(水泥、掺合料等)±1%;外加剂±1%;骨料±2%;拌合用水±1%。应采用卧轴式、行星式或逆流式强制搅拌机搅拌混凝土,也可以应用普通混凝土的施工设备进行施工,采用电子计量系统计量原材料,并且要增加原材料质量变化的检查次数。搅拌时间不宜少于2min,也不宜超过3min。炎热季节或寒冷季节搅拌混凝土时,必须采取有效措施控制原材料的温度,以保证混凝土入模温度符合规定要求。

(2) 运输。应采取有效措施保证混凝土在运输的过程中保持均匀性和各项工作性能指标不发生明显的波动。应对运输设备采取保温隔热措施,防止局部混凝土温度升高(夏季)或受冻(冬季)。且应采取适当措施防止水分进入运输容器或蒸发。

(3) 浇筑。高性能混凝土入模前,应采用专用检测设备测定混凝土的温度、坍落度、含气量、水胶比及泌水率等工作性能;只有拌合物性能符合设计要求或配合比要求的混凝土方可入模浇筑。高性能混凝土浇筑时的自由倾落高度不得大于2m当大于2m时,应采用滑槽、串筒、漏斗等器具辅助输送混凝土,保证混凝土不出现分层离析现象。混凝土的浇筑应采用分层连续推移的方式进行,间隙时间不得超过90min,不得随意留置施工缝。新浇混凝土与邻接的己硬化混凝土或岩土介质间浇筑时的温差不得大于15℃。

(4) 振捣。可采用插入式振动棒、附着式平板振捣器、表面平板振捣器等振捣设备振捣混凝土。振捣时应避免碰撞模板、钢筋及预埋件。采用插入式振

捣器振捣混凝土时,宜采用垂直点振方式振捣。每点的振捣时间以表面泛浆或不冒大气泡,一般不宜超过30s,避免振动过度。若需变换振捣棒在混凝土拌合物中的水平位置,应首先竖向缓慢将振捣棒拔出,然后再将振捣棒移至新的位置,不得将振捣棒放在拌合物内平拖。

(5) 养护。高性能混凝土早期强度增长较快,一般3天可以达到设计强度的60%,7天达到设计强度的80%,因而混凝土早期养护特别重要。通常在混凝土浇注完毕后采取以带模养护为主,浇水养护为辅,使混凝土表面保持湿润。此外,高性能混凝土会有较高的水化热,根据混凝土成分和环境条件的不同,大约在浇筑后24~48h会到达最高温度,所以高性能混凝土施工时一般不应过早拆模,同时拆模后应持续保护几小时再移走模板,以避免混凝土受到冷击。同时,正确的抹面和水养护是获得不透水表面的重要步骤,对于低水灰比的高性能混凝土,不仅需要保持内部水分不蒸发,还要注重从外部环境中补充水分,应进行外界潮湿养护,以保证混凝土充分水化,提高混凝土的综合性能。

施工与质量控制流程图如下所示:

六、高性能混凝土发展和应用中所面临的问题

高性能混凝土在我国的应用过程中也存在一些问题:原材料方面,我国水泥质量不稳定,离散性大;粗骨料的质量低劣,含泥量大,级配较差,细骨料细度模数不合要求;在外加剂和外掺料的选择上,也缺乏充分的适用性研究。在高性能混凝土的施工过程中,施工人员的技术水平有限,养护措施不到位,使高性能混凝土的密实性和质量不稳定;在高性能混凝土的耐久性方面,由于水分的蒸发与凝聚而产生的收缩,使混凝土表面产生裂缝,为各种有害介质渗透提供通道,给氯离子侵入、碱骨料反应的发生和钢筋锈蚀创造可能;在高性能混凝土的设计方面,由于高性能混凝土的后期强度增长不及普通混凝土,而且脆性大,需要特别注意。同时,在高性能混凝土的研究方面,现在的研究以实验室研究为主,但是实验室的情况与实际施工相差较大,这不利于今后高性能混凝土的推广应用。

七、绿色高性能混凝土的发展展望

高性能混凝土的概念是近三十年才提出的,它的出现意味着混凝土技术从经验技术向高科技转变,代表着当今混凝土发展的大趋势。其特点集中表现在具有高强度、高耐久性、高体积稳定性、低水化热等多方面。提高混凝土性能是发展高层建筑、高耸结构、大跨度结构的重要措施。采用高性能混凝土,可以减小截面尺寸,减轻自重,因而可获得较大的经济效益,而且高性能度混凝土一般也具有良好的耐久性。

高性能混凝土,其推广应用对提高建设工程质量,降低工程全寿命周期的综合成本,对于发展循环经济,促进行业技术进步,推进混凝土行业结构调整具有重大意义。但在推广使用高性能混凝土的过程中,要实事求是,因地制宜,结合当地的经济社会发展水平、资源环境条件和工程特点,确定本地区本行业高性能混凝土推广应用技术发展路线,为最终全面应用高性能混凝土打下良好基础。

但是,随着高性能混凝土的开发和应用, 建筑行业对生态环境产生的影响正引起社会的关注。建筑物在建造和运行的过程中需要消耗大量的资源和能源,

并对环境产生不同程度的影响,比如作为建筑行业主要原料的水泥,实际上是一种不可持续发展的产品。因此,高性能混凝土的技术核心是限制水泥用量以获得混凝土高性能的同时,坚持其可持续性的发展原则。21世纪前后, 吴中伟等提出了绿色混凝土的概念,在高性能混凝土的基础上增加了三个含义:1)节约资源、能源;2)不破坏环境,更有利于环境保护;3)可持续发展。因此,大力开展绿色高性能混凝土的研究和应用未混凝土的未来指明了非常明确的方向。

参考文献

[1]普通混凝土配合比设计规程 JGJ55-2011

[2]混凝土用水标准JGJ63-2006

[3]高性能混凝土应用技术规程 CECS207:2006

[4]吴中伟.高性能混凝土.北京:中国铁道出版社,1999.

[5]卞春丽,梁晓平.高性能混凝土技术特点及应用.山西建筑 2007.

[6]刘艳文.浅谈高性能混凝土的发展现状.科技资讯,2009.

[7]张万标.高性能混凝土的研究现状和发展方向.科技博览,2008.

[8]刘娟红宋少民.绿色高性能混凝土技术与工程应用. 中国电力出版社,2011

[9] 杨勇.浅谈高性能混凝土的特点及应用[J].中国科技博览,2009.

[10] 丁大钧.高性能混凝土及其在工程中的应用.北京:机械工业出版社,2007.

