人教版九年级上册数学第23章测试题附答案

合集下载

人教版九年级数学上册第23章《图形的旋转》单元检测试题2

人教版九年级数学上册第23章《图形的旋转》单元检测试题2

第 23 章旋转单元检测( B 卷)附答案(满分 100 分,时间40 分钟)命题人:陈锦喜单位:矿泉中学试卷命题企图 : 中考取有好多实质操作题,可是考试中有时不行能实质操作,这就需要同学们在平常着手,培育自己的实践操作能力. “旋转”既考察基着手操作有考察图形空间想象能力,本测试题是在掌握本章的知识基础长进行提高和稳固,考察数学解题过程,学生解题的切入点不一样,运用的思想方法不一样,表现出不一样的思想水平。

使不一样思想层次的考生都有表现的时机,进而有效地域分出学生不一样的数学能力。

试卷展望难度为0.6 左右。

一. 选择题 ( 每题 4 分,共 20 分)1.如图 , 过圆心 O和圆上一点 A 连一条曲线 ,将曲线OA绕 O点按同一方向连续旋转三次, 每次旋转900, 把圆分红四部分 , 则( )AA.这四部分不必定相等B.这四部分相等O·C.前一部分小于后一部分D.不可以确立2.图( 1)中,能够经过旋转和翻折形成图案(2)的梯形切合条件为()A.等腰梯形 ; B .上底与两腰相等的等腰梯形 ;C.底角为 60°且上底与两腰相等的等腰梯形;D.底角为 60°的等腰梯形3.按序连结矩形各边中点所得的四边形()A.是轴对称图形而不是中心对称图形; B.是中心对称图形而不是轴对称图形;C.既是轴对称图形又是中心对称图形; D.没有对称性4.如图,直线y= 3 x+ 3 与y轴交于点P,将它绕着点P 旋转 90?°所得的直线的分析式为().A. y=3x+ 3B. y=-3x+ 3 33C. y= 1x+ 3D. y=-1x+ 3 335.如图,△ ABC中,∠ B=90°,∠ C=30°, AB=1,将△ ABC?绕极点 A 旋转 180°,点 C 落在C′处,则 CC′的长为()A.4 B .42C.23 D .25二、填空题(每题 4 分,共 20 分)6.以下图的五角星绕中心点旋转必定的角度后能与自己完整重合,则其旋转的角度起码为 __ ______ .7.如图,将 Rt △ ABC 绕点 C 按顺时针方向旋转 90°到△ A?′B′ C 的地点, ?已知斜边AB=?10cm,?BC=?6cm, ?设 A?′ B?′的中点是 M,?连结 AM, ?则 AM= cm .8.以下图,P 是等边△ ABC 内一点,△ BMC 是由△ BPA 旋转所得,则∠PBM =.9.如图,设 P 是等边三角形 ABC 内随意一点,△ ACP′是由△ ABP 旋转获得的,则 PA___ ___PB+ PC(填“ >”、“<”或“=” ).第 8题图第9题图第10题图10.如图, E、F 分别是正方形ABCD 的边 BC、CD 上一点,且BE+ DF = EF,则∠ EAF =____ .三. 解答题(共 60 分)11.( 10 分)作图 (1) 已知△ ABC和点 O,画出△ DEF,使△ DEF和△ ABC对于点 O成中心对称.(2)已知四边形 ABCD和点 O,求作四边形 A'B'C'D' ,使四边形 A'B'C'D' 和四边形 ABCD对于点 O成中心对称 .12.( 10 分)如图是一个每边长4m 的荷花池, O 到各极点距离相等,计划在池中安装13盏灯,使夜景变得更为美丽。

人教版九年级上册数学第二十三章《旋转》练习题(附答案)

人教版九年级上册数学第二十三章《旋转》练习题(附答案)