相关高性能混凝土方面的问题

高性能混凝土 简介 高性能混凝土(High performance concrete,简称HPC)是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的矿物细掺料和高效外加剂。 定义 1950年5月美国国家标准与技术研究院(NIST)和美国混凝土协会(ACI)首次提出高性能混凝土的概念。但是到目前为止,各国对高性能混凝土提出的要求和涵义完全不同。 美国的工程技术人员认为:高性能混凝土是一种易于浇注、捣实、不离析,能长期保持高强、韧性与体积稳定性,在严酷环境下使用寿命长的混凝土。美国混凝土协会认为:此种混凝土并不一定需要很高的混凝土抗压强度,但仍需达到55MPa以上,需要具有很高的抗化学腐蚀性或其他一些性能。 日本工程技术人员则认为,高性能混凝土是一种具有高填充能力的的混凝土,在新拌阶段不需要振捣就能完善浇注;在水化、硬化的早期阶段很少产生有水化热或干缩等因素而形成的裂缝;在硬化后具有足够的强度和耐久性。 加拿大的工程技术人员认为,高性能混凝土是一种具有高弹性模量、高密度、低渗透性和高抗腐蚀能力的混凝土。 综合各国对高性能混凝土的要求,可以认为,高性能混凝土具有高抗渗性(高耐久性的关键性能);高体积稳定性(低干缩、低徐变、低温度变形和高弹性模量);适当的高抗压强度;良好的施工性(高流动性、高粘聚性、自密实性)。 中国在《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。 高性能混凝土的技术路线 高性能混凝土是由高强混凝土发展而来的,但高性能混凝土对混凝土技术性能的要求比高强混凝土更多、更广乏,高性能混凝土的发展一般可分为三个阶段:

2016继续教育-混凝土力学性能检测

千分表的精度不低于()mm A.0.01 B.0.001 C.0.0001 D.0.1 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第2题 加荷至基准应力为0.5MPa对应的初始荷载值F0,保持恒载60s并在以后的()s内记录两侧变形量测仪的读数ε左0,ε右0。 A.20 B.30 C.40 D.60 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第3题 由1kN起以()kN/s~()kN/s的速度加荷3kN刻度处稳压,保持约30s A.0.15~0.25 B.0.15~0.30 C.0.15~0.35 D.0.25~0.35 答案:A 您的答案:A 题目分数:9 此题得分:9.0 批注: 第4题 结果计算精确至()MPa。 A.0.1 B.1 C.10 D.100

您的答案:D 题目分数:9 此题得分:9.0 批注: 第5题 下面关于抗压弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过1mm的孔洞 D.结果计算精确至100MPa。 E.以三根试件试验结果的算术平均值作为测定值。如果其循环后任一根与循环前轴心抗压与之差超过后者的10%,则弹性模量值按另两根试件试验结果的算术平均值计算,如有两根试件试验结果超出上述规定,则试验结果无效。 答案:B,D 您的答案:B,D 题目分数:12 此题得分:12.0 批注: 第6题 下面关于混凝土抗弯拉弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强度,3根则用作抗弯拉弹性模量试验。 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过2mm的孔洞 D.结果计算精确至100MPa。 E.将试件安放在抗弯拉试验装置中,使成型时的侧面朝上,压头及支座线垂直于试件中线且无偏心加载情况,而后缓缓加上约1kN压力,停机检查支座等各接缝处有无空隙(必要时需加木垫片) 答案:B,C,D 您的答案:B,C,D 题目分数:13 此题得分:13.0 批注: 第7题 对中状态下,读数应和它们的平均值相差在20%以内,否则应重新对中试件后重复6.6中的步骤。如果无法使差值降到20%以内,则此次试验无效。 答案:正确 您的答案:正确

高强高性能混凝土

一、前言 1824年,波特兰水泥发明,到目前混凝土材料已有近200年的历史,且混凝土也有了很大的发展,由普通混凝土向高性能混凝土发展。自20世纪以来,混凝土就己成为房屋建筑、桥梁、水利、公路等现代工程结构首选材料,混凝土作为土木工程中最大宗的人造材料,其用量巨大。进入21世纪以来,随着科学技术的快速发展,一种种新型混凝土不断出现。作为最主要的建筑结构材料,混凝土本身必须具有高强度、高工作性、高耐久性等性能,因此高性能混凝土是现代混凝土技术发展的必然结果,是混凝土的发展方向。 我国自从 1979年在湘桂铁路红水河斜拉桥的预应力箱梁中首次采用泵送 C60 混凝土以来,现代高性能混凝土在我国的应用已走过了30余年。现在,像北京、广州、上海、深圳等大城市已供应C80级别的预拌混凝土,C50~C60级高性能混凝土已在许多建筑和桥梁中得到应用,近年建成的大型桥梁的混凝土主体构件如主梁、刚架或索塔等,多数都采用了高性能混凝土。 二、高性能混凝土的概念 《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。《普通混凝土配合比设计规程》(JGJ55-2011)规定强度等级不低于C60级别的混凝土称为高强混凝土。它采用高性能的外加剂,如高效减水剂或者高性能引气剂、其它特种外加剂和掺入足够的超细活性混合材料,如:超细磨粉煤灰、磨细矿粉、优质粉煤灰等达到低水胶比,并具有耐久性、体积稳定性和经济合理性等性能的新型混凝土。高性能混凝土以耐久性作为主要设计指标,针对不同用途要求,对耐久性、工作性、适用性、强度、体积稳定性和经济性等性能予以保证。 三、高性能混凝土的特性 (1) 高强度。由于高性能混凝土的强度高、弹模高,可以利用这一特性大幅度的减少高层和超高建筑物纵向受力结构的截面尺寸,扩大建筑使用面积,

钢筋混凝土材料的力学性能 复习题

第一章 钢筋混凝土的材料力学性能 一、填空题: 1、《混凝土规范》规定以 强度作为混凝土强度等级指标。 2、测定混凝土立方强度标准试块的尺寸是 。 3、混凝土的强度等级是按 划分的,共分为 级。 4、钢筋混凝土结构中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点 的钢筋,通常称它们为 和 。 5、钢筋按其外形可分为 、 两大类。 6、HPB300、 HRB335、 HRB400、 RRB400表示符号分别为 。 7、对无明显屈服点的钢筋,通常取相当于于残余应变为 时的应力作为名 义屈服点,称为 。 8、对于有明显屈服点的钢筋,需要检验的指标有 、 、 、 等四项。 9、对于无明显屈服点的钢筋,需要检验的指标有 、 、 等三项。 10、钢筋和混凝土是两种不同的材料,它们之间能够很好地共同工作是因 为 、 、 。 11、钢筋与混凝土之间的粘结力是由 、 、 组成的。其 中 最大。 12、混凝土的极限压应变cu ε包括 和 两部分, 部分越 大,表明变形能力越 , 越好。 13、钢筋的冷加工包括 和 ,其中 既提高抗拉又提高抗 压强度。 14、有明显屈服点的钢筋采用 强度作为钢筋强度的标准值。 15、钢筋的屈强比是指 ,反映 。 二、判断题: 1、规范中,混凝土各种强度指标的基本代表值是轴心抗压强度标准值。( ) 2、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。( ) 3、采用边长为100mm 的非标准立方体试块做抗压试验时,其抗压强度换算系数为 0.95。( ) 4、采用边长为200mm 的非标准立方体试块做抗压试验时,其抗压强度换算系数为 1.05。( ) 5、对无明显屈服点的钢筋,设计时其强度标准值取值的依据是条件屈服强度。( ) 6、对任何类型钢筋,其抗压强度设计值y y f f '=。( )

钢筋和混凝土的力学性能

钢筋和混凝土的力学性能 问答题参考答案 1.软钢和硬钢的区别是什么?应力一应变曲线有什么不同?设计时分别采用什么值作为依据? 答:有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。 软钢的应力应变曲线如图2-1所示,曲线可分为四个阶段:弹性阶段、屈服阶段、强化阶段和破坏阶段。 有明显流幅的钢筋有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增 f作为钢筋的强度极限。另一个强度指标是加以致无法使用,所以在设计中采用屈服强度 y f,一般用作钢筋的实际破坏强度。 钢筋极限强度 u 图2-1 软钢应力应变曲线 硬钢拉伸时的典型应力应变曲线如图2-2。钢筋应力达到比例极限点之前,应力应变按直线变化,钢筋具有明显的弹性性质,超过比例极限点以后,钢筋表现出越来越明显的塑性性质,但应力应变均持续增长,应力应变曲线上没有明显的屈服点。到达极限抗拉强度b 点后,同样由于钢筋的颈缩现象出现下降段,至钢筋被拉断。 设计中极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb,其中σb为无明显流幅钢筋的极限抗拉强度。

图2-2硬钢拉伸试验的应力应变曲线 2. 我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级? 答:目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。 HPB235(Q235,符号Φ,Ⅰ级)、热轧带肋钢筋HRB335(20MnSi ,符号,Ⅱ级)、热轧带肋钢筋HRB400(20MnSiV 、20MnSiNb 、20MnTi ,符号,Ⅲ级)、余热处理钢筋RRB400(K 20MnSi ,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。 3. 钢筋冷加工的目的是什么?冷加工方法有哪几种?简述冷拉方法? 答:钢筋冷加工目的是为了提高钢筋的强度,以节约钢材。除冷拉钢筋仍具有明显的屈服点外,其余冷加工钢筋无屈服点或屈服台阶,冷加工钢筋的设计强度提高,而延性大幅度下降。 冷加工方法有冷拨、冷拉、冷轧、冷扭。 冷拉钢筋由热轧钢筋在常温下经机械拉伸而成,冷拉应力值应超过钢筋的屈服强度。钢筋经冷拉后,屈服强度提高,但塑性降低,这种现象称为冷拉强化。冷拉后,经过一段时间钢筋的屈服点比原来的屈服点有所提高,这种现象称为时效硬化。时效硬化和温度有很大关系,温度过高(450℃以上)强度反而有所降低而塑性性能却有所增加,温度超过700℃,钢材会恢复到冷拉前的力学性能,不会发生时效硬化。为了避免冷拉钢筋在焊接时高温软化,要先焊好后再进行冷拉。钢筋经过冷拉和时效硬化以后,能提高屈服强度、节约钢材,但冷拉后钢筋的塑性(伸长率)有所降低。为了保证钢筋在强度提高的同时又具有一定的塑性,冷拉时应同时控制应力和控制应变。 4. 什么是钢筋的均匀伸长率?均匀伸长率反映了钢筋的什么性质? 答:均匀伸长率δgt 为非颈缩断口区域标距的残余应变与恢复的弹性应变组成。 s b gt E l l l 000'σδ+-= 0l ——不包含颈缩区拉伸前的测量标距;'l ——拉伸断裂后不包含颈缩区的测量标距;0b σ——实测钢筋拉断强度;s E ——钢筋弹性模量。 均匀伸长率δgt 比延伸率更真实反映了钢筋在拉断前的平均(非局部区域)伸长率,客观反映钢筋的变形能力,是比较科学的指标。 5. 什么是钢筋的包兴格效应? 答:钢筋混凝土结构或构件在反复荷载作用下,钢筋的力学性能与单向受拉或受压时的力学性能不同。1887年德国人包兴格对钢材进行拉压试验时发现的,所以将这种当受拉(或受压)超过弹性极限而产生塑性变形后,其反向受压(或受拉)的弹性极限将显著降低的软化现象,称为包兴格效应。 6. 在钢筋混凝土结构中,宜采用哪些钢筋? 答:钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 7. 试述钢筋混凝土结构对钢筋的性能有哪些要求。 答:(1)对钢筋强度方面的要求 普通钢筋是钢筋混凝土结构中和预应力混凝土结构中的非预应力钢筋,主要是

钢筋和混凝土的力学性能.

《混凝土结构设计原理》习题集 第1章 钢筋和混凝土的力学性能 一、判断题 1~5错;对;对;错;对; 6~13错;对;对;错;对;对;对;对; 二、单选题 1~5 DABCC 6~10 BDA AC 11~14 BCAA 三 、填空题 1、答案:长期 时间 2、答案:摩擦力 机械咬合作用 3、答案:横向变形的约束条件 加荷速度 4、答案:越低 较差 5、答案:抗压 变形 四、简答题 1.答: 有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。 软钢的应力应变曲线如图2-1所示,曲线可分为四个阶段:弹性阶段、屈服阶段、强化阶段和破坏阶段。 有明显流幅的钢筋有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增加以致无法使用,所以在设计中采用屈服强度y f 作为钢筋的强度极限。另一个强度指标是钢筋极限强度u f ,一般用作钢筋的实际破坏强度。 图2-1 软钢应力应变曲线 硬钢拉伸时的典型应力应变曲线如图2-2。钢筋应力达到比例极限点之前,应力应变按直线变化,钢筋具有明显的弹性性质,超过比例极限点以后,钢筋表现出越来越明显的塑性性质,但应力应变均持续增长,应力应变曲线上没有明显的屈服点。到达极限抗拉强度b 点后,同样由于钢筋的颈缩现象出现下降段,至钢筋被拉断。