人教版九年级上册数学第二十三章《旋转》练习题一、单选题1.在下列四个图案中,不是中心对称图形的是()A. B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列图形中,只是中心对称图形而不是轴对称图形的是()A. B. C. D.5.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A. ①B. ②C. ③D. ④7.下列标志既是轴对称图形又是中心对称图形的是()A. B. C. D.8.下列图案中,是中心对称图形的是()A. B. C. D.9.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转46°得到Rt△A′B′C,点A在边B′C 上,则∠ACB的大小为()A. 23°B. 44°C. 46°D. 54°10.下列图形,是中心对称图形的是( )A. B. C. D.11.将△ABC绕原点旋转180°得到△A′B′C′,设点A的坐标为(a,b),则点A′的坐标为()A. (−a,−b)B. (a,−b)C. (−a,b)D. (a,b)12.下列图形中,是中心对称图形,但不是轴对称图形的是()A. 平行四边形B. 线段C. 等边三角形D. 抛物线13.下列图形中,是中心对称图形的是()A. B. C. D.14.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A. B. C. D.15.下列图形,既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题16.如图,四边形ABCD中,AB=AD,AC=6,∠DAB=∠DCB=90°,则四边形ABCD的面积为________.17.如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是________.18.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为________.19.已知点A(﹣2,3)与A1关于点P(0,2)成中心对称,A1的坐标是________ .20.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为________度.21.一个长方形绕它的一条边旋转一周形成的几何体为________,将一个直角三角形绕着一条直角边旋转一周得到的几何体为________.22.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中̂,则图中阴影部分的面积为________.点C的运动路径为CC′23.如图,在Rt△ABC中,∠C=90°,∠B=30°,将△ABC绕着点C逆时针旋转后得到的△A′B′C的斜边A′B′经过点A,那么∠ACA'的度数是________ 度.24.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为________.25.如图,已知半⊙O的直径AB=8,将半⊙O绕A点逆时针旋转,使点B落在点B'处,AB'与半⊙O交于点C,若图中阴影部分的面积是8π,则弧BC的长为________.26.如图,在△ABC中,∠ACB=90°,且AC=BC.点D是△ABC内的一点,将△ACD以点C为中心顺时针旋转90°得到△BCE,若点A、D、E共线,则∠AEB的度数为________.27.如图,如果边长为1的等边△PQR沿着边长为1的正方形ABCD的外部的边如图位置开始顺时针连续滚动,当它滚动4次时,点P所经过的路程是________.28.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为________.29.点(﹣2,1)关于原点对称的点的坐标为________.30.如图,将△AOB绕点O按逆时针方向旋转45后,得到△COD,如果∠AOB=15,则∠AOD的度数是________.三、解答题31.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.∠ABC(0°<∠CBE<32.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=121∠ABC),以点B为旋转中心,将△BEC按逆时针旋转,得到△BE′A(点C与点A重合,点E到点E′处)连接2DE′.求证:DE′=DE.∠ABC(0°<∠CBE (2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=12<∠45°).求证:DE2=AD2+EC2.33.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).①若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;②若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;③将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.34.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).①把△ABC向右平移2个单位得△A1B1C1,请画出△A1B1C1,并写出点A1的坐标;②把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.35.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.36.如图,按要求涂阴影:(1)将图形①平移到图形②;(2)将图形②沿图中虚线翻折到图形③;(3)将图形③绕其右下方的顶点旋转180°得到图形④.37.以给出的图形“○,○,△,△, =”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.38.在平面直角坐标系中,∆ABC的顶点坐标是A(-7,1)、B(1,1)、C(1,7),线段DE的端点坐标是D(7,-1)、E(-1,-7)(1)试说明如何平移线段AC,使其与线段ED重合将线段AC先向______(上,下)平移_______个单位,再向_______(左,右)平移_______个单位;(2)将∆ABC绕坐标原点逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的∆DEF,并和∆ABC 同时绕坐标原点O逆时针旋转90o,画出旋转后的图形.39.如图,已知反比例函数y=m(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一x次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).(1)求一次函数的关系式;(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=√17(O为坐标原点),求反比例函数的关系式;(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.40.已知|2﹣m|+(n+3)2=0,点P1、P2分别是点P(m,n)关于y轴和原点的对称点,求点P1、P2的坐标.四、综合题41.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.42.将□OABC放在平面直角坐标系中,O为原点,点C(-6,0),点A在第一象限,OA=2,∠A=60°,AB 与y轴交于点N.(1)如图①,求点A的坐标:(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA'B'C',当点A的对应点A'落在y 轴正半轴上时,求旋转角及点B的对应点B'的坐标:(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.43.在数学课上,老师要求学生探究如下问题:(1)如图1,在等边三角形ABC内有一点P,PA=2,PB=√3,PC=1,试求∠BPC的度数.李明同学一时没有思路,当他认真分析题目信息后,发现以PA、PB、PC的长为边的三角形是直角三角形,他突然有了正确的思路:如图2,将△BPC绕点B逆时针旋转60°,得到△BP′A.连接PP',易得△P′PB 是正三角形,△P′PA是直角三角形,则得∠BPC=________;(2)如图3,在正方形ABCD内有一点P,PA=√5,PB=√2,PC=1,试求∠BPC的度数.(3)在图3中,若在正方形ABCD内有另一点Q,QA=a,QB=b,QC=c(a>b,a>c),试猜想当a,b,c满足什么条件时,∠BQC的度数与第(2)问中∠BPC的度数相等,请直接写出结论.44.如图1,四边形ABCD是边长为3√2的正方形,矩形AEFG中AE=4,∠AFE=30°。