设计中极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb ,其中σb 为无明显流幅钢筋的极限抗拉强度。 图2-2硬钢拉伸试验的应力应变曲线 2.答: 目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。 热轧钢筋分为热轧光面钢筋HPB235、热轧带肋钢筋HRB335、HRB400、余热处理钢筋RRB400(K 20MnSi ,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。 3.答: 钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 4.答: 混凝土标准立方体的抗压强度,我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)规定:边长为150mm 的标准立方体试件在标准条件(温度20±3℃,相对温度≥90%)下养护28天后,以标准试验方法(中心加载,加载速度为0.3~1.0N/mm 2/s),试件上、下表面不涂润滑剂,连续加载直至试件破坏,测得混凝土抗压强度为混凝土标准立方体的抗压强度f ck ,单位N/mm 2。 A F f ck f ck ——混凝土立方体试件抗压强度; F ——试件破坏荷载; A ——试件承压面积。 5. 答: 我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)采用150mm×150mm×300mm 棱

建筑混凝土新技术2:高强高性能混凝土

2混凝土技术 2.2高强高性能混凝土 本节高强高性能混凝土(简称HS-HPC )是强度等级超过C80的HPC ,其特点是具有更高的强度和耐久性,用于超高层建筑底层柱和梁,与普通混凝土结构具有相同的配筋率,可以显著地缩小结构断面,增大使用面积和空间,并达到更高的耐久性。 1.主要技术内容 HS-HPC 的水胶比≤28%,用水量≥200kg/m 3,胶凝材料用量650~700kg/m 3,其中水泥 用量450~500kg/m 3,硅粉及矿物微细粉用量150~200kg/m 3,粗骨料用量900~950kg/m 3,细骨料用量750~800kg/m 3,采用聚羧酸高效减水剂或氨基磺酸高效减水剂。HS-HPC 用于钢 筋混凝土结构还需要掺入体积含量2.0~2.5%的纤维,如聚丙烯纤维、钢纤维等。 2.技术指标 (1)工作性:新拌HS-HPC 混凝土的工作性直接影响该混凝土的施工性能。其最主要的特点是粘度大,流动性慢,不利于超高泵送施工。 混凝土拌合物的技术指标主要是坍落度、扩展度和倒坍落度筒混凝土流下时间(简称倒筒时间),坍落度≥240mm,扩展度≥600mm,倒筒时间≤10s,同时不得有离析泌水现象。 (2)HS-HPC 的配比设计强度应符合以下公式: k cu o cu f f ,,15.1 (3)HS-HPC 应具有更高的耐久性,因其内部结构密实,孔结构更加合理。 HS-HPC 的抗冻性、碳化等方面的耐久性可以免检,如按照《高性能混凝土应用技术规程》CECS207标准检验,导电量应在500库仑以下;为满足抗硫酸盐腐蚀性应选择低C3A 含量(<5%)的水泥;如存在潜在碱骨料反应的情况下,应选择非碱活性骨料。 (4)HS-HPC 自收缩及其控制 1)自收缩与对策 当HS-HPC 浇筑成型并处于密闭条件下,到初凝之后,由于水泥继续水化,吸取毛细管中的水分,使毛细管失水,产生毛细管张力,如果此张力大于该时的混凝土抗拉强度,混凝土将发生开裂,称之自收缩开裂。水灰比越低,自收缩会越严重。 一般可以控制粗细骨料的总量不要过低,胶凝材料的总量不要过高;通过掺加钢纤维可以补偿其韧性损失,但在侵蚀环境中,钢纤维不适用;需要掺入有机纤维,如聚丙烯纤维或其他纤维;采用外掺5%饱水超细沸石粉的方法,以及充分地养护等技术措施可以有效的控制HS-HPC 的自收缩和自收缩开裂。 2)自收缩的测定方法 参照《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082和中国工程建设标准化协会标准《高性能混凝土应用技术规程》CECS207进行。 HS-HPC 的早期开裂、自收缩开裂及长期开裂的总宽度要低于0.2mm 。普通混凝土的应变达到3‰时,其承载能力仍保持一半以上。若HS-HPC 的应变也处于3‰时,实际承载力已近于0,这就意味着在这种情况下,在HS-HPC 中只观察到裂缝形成,然后是迅速的破坏。

高强高性能混凝土施工方案

11 高强高性能混凝土施工方案 本工程为南京广州路干沿河B 片B 、C 幢高层建设工程,地点为于南京市广州路与干河沿街之间,由南京市中住房地产开发公司做为开发商。江苏邗建集团有限公司南京分公司拟通过投标承建其土建、安装及室外工程项目,工期730天,建筑用途为商业、办公、住宅高层,其中地下室3900㎡,住宅楼13500㎡(18层),办公楼22000㎡(22层)。基础转换层及竖向承重构件采用高强高性能泵送混凝土合计约2000m 3。 ⑴原材料的要求 ①水泥使用矿渣盐水泥,利用混凝土的后期强度,减少水泥用量,控制水化热温升,减小温度应力。 ②选用中粗砂,细度模数2.6以上,含泥量控制在3%以下。 ③石子选用 5~31.5连续粒级洁净碎石,含泥量控制在 1%以下。 ④外掺添加材料 a .掺入一定数量的一级粉煤灰,改善混凝土的和易性及可泵性,降低混凝土的水化热及减小混凝土的收缩; b .掺入一定数量的JM-Ⅲ减水剂,降低混凝土水灰比,改善混凝土和易性及可泵性同时起到混凝土缓凝的作用。 ⑤混凝土拌和物入模坍落度为120±20mm 。 ⑵浇筑 ①本工程基础混凝土全部采用商品混凝土,搅拌车运输到现场,由混凝土输送泵泵送入模的混凝土施工方案。 ⑥严格控制混凝土初、终凝时间,要求混凝土终凝控制在10h 左右,入泵坍落度控制在120±20mm 。 ⑦本工程地下室墙体混凝土采用分层分段下料、连续一次浇筑的施工方法(如下图所示),即由2个浇筑小组从一点开始,砼分层浇筑,每两组相对应向后延伸浇筑,直至同边闭合。高度超过2.0m 的墙体混凝土浇筑采用溜槽入模,使混凝土从一侧开始逐渐向前推进,并在混凝土斜面上均匀布位振捣。混凝土以 500mm ~1000mm 高分层浇筑到顶,根据各施工段操作面,合理组织劳动力,做到不留施工缝

普通混凝土力学性能试验方法标准

普通混凝土力学性能试验方法 2004-5-23 15:57:28 admin 普通混凝土力学性能试验方法GBJ81―85 主编部门:城乡建设环境保护部批准部门:中华人民国计划委员会施行日期:1986 年7 月1 日关于发布《普通混凝土拌合物性能试验方法》等三本标准的通知计标〔1985〕1889 号根据原建委(78)建发设字第562 号通知的要求,由城乡建设部中国建筑科学研究院会同有关单位共同编制的《普通混凝土拌合物性能试验方法》等三本标准,已经有关部门会审。现批准《普通混凝土拌合物性能试验方法》GBJ80 -85、《普通混凝土力学性能试验方法》GBJ81-85 和《普通混凝土长期性能和耐久性能试验方法》GBJ82―85 等三本标准为标准,自一九八六年七月一日起施行。该三本标准由城乡建设部管理,其具体解释等工作由中国建筑科学研究院负责。出版发行由我委基本建设标准定额研究所负责组织。

计划委员会一九八五年十一月二十五日编制说明本标准是根据原建委(78)建发设字第562 号通知的要求,由中国建筑科学研究院会同各有关单位共同编制而成的。在编制过程中,作了大量的调查研究和试验论证工作,收集并参考了国际标准和其它国外有关的规标准,经过反复讨论修改而成的。在编制过程中曾多次征求全国各有关单位的意见,最后才会同有关部门审查定稿。本标准为普通混凝土基本性能中有关力学性能的试验方法。容包括立方体抗压强度、轴心抗压强度、静力受压弹性模量、劈裂抗拉强度以及抗折强度等五个方法。由于普通混凝土力学性能试验涉及围较广,本身又将随着仪器设备的改进和测试技术的提高而不断发展,故希望各单位在执行本标准过程中,注意积累资料、总结经验。如发现有需要修改补充之处,请将意见和有关资料寄中国建筑科学研究院混凝土研究所,以便今后修改时参考。城乡建设环境保护部一九八五年七月第一章总则第1.0.1 条为了在确定混凝土设计特征值、检验或控制现浇混凝土工程或预制构件的质量时,有一个统一的混凝土力学性能试验方法,特制订本标准。第1.0.2 条本标准适用于工业与民用建筑和一般构筑物中所用普通混凝土的基本性能试验。

高强度高性能混凝土的优势及配比

高强度高性能混凝土的优势及配比 一、高强度高性能商品混凝土概念 对于高强商品混凝土,各国没有准确的定义,同时各国的区分标准也不尽相同。长期以来,我国现场浇筑商品混凝土强度等级大量低于C30,预制商品混凝土构件普遍低于C40:同时商品混凝土结构设计规范中的计算公式大部分是根据较低强度商品混凝土构件的试验数据得出,对于强度较高的C50或更高等级的商品混凝土明显不适用;另外从商品混凝土的制作技术来看,C50及更高等级的商品混凝土在施工时需要严格的质量管理制度和较高的施工水平。考虑到我国目前的施工水平和质量管理制度现状,以C50作为划分高强商品混凝土的指标,强度等级达到或超过C50的商品混凝土为高强商品混凝土。高性能商品混凝土概念的提出至今也只有10多年的时间,它是伴随着高强商品混凝土而问世的。 高性能商品混凝土不仅满足工业化预拌生产和机械化泵送施工、具有足够的强度,而且是一种耐久性优异的商品混凝土。与传统的商品混凝土相比,高性能商品混凝土在配合比上的特点是低用水量、较低的水泥用量,并以化学外加剂与粉煤灰作为水泥、砂石之外的基本组成成分。这些使硬化商品混凝土内部的孔隙少,具有致密的微观和细观结构,抗渗性能优良,因此高性能商品混凝土的耐久性很好。高性能商品混凝土在硬化过程中体积稳定、水化热低、温升小,冷却时的温度收缩小,干燥收缩也小,所以硬化后不易产生宏观和微观裂缝。我国钢筋商品混凝土结构规范组1978年的一项调查表明,在一般环境下有40%工业民用建筑结构的商品混凝土已碳化到钢筋表面,而在较潮湿的环境下90%构件已经锈蚀。因此在商品混凝土的耐久性问题受到普遍重视的今天,高性能商品混凝土无疑是解决结构耐久性最有效和最经济的途径。 二、高强商品混凝土有三大优越性

高强高性能混凝土施工总结

C80、C100高强高性能混凝土 施工技术研究阶段总结 一、开发背景 混凝土技术的发展时序是渐进式的,基本遵循了低强、中强、高强、超高强、高性能、超高性能的发展过程。开发和应用高强度、高性能混凝土意义重大,并受到各国政府的高度重视。发达国家政府纷纷投入巨资进行长期系列化研究。在我国己将特征强度高于60MPa(C60及其以上等级)的混凝土划定为高强混凝土。2003年沈阳某工程的施工中使用了C100级预拌混凝土进行钢管柱施工浇注。这是我国迄今为止实际应用的最高强度等级。北京两家混凝土生产单位已经配制出C80-C100强度等级的混凝土。但目前还没有应用于现浇混凝土构件施工的先例。混凝土性能朝着高强,高耐久性发展。国内高端建筑工程量不断增加,C80 以上超高强混凝土的研制迫在眉睫。 二、开发目的 本项目的立项是为顺应国内混凝土发展趋势。以完成C80混凝土开发并探索更高强度等级混凝土配制和施工方法为目标,争取C80高强混凝土的试点应用,通过实践工作来发现问题和难关,从而有的放矢地解决如下问题: 1.用普通原材料是否可以配制抗压强度高于C80的混凝土,若有困难, 可用何种材料加以改进。 2.高强混凝土的物理性能与可施工性的统一。 3.高强混凝土的配比设计与生产控制标准。最终完成高强混凝土的技术 储备,提高相关部门的技术保障水平。为将来工程任务的承揽提供必 要条件。