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

九年级数学上册第二十三章《旋转》测试卷-人教版(含答案)

九年级数学上册第二十三章《旋转》测试卷-人教版(含答案)

九年级数学上册第二十三章《旋转》测试卷-人教版(含答案)一、选择题(共10小题)1. 下列图形中,是轴对称图形但不是中心对称图形的是( )A. 正三角形B. 正方形C. 正六边形D. 圆2. 如图,在△ABC中,AB=2,BC=3.6,∠B=60∘,将△ABC绕点A顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,CD的长为( )A. 1.6B. 1.8C. 2D. 2.63. 平面直角坐标系内的点A(−(12)−1,1)与点B(∣−2∣,−1)关于( )A. y轴对称B. x轴对称C. 原点对称D. 以上都不对4. 如图,紫荆花图案绕中心至少旋转x∘后能与原来的图案互相重合,则x的值为( )A. 36B. 45C. 60D. 725. 下列图形中是中心对称图形的有( )个.A. 1B. 2C. 3D. 46. 如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度是( )A. 30∘B. 60∘C. 72∘D. 90∘7. 勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )A. B.C. D.8. 如图,在△ABC中,∠BAC=120∘,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是( )A. ∠ABC=∠ADCB. CB=CDC. DE+DC=BCD. AB∥CD9. 已知一次函数y=kx+b(k≠0)经过(2,−1),(−3,4)两点,则它的图象不经过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )A. 42B. 32C. 42或32D. 37或33二、填空题(共8小题)11. 如图,△ABC中,∠BAC=30∘,将△ABC绕点A按顺时针方向旋转85∘,对应得到△ADE,则∠CAD=∘.12. (1)等边三角形绕中心至少旋转∘与自身重合;(2)正方形绕中心至少旋转∘与自身重合;(3)五角星绕中心至少旋转∘与自身重合;(4)正n边形绕中心至少旋转∘与自身重合.13. 已知A(2,4),B(6,2),以原点为位似中心,将线段AB缩小为原来的一半,则A的对应点坐标为.14. 七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图①所示)中各板块的边长之间的关系拼成一个凸六边形(如图②所示),则该凸六边形的周长是cm.15. 如图,将矩形ABCD绕点A旋转至矩形ABʹCʹDʹ的位置,此时ACʹ的中点恰好与D点重合,ABʹ交CD于点E.若AB=3,则△AEC的面积为.16. 已知直角坐标系内有A(−1,2),B(3,0),C(1,4),D(x,y)四个点.若以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为.17. 如图,在Rt△ABC中,∠ACB=90∘,将△ABC绕顶点C逆时针旋转得到△AʹBʹC,M是BC的中点,N是AʹBʹ的中点,连接MN,若BC=4,∠ABC=60∘,则线段MN的最大值为.18. 如图在Rt△ABC中,AB=AC,∠ABC=∠ACB=45∘,D,E是斜边BC上两点,且∠DAE=45∘,若BD=3,CE=4,S△ADE=15,则△ABD与△AEC的面积之和是.三、解答题(共5小题)19. 请回答下列问题.(1)如图,点A与Aʹ关于原点对称,写出Aʹ坐标.(2)如图,点A与Aʹ关于原点对称,写出Aʹ坐标.20. 如图所示,△ABC是等边三角形,D是BC延长线上一点,△ACD经过旋转后到达△BCE的位置.(1)旋转中心是,逆时针旋转了度;(2)如果M是AD的中点,那么经过上述旋转后,点M转到的位置为.21. 已知:四边形ABCD(如图).(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心.22. 如图,已知菱形ABCD的对角线AC与BD相交于点O,AE垂直且平分边CD,垂足为E.求∠BCD的度数.OA<OM=ON),∠AOB=∠MON= 23. 如图,已知△AOB和△MON都是等腰直角三角形(√2290∘.(1)如图①,连接AM,BN,求证:△AOM≌△BON;(2)若将△MON绕点O顺时针旋转,①如图②,当点N恰好在AB边上时,求证:BN2+AN2=2ON2;②当点A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.参考答案1. A【解析】A.正三角形是轴对称图形但不是中心对称图形,故本选项符合题意;B.