三、设计开发的分析策划 A.参数和材料选定: C80以上混凝土配合比由于其水胶比和设计强度已经超出了鲍罗米回归曲线范围,所以不能按国家混凝土配合比设计标准和粉煤灰混凝土配合比设计标准进行设计。根据以往经验及资料,C80混凝土水胶比宜控制在0.24-0.27之间。C100混凝土水胶比宜为0.23-0.25。相应的减水剂减水率应大于30%。高强混凝土必须考虑粗骨料的骨架作用,砂率宜控制在0.41以下。考虑水化热和后期体积稳定性,胶材用量不宜超过650kg/m3,相应的水泥活性必须大于54Mpa. 由于强调配合比与实际生产条件的亲和性,降低生产难度,原材料以现有材料品种为基础,逐一验证并优化淘汰。其中,现用的减水剂减水率不能满足试配要求,首先淘汰。 B.本阶段步骤 C.需兼顾考虑的因素 混凝土试验条件、混凝土试验方法的准确性 四、实验过程 A.原材料:经过对胶凝材料、减水剂检测及减水剂对现用水泥的适应性试验,

高强高性能混凝土

高强高性能混凝土 根据《高强混凝土结构技术规程》(CECS104:99),将强度等级大于等于C50的混凝土称为高强混凝土;将具有良好的施工和易性和优异耐久性,且均匀密实的混凝土称为高性能混凝土;同时具有上述各性能的混凝土称为高强高性能混凝土;而《普通混凝土配合比设计规范》(JGJ55-2000)中则将强度等级大于等于C60的混凝土称为高强混凝土;《混凝土结构设计规范》(GB50010-2002)则未明确区分普通混凝土或高强混凝土,只规定了钢筋混凝土结构的混凝土强度等级不应低于C15,混凝土强度范围从C15~C80。综合国内外对高强混凝土的研究和应用实践,以及现代混凝土技术的发展,将大于等于C60的混凝土称为高强度混凝土是比较合理的。 获得高强高性能混凝土的最有效途径主要有掺高性能混凝土外加剂和活性掺合料,并同时采用高强度等级的水泥和优质骨料。对于具有特殊要求的混凝土,还可掺用纤维材料提高抗拉、抗弯性能和冲击韧性;也可掺用聚合物等提高密实度和耐磨性。常用的外加剂有高效减水剂、高效泵送剂、高性能引气剂、防水剂和其它特种外加剂。常用的活性混合材料有Ⅰ级粉煤灰或超细磨粉煤灰、磨细矿粉、沸石粉、偏高岭土、硅粉等,有时也可掺适量超细磨石灰石粉或石英粉。常用的纤维材料有钢纤维、聚酯纤维和玻璃纤维等。 一、高强高性能混凝土的原材料 (一)水泥 水泥的品种通常选用硅酸盐水泥和普通水泥,也可采用矿渣水泥等。强度等级选择一般为:C50~C80混凝土宜用强度等级42.5;C80以上选用更高强度的水泥。1m3混凝土中的水泥用量要控制在500kg以内,且尽可能降低水泥用量。水泥和矿物掺合料的总量不应大于600kg/m3。 (二)掺合料 1.硅粉:它是生产硅铁时产生的烟灰,故也称硅灰,是高强混凝土配制中应用最早、技术最成熟、应用较多的一种掺合料。硅粉中活性SiO2含量达90%以上,比表面积达15000m2/kg 以上,火山灰活性高,且能填充水泥的空隙,从而极大地提高混凝土密实度和强度。硅灰的适宜掺量为水泥用量的5%~10%。 研究结果表明,硅粉对提高混凝土强度十分显著,当外掺6~8%的硅灰时,混凝土强度一般可提高20%以上,同时可提高混凝土的抗渗、抗冻、耐磨、耐碱-骨料反应等耐久性能。但硅灰对混凝土也带来不利影响,如增大混凝土的收缩值、降低混凝土的抗裂性、减小混凝土流动性、加速混凝土的坍落度损失等。 2.磨细矿渣:通常将矿渣磨细到比表面积350m2/kg以上,从而具有优异的早期强度和耐久性。掺量一般控制在20%~50%之间。矿粉的细度越大,其活性越高,增强作用越显著,但粉磨成本也大大增加。与硅粉相比,增强作用略逊,但其它性能优于硅粉。 3.优质粉煤灰:一般选用I级灰,利用其内含的玻璃微珠润滑作用,降低水灰比,以及细粉末填充效应和火山灰活性效应,提高混凝土强度和改善综合性能。掺量一般控制在20%~30%之间。I级粉煤灰的作用效果与矿粉相似,且抗裂性优于矿粉。

高强高性能混凝土技术

高强高性能混凝土技术 2.2.1 技术内容 高强高性能混凝土(简称HS-HPC)是具有较高的强度(一般强度等级不低于C60)且具有高工作性、高体积稳定性和高耐久性的混凝土(“四高”混凝土),属于高性能混凝土(HPC)的一个类别。其特点是不仅具有更高的强度且具有良好的耐久性,多用于超高层建筑底层柱、墙和大跨度梁,可以减小构件截面尺寸增大使用面积和空间,并达到更高的耐久性。 超高性能混凝土(UHPC)是一种超高强(抗压强度可达150MPa以上)、高韧性(抗折强度可达16MPa以上)、耐久性优异的新型超高强高性能混凝土,是一种组成材料颗粒的级配达到最佳的水泥基复合材料。用其制作的结构构件不仅截面尺寸小,而且单位强度消耗的水泥、砂、石等资源少,具有良好的环境效应。 HS-HPC的水胶比一般不大于0.34,胶凝材料用量一般为480~600kg/m3,硅灰掺量不宜大于10%,其他优质矿物掺合料掺量宜为25%~40%,砂率宜为35%~42%,宜采用聚羧酸系高性能减水剂。 UHPC的水胶比一般不大于0.22,胶凝材料用量一般为700~1000kg/m3。超高性能混凝土宜掺加高强微细钢纤维,钢纤维的抗拉强度不宜小于2000MPa,体积掺量不宜小于

1.0%,宜采用聚羧酸系高性能减水剂。 2.2.2 技术指标 (1)工作性 新拌HS-HPC最主要的特点是粘度大,为降低混凝土的粘性,宜掺入能够降低混凝土粘性且对混凝土强度无负面影响的外加剂,如降粘型外加剂、降粘增强剂等。UHPC的水胶比更低,粘性更大,宜掺入能降低混凝土粘性的功能型外加剂,如降粘增强剂等。 混凝土拌合物的技术指标主要是坍落度、扩展度和倒坍落度筒混凝土流下时间(简称倒筒时间)等。对于HS-HPC,混凝土坍落度不宜小于220mm,扩展度不宜小于500mm,倒置坍落度筒排空时间宜为5~20s,混凝土经时损失不宜大于30mm/h。 (2)HS-HPC的配制强度可按公式f cu,0≥1.15f cu,k计算; UHPC的配制强度可按公式f cu,0≥1.1f cu,k计算; (3)HS-HPC及UHPC因其内部结构密实,孔结构更加合理,通常具有更好的耐久性,为满足抗硫酸盐腐蚀性,宜掺加优质的掺合料,或选择低C3A含量(<8%)的水泥。 (4)自收缩及其控制 1)自收缩与对策 当HS-HPC浇筑成型并处于绝湿条件下,由于水泥继续水化,消耗毛细管中的水分,使毛细管失水,产生毛细管张