正方形既是轴对称图形,又是中心对称图形,故本选项不合题意;C.正六边形既是轴对称图形,又是中心对称图形,故本选项不合题意;D.圆既是轴对称图形,又是中心对称图形,故本选项不合题意.2. A【解析】由旋转的性质可得,AD =AB ,∵∠B =60∘,∴△ADB 为等边三角形,∴BD =AB =2,∴CD =CB −BD =1.6.3. C【解析】∵−(12)−1=−2,∴A 点坐标为 (−2,1),∵∣−2∣=2,∴B 点坐标为 (2,−1),∵−2 与 2 互为相反数,1 与 −1 互为相反数,∴ 点 A (−2,1) 与点 B (2,−1) 关于原点对称.4. D5. B6. C7. B【解析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形, 8. D【解析】由旋转的性质得出 CD =CA ,∠EDC =∠CAB =120∘,∵ 点 A ,D ,E 在同一条直线上,∴∠ADC =60∘,∴△ADC 为等边三角形,∴∠DAC =60∘,∴∠BAD =60∘=∠ADC ,∴AB ∥CD .9. C【解析】将(2,−1)与(−3,4)分别代入一次函数解析式y=kx+b中,得到一次函数解析式为y=−x+1,不经过第三象限.10. C【解析】分两种情况:①如图,当△ABC是锐角三角形时,∵AD是△ABC的高,∴AD⊥BC,∴∠ADB=∠ADC=90∘,∵AB=15,AD=12,∴在Rt△ABD中,BD2=AB2−AD2=152−122=81=92,∴BD=9,∵AC=13,AD=12,∴在Rt△ACD中,CD2=AC2−AD2,132−122=25=52,∴CD=5,∴△ABC的周长为15+13+9+5=42;②如图,当△ABC是钝角三角形时,由①可知,BD=9,CD=5,∴BC=BD−CD=9−5=4,∴△ABC的周长为15+13+4=32.故选C.11. 5512. 120,90,72∘,360n13. (1,2)或(−1,−2)14. (32√2+16)15. √3【解析】由旋转的性质可知ACʹ=AC,∵D为ACʹ的中点,∴AD=12ACʹ=12AC,∵四边形ABCD是矩形,∴AD⊥CD,∴∠ACD=30∘,∵AB∥CD,∴∠CAB=30∘,∴∠CʹABʹ=∠CAB=30∘,∴∠EAC=30∘,∴AE=EC,∴DE=12AE=12EC,∴CE=23CD=23AB=2,DE=1,∴AD=√3,∴S△AEC=12EC⋅AD=√3.16. (1,−2)或(5,2)或(−3,6)【解析】由图象可知,满足条件的点D的坐标为(1,−2)或(5,2)或(−3,6).17. 6【解析】连接CN.在Rt△ABC中,∵∠ACB=90∘,∠B=60∘,∴∠A=30∘,∴AB=AʹBʹ=2BC=8,∵N是AʹBʹ的中点,AʹBʹ=4,∴CN=12∵CM=BM=2,∴MN≤CN+CM=6,∴MN的最大值为6.18. 21【解析】将△AEC顺时针方向旋转90∘至△AFB,过点A作AH⊥BC于H,根据旋转的性质可得△AEC≌△ABF,∴∠ABF=∠ACD=45∘,∠BAF=∠CAE,AE=AF,∴∠FBE=45∘+45∘=90∘,BF=CE,∴BD2+BF2=DF2,∵∠DAE=45∘,∴∠BAD+∠CAE=45∘,∴∠BAD+∠BAF=45∘,∴∠DAE=∠DAF,又∵AD=AD,∴△DAE≌△DAF(SAS),∴DE=DF,∴BD2+BF2=DE2,∵BD=3,CE=4,∴DE=5,∴BC=BD+DE+CE=12,∵AB=AC,∠BAC=90∘,AH⊥BC,∴AH=BH=CH=12BC=6,∴△ABD与△AEC的面积之和:=12×BD×AH+12×CE×AH=12×(3+4)×6=21.19. (1)Aʹ(−2,−1)(2)Aʹ(1,−2) 20. (1)点C;60(2)BE的中点21. (1)图略(2)图略(3)图略22. 由条件可推出AC=AD,即△ACD,△ACB都是等边三角形,于是可得∠BCD=120∘.23. (1)因为∠AOB=∠MON=90∘,所以∠AOM=∠BON,在△AOM和△BON中,{AO=BO,∠AOM=∠BON, OM=ON,所以△AOM≌△BON(SAS).(2)①如图1,连接AM.同(1)可证△AOM≌△BON,∴AM=BN,∠OAM=∠B=45∘.∵∠OAB=∠B=45∘,∴∠MAN=∠OAM+∠OAB=90∘,∴在Rt△AMN中,MN2=AN2+AM2.∵△MON是等腰直角三角形,∴MN2=2ON2,∴BN2+AN2=2ON2.②BN=√46−3√22.【解析】②如图2,设OA交BN于J,过点O作OH⊥MN于H.∵△AOM ≌△BON ,∴AM =BN ,∵OM =ON =3,∠MON =90∘,OH ⊥MN , ∴MN =3√2,MH =HN =OH =3√22, ∴AH =√OA 2−OH 2=√42−(3√22)2=√462, ∴BN =AM =MH +AH =√46+3√22. 如图 3,同法可证 BN =AM =√46−3√22.。

人教版九年级数学上册第二十三章《旋转》测试带答案解析

人教版九年级数学上册第二十三章《旋转》测试带答案解析

人教版九年级数学上册第二十三章《旋转》测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列垃圾分类的标志中,既是轴对称图形又是中心对称图形的是()A.可回收物B.厨余垃圾C.有害垃圾D.其它垃圾物3.下列垃圾分类图标分别表示:“可回收垃圾”、“有害垃圾”、“厨余垃圾”、“其它垃圾”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.7.2022年油价多次上涨,新能源车企迎来了更多的关注,如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,在平面直角坐标系中,△ABC的边AB⊥x轴,A(﹣2,0),C(﹣4,1),二次函数y=x2﹣2x﹣3的图象经过点B.将△ABC沿x轴向右平移m(m>0)个单位,使点A平移到点A′,然后绕点A'顺时针旋转90°,若此时点C的对应点C′恰好落在抛物线上,则m的值为()A B C D .9.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒10.如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是( )A .B .C .D .11.如图,矩形ABCD 中,AD =2,ABAC 上有一点G (异于A ,C ),连接 DG ,将△AGD 绕点A 逆时针旋转60°得到△AEF ,则BF 的长为( )A B .C D .=60°,在x 轴正半轴上有一点C ,点C 坐标为()1,0,将线段AC 绕点A 逆时针旋转120°,得线段AD ,连接BD .则BD 的长度为( )A .B .4CD .152二、填空题(本大题4个小题,每小题4分,共16分)13.点(6,1)-关于原点的对称点是__________.14.如图,在ABC 中,80ACB ∠=︒,将ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,使CC '平分B C A ''∠,则旋转角的度数为__________.15.如图,在ABC 中,70CAB ∠=︒,在同一平面内,将ABC 绕点A 逆时针旋转到AB C ''△的位置,使CC AB '∥,作B D AC '∥交BC 于点D ,则AB D '∠=______.16.如图,在ABC 中,90B ,4AB BC ==,将ABC 绕点A 逆时针旋转60︒,得到ADE ,则点D 到BC 的距离是______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.如图所示的正方形网格中,画出将△ABC 绕点C 逆时针旋转90°得到的△MNC ,A 、B 的对应点分别为M 、N .18.如图,ABC 的顶点坐标分别为(4,5)A -,(5,2)B -,(3,4)C -.(1)画出与ABC 关于原点O 对称的111A B C △,并写出点1A 的坐标为___________.(2)D 是x 轴上一点,使DB DC 的值最小,画出点D (保图痕迹),D 点坐标为___________.(3)(,0)P t 是x 轴上的动点,将点C 绕点P 顺时针旋转90︒至点E ,直线25y x =-+经过点E ,则t 的值为___________.19.阅读理解,并解答问题:观察发现:如图1是一块正方形瓷砖,分析发现这块瓷砖上的图案是按图2所示的过程设计的,其中虚线所在的直线是正方形的对称轴.问题解决:用四块如图1所示的正方形瓷砖按下列要求拼成一个新的大正方形,并在图3和图4中各画一种拼法.(1)图3中所画拼图拼成的图案是轴对称图形,但不是中心对称图形;(2)图4中所画拼图拼成的图案既是轴对称图形,又是中心对称图形.20.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.21.如图,在平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()4,1,点C 的坐标为()3,3.(1)画出将ABC 向下平移5个单位长度得到的111A B C △;(2)画出将ABC 绕点原点O 逆时针旋转90°后得到的222A B C △,写出2C 的坐标.22.如图,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BC 上(不与点B ,C 重合),连接AD ,以点A 为中心,将线段AD 逆时针旋转180°﹣α得到线段AE ,连接BE .(1)∠BAC +∠DAE = °;(2)取CD 中点F ,连接AF ,用等式表示线段AF 与BE 的数量关系,并证明.23.