混凝土的力学性能

混凝土的力学性能 无机071班 马迪 2007015019

1.影响混凝土强度的因素 影响混凝土强度的主要因素有: (1)水泥强度与水灰比 水泥是混凝土中的活性组分,其强度大小直接影响着混凝土强度的高低。在配合比相同的条件下,所用的水泥标号越高,制成的混凝土强度也越高。当用同一品种同一标号的水泥时,混凝土的强度主要取决于水灰比。因为水泥水化时所需的结合水,一般只占水泥重量的23%左右,但在拌制混凝土混合物时,为了获得必要的流动性,常需用较多的水(约占水泥重量的40~70%)。混凝土硬化后,多余的水分蒸发或残存在混凝土中,形成毛细管、气孔或水泡,它们减少了混凝土的有效断面,并可能在受力时于气孔或水泡周围产生应力集中,使混凝土强度下降。 在保证施工质量的条件下,水灰比愈小,混凝土的强度就愈高。但是,如果水灰比太小,拌合物过于干涩,在一定的施工条件下,无法保证浇灌质量,混凝土中将出现较多的蜂窝、孔洞,也将显著降低混凝土的强度和耐久性。 (2)集料的性质与数量 集料的性质包括集料的几何性质、集料的力学性质,以及集料与水泥水化产物的亲和性。只有具有一定数量的品质优良的且能与水泥较好粘结的集料,才能配制出具有较高强度的混凝土 (3)养护的温度和湿度 混凝土强度的增长,是水泥的水化、凝结和硬化的过程,必须在

一定的温度和湿度条件下进行。在保证足够湿度情况下,不同养护温度,其结果也不相同。温度高,水泥凝结硬化速度快,早期强度高,所以在混凝土制品厂常采用蒸汽养护的方法提高构件的早期强度,以提高模板和场地周转率。低温时水泥混凝土硬化比较缓慢,当温度低至0°C以下时,硬化不但停止,且具有冰冻破坏的危险。水泥的水化必须在有水的条件下进行,因此,混凝土浇筑完毕后,必须加强养护,保持适当的温度和湿度,以保证混凝土不断地凝结硬化。 (3) 龄期 在正常养护条件下,混凝土强度的增长遵循水泥水化历程规律,即随着龄期时间的延长,强度也随之增长。最初7~14d内,强度增长较快,28d以后增长较慢。但只要温湿度适宜,其强度仍随龄期增长。 普通水泥制成的混凝土,在标准养护条件下,其强度的发展,大致与其龄期的对数成正比(龄期不小于三天) 式中fn——nd龄期混凝土的抗压程度, MPa; f28—— 28d龄期混凝土的抗压强度, MPa; lgn、lg 28——n(n不小于3)和28的常用对数。(4)施工质量 施工质量的好坏对混凝土强度有非常重要的影响。施工质量包括配

混凝土材料力学性能练习题

混凝土材料力学性能练习题 一、选择题 1.《混凝土结构设计规范》中混凝土强度的基本代表值是 A A B C D 2.混凝土各种强度指标就其数值的大小比较 B A fcu,k>ft>fc>ftk B fcu,k>fc>ftk>ft 3.同一强度等级的混凝土fcu,k fc ft的大小关系是 C A fcu,k < fc < ft B fc < fcu,k < ft C ft < fc < fcu,k D fcu,k < ft < fc 4.混凝土强度的基本指标是A A B C D 5.混凝土强度等级由立方体抗压试验后的 C Aμ定。Bμ-2σ确定Cμ-1.645σ确定 6.混凝土强度等级是由立方体抗压强度试验值按下述原则确定的 B A取μf50%Bμf-1645σf95% cμf-2σf97.72%Dμf-σf84.13% 7.采用非标准试块时 D A200mm立方块的抗压强度取0.95 B l00mm立方块的抗压强度取1.05 C l00mm立方块劈拉强度取0.90 D l00mm立方块的抗压强度取0.950.85 8.混凝土的受压破坏 C . A B C. 是裂缝累积并贯通造成的 D 9.一般说来 C A.水泥石的抗拉强度 B.砂浆的抗拉强度 C D 10.混凝土双向受力时 C A.两项受压 B.双向受拉 C.一拉一压 11.混凝土在复杂应力状态下强度降低的是 C A.三项受压 B.两项受压C 12. 在其他条件相同的情况下同一混凝土试块在双向受压状态下所测得的抗压 强度极限比单向受压状态下所测得的抗压强度极限值高的主要原因是 B A B C 13 D

A B C D 14.配有螺旋钢筋的混凝土圆柱体试件的抗压强度高于轴心抗压强度的原因是螺 旋钢筋 B A B约束了混凝土的横向变形 C D.承受了剪力 15. 柱受轴向压力的同时又受水平剪力 B A.随轴压力增大而增大 B.轴压力超过某值后将减小fc时 C.随轴压力增大 16. 当截面上同时作用有剪应力和正应力时 C A.剪应力降低了混凝土的抗拉强度 B.剪应力提高了混凝土的抗拉强度和抗压强度 C.不太高的压应力可提高混凝土的抗剪强度 D.不太高的拉应力可提高混凝土的抗剪强度 17.混凝土极限压应变εu大致为A A(3 3.5)×10-3 B(3 3.5)×10-4 C(1 1.5)×10-3 18.γ为混凝土受压时的弹性系数 A Aγ减小 B. γ≈1 C. γ =0 19.混凝土强度等级越高σ-ε曲线的下降段 B A B C 20.混凝土一次短期加载时的压应力—应变曲线 D A B C D 21.对不同强度等级的混凝土试块 应变曲线可以看出 B A B C 22.混凝土弹性模量的基本测定方法是 C Aσc≤fc下做重复的加载卸载试验所测得 Bσc>fc下做重复的加载卸载试验所测得 Cσc=0-0.5fc之间重复加载l0次σc=0.5fc时所测得的变形值作为确定混凝土弹性模量的依据