对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90 得到图形N ,图形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为()0,3,则点B 的坐标为___________;②若点B 的坐标为()3,1,则点A 的坐标为___________;(2)(3,3)E -,(2,3)F -,(,0)G a ,线段EF 关于点G 的“垂直图形”记为E F '',点E 的对应点为E ',点F 的对应点为F '.①求点E '的坐标(用含a 的式子表示);②若O 的半径为2E F '',上任意一点都在O 内部或圆上,直接写出满足条件的EE '的长度的最大值.24.已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =;(2)将MON △绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.25.如图,在Rt ABC △中,90BAC ∠=︒,将Rt ABC △绕点A 旋转一定的角度得到Rt ADE △,且点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.参考答案:1.C【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.2.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B.不是中心对称图形,是轴对称图形,故本选项不合题意;C.既是中心对称图形又是轴对称图形,故本选项符合题意;D.既不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.既是轴对称图形,又是中心对称图形.故本选项符合题意;C.是轴对称图形,不是中心对称图形.故本选项不合题意;D.既不是轴对称图形,也不是中心对称图形.故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】A是轴对称图形不是中心对称图形,不符合题意;B是轴对称图形不是中心对称图形,不符合题意;C既不是轴对称图形也不是中心对称图形,不符合题意;D既是轴对称图形又是中心对称图形,符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的定义,即轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.A【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.B【分析】根据轴对称图形及中心对称图形的概念可直接进行排除选项.【详解】解:A、文字上方的图案既不是轴对称图形也不是中心对称图形,故不符合题意;B、文字上方的图案既是轴对称图形也是中心对称图形,故符合题意;C、文字上方的图案是轴对称图形但不是中心对称图形,故不符合题意;D、文字上方的图案既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查轴对称图形及中心对称图形的识别,熟练掌握轴对称图形及中心对称图形的概念是解题的关键.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.是轴对称图形,不是中心对称图形.故本选项不符合题意;C.既是轴对称图形又是中心对称图形.故本选项符合题意;D.是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8.C【分析】作CD⊥AB于D,C'D'⊥A'B'于D',先根据已知条件求出点B坐标,由A、B、C三点坐标可得CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).进而表示出点C'的坐标为(m﹣1,2),最后将C'坐标代入二次函数解析式中计算即可得到点C坐标.【详解】解:作CD⊥AB于D,C'D'⊥A'B'于D',∵AB⊥x轴,二次函数y=x2﹣2x﹣3的图象经过点B,∴点B(﹣2,5)∵A(﹣2,0),C(﹣4,1),∴CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).∵A'D'=AD=1,C'D'=CD=2,∴点C'坐标为(m﹣1,2),又点C'在抛物线上,∴把C'(m﹣1,2)代入y=x2﹣2x﹣3中,得:(m ﹣1)2﹣2(m ﹣1)﹣3=2,整理得:m 2﹣4m ﹣2=0.解得:m 1=m 2=2(舍去).故选:C .