乌鲁木齐市高性能混凝土相关技术要求

乌鲁木齐市高性能混凝土相关技术要求 一、原材料 1.1 水泥 1.1.1在一般情况下,配制高性能混凝土必须选用硅酸盐水泥(P.Ⅰ型、P.Ⅱ型)或普通硅酸盐水泥(P.O型),不得使用P.SA、P.SB、P.P、P.F、P.C等种类的水泥。选用的水泥应符合现行国家标准《通用硅酸盐水泥》(GB175-2007)的规定,且其比表面积应小于380m2/kg。 1.l.2配制C80及其以上强度的高性能混凝土,应选用强度等级不低于5 2.5MPa的水泥。 1.1.3根据《抗硫酸盐硅酸盐水泥》(GB748-1996),对混凝土所处环境水中SO42-浓度高于20250mg/L或环境土中SO42-浓度高于30000mg/L的高性能混凝土,宜采用高抗硫酸盐硅酸盐水泥+辅助胶凝材料的形式或直接使用)中硫铝酸盐水泥(《硫铝酸盐水泥》,GB 20472-2006)的方式解决,其他情况下建议使用普通硅酸盐水泥+辅助胶凝材料的方法解决。具体配合比需满足本文 2.4条的规定。 1.1.4 根据《中热硅酸盐水泥、低热硅酸盐水泥、低热矿渣硅酸盐水泥》(GB200-2003),对于水化热或绝热温升要求很低的大体积高性能混凝土,可以选用中低热硅酸盐水泥。 1.1.5 由于骨料资源条件所限,不得已使用高碱活性骨料(即《普通混凝土长期性能或耐久性能试验方法标准》GB/T50082-2009碱-骨料反应实验中,当52周的测试龄期内,膨胀率超过0.04%时,或《普通混凝土用砂、石质量及检验方法标准》JGJ52-2006碱活性试验快速法中,当14天膨胀率大于0.20%,引起AAR)时,可选用低碱水泥。水泥中的碱含量应不大于0.60%或由买卖双方协商确定。

混凝土基本力学性能1.

1.广泛应用钢筋混凝土结构的工程领域:建筑工程、桥梁和交通工程、水利和海港工程、地下工程、特种结构。 2.结构工程科学研究的一般规律:从工程实践中提出要求和问题,精心调查和统计、实验研究、理论分析、计算对比、找出解决问题的方法;研究一般的变化规律,揭示作用机理,建立物理模型和数学表达,确定计算方法和构造措施,回到工程实践中验证,改进和补充;混凝土结构作为结构工程的一个分支,亦服从上述规律。 3.混凝土:由水泥、骨料和水拌合形成的人工合成材料;作用:作为钢筋混凝土结构的主体,一是自身承担较大的荷载;二是容纳和维护各种构造的钢筋,组成合理的组合性结构材料;特点:非弹性、非线性、非匀质材料,较大离散性。 4.材料的组成和内部构造:混凝土是由水泥、水、骨料按一定比例配合,经过硬化后形成的人工石。其为一多相复合材料,其质量的好坏与材料、施工配合比、施工工艺、龄期、环境等诸多因素有关。通常将其组成结构分为:宏观结构:两组分体系,砂浆和粗骨料;亚微观结构:水泥砂浆结构;微观结构:水泥石结构。 5.晶体骨架:由未水化颗粒组成,承受外力,具有弹性变形特点;性变形:在外力作用下由凝胶、孔隙、微裂缝产生;坏起源:孔隙、微裂缝等原因造成;PH值:由于水泥石中的氢氧化钙存在,混凝土偏碱性。 由于水泥凝胶体的硬化过程需要若干年才能完成,所以,混凝土的强度、变形也会在较长时间内发生变化,强度逐渐增长,变形逐渐加大。 6.由于混凝土材料的非均匀微构造、局部缺陷和离散性较大而极难获得精确的计算结果。因此,主要讨论混凝土结构的宏观力学反应,即混凝土结构在一定尺度范围内的平均值。宏观结构中混凝土的两个基本构成部分,即粗骨料和水泥砂浆的随机分布,以及两者的物理和力学性能的差异是其非匀质、不等向性质的根本原因。 7.施工和环境因素引起混凝土的非匀质性和不等向性:例如浇注和振捣过程中,比重和颗粒较大的骨料沉入构件的底部,而比重小的骨料和流动性大的水泥砂浆、气泡等上浮,靠近构件模板侧面和表面的混凝土表层内,水泥砂浆和气孔含量比内部的多;体积较大的结构,内部和表层的失水速率和含水量不等,内外温度差形成的微裂缝状况也有差别;建造大型结构时,常需留出水平的或其它形状的施工缝……。 8.当混凝土承受不同方向(即平行、垂直或倾斜于混凝土的浇注方向)的应力时,其强度和变形值有所不同。例如对混凝土立方体试件,标准试验方法规定沿垂直浇注方向加载以测定抗压强度,其值略低于沿平行浇注方向加载的数值。再如,竖向浇注的混凝土柱,截面上混凝土性质对称,而沿柱高两端的性质有别;卧位浇注的混凝土柱,情况恰好相反。这两种柱在轴力作用下的强度和变形也将不等。 9.混凝土材料的非匀质性和不等向性的严重程度,主要取决于原材料的均匀性和稳定性,以及制作过程的施工操作和管理的精细程度,其直接结果是影响混凝土的质量(材性的指标和离散度)。 10.混凝土的材料组成和构造决定其4个基本受力特点: 1)复杂的微观内应力、变形和裂缝状态 将一块混凝土按比例放大,可以看作是由粗骨料和硬化水泥砂浆等两种主要材料构成的不规则的三维实体结构,且具有非匀质、非线性和不连续的性质。 混凝土在承受荷载(应力)之前,就已经存在复杂的微观应力、应变和裂缝,受力后更有剧烈的变化。 在混凝土的凝固过程中,水泥的水化作用在表面形成凝胶体,水泥浆逐渐变稠、硬化,并和粗细骨料粘结成一整体。在此过程中,水泥浆失水收缩变形远大于粗骨料的。此收缩变形差使粗骨料受压,砂桨受拉,和其它应力分布。这些应力场在截面上的合力为零,但局部应力可能很大,以至在骨料界面产生微裂缝。 粗骨料和水泥砂桨的热工性能(如线膨胀系数)有差别。当混凝土中水泥产生水化热或环境温度变化时,两者的温度变形差受到相互约束而形成温度应力场。更因为混凝土是热惰性材料,温度梯度大而加重了温度应力。 当混凝土承受外力作用时,即使作用应力完全均匀,混凝土内也将产生不均匀的空间微观应力场,取

相关文档
最新文档