【点睛】此题考查了二次函数图象上点的坐标特点,平移的性质,解一元二次方程,正确理解平移的性质是解题的关键.9.B【分析】由旋转的性质得出80E C ∠=∠=︒,40BAD ∠=︒,由等腰三角形的性质得出80C AFC ∠=∠=︒,求出20CAF ∠=︒,根据BAC BAD CAF ∠=∠+∠即可得出答案. 【详解】解:将ABC 绕点A 逆时针旋转40︒得到ADE ,且80E ∠=︒,80E C ∴∠=∠=︒,40BAD ∠=︒,又AFC 是以线段FC 为底边的等腰三角形,AC AF ∴=,80C AFC ∴∠=∠=︒,180180808020CAF C AFC ∴∠=︒-∠-∠=︒-︒-︒=︒,402060BAC BAD CAF ∴∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.10.C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案.【详解】∵将五角星绕其中心旋转180︒,∴图中阴影部分的三角形应竖直向下,故选:C .【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键.11.A【分析】过点F 作FH ⊥BA 交BA 的延长线于点H ,则∠FHA =90°,△AGD 绕点A 逆时针旋转60°得到△AEF ,得∠F AD =60°,AF =AD =2,又由四边形ABCD 是矩形,∠BAD =90°,得AF=1,由勾股定理得AH=,得到到∠F AH=30°,在Rt△AFH中,FH=12BH=AH+AB,再由勾股定理得BF=【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A 逆时针旋转60°得到△AEF∴∠F AD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠F AD+ ∠BAD=150°∴∠F AH=180°-∠BAF=30°AF=1在Rt△AFH中,FH=12由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB由勾股定理得BF=故BF故选:A【点睛】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.12.C【分析】连接CD,过点A作AE⊥CD于点E,过点E作FG⊥x轴于点F,过点A作AG⊥FG于点G,设E(m,n),根据旋转证∠ACG=30°,CE,根据两角对应相等证△AEG∽△ECF,求出74E ⎛ ⎝⎭,52D ⎛ ⎝⎭,结合B (-2,0)求出BD =. 【详解】连接CD ,过点A 作AE ⊥CD 于点E ,过点E 作FG ⊥x 轴于点F ,过点A 作AG ⊥FG 于点G ,则∠AEC =∠OFG =∠G =90°,∵∠AOF =90°,∴∠OAG =90°,∴四边形AOFG 是矩形,∵(0,A ,∴FG =OA设E (m ,n ),∴AG =OF =m ,EF =n ,∴CF =m -1,EGn ,由旋转知,∠CAD =120°,AC =AD ,∴CE =DE ,∠ACG =30°,∴CE,∵∠CEF +∠ECF =∠AEG +∠CEF =90°,∴∠AEG =∠ECF ,∴△AEG ∽△ECF ,∴EF CE AG AE ==,∴=n m∵CF CE EG AE==∴74m =,n∴74E ⎛ ⎝⎭, ∵73144-=,735442+=,∴52D ⎛ ⎝⎭,∵∠ABO=60°,=OA∴OB =2,B (-2,0),∴BD =. 故选C .【点睛】本题主要考查了旋转,等腰三角形,含30°的直角三角形,两点间的距离公式,熟练掌握旋转图形全等性质,三线合一含30°角的直角三角形边的性质,两点间的距离公式是解决此题的关键.13.(6,1)-【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是点P '(﹣x ,﹣y ),进而得出答案.【详解】解:点(6,﹣1)关于原点的对称点的坐标为(﹣6,1).故答案为:(﹣6,1).【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键. 14.100︒##100度【分析】根据旋转的性质得出80B C A ''∠=︒,C A AC '=,再根据角平分线的性质得出40CC A '∠=︒,利用等腰三角形的性质可求旋转角.【详解】解:∵ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,∴80C B C A A B ∠︒==''∠,C A AC '=,∵CC '平分B C A ''∠,∴1402CC A B C A '''∠=∠=︒,∴40CC A C CA ''∠=∠=︒,∴100C AC '∠=︒,故答案为:100°.【点睛】本题考查了旋转的性质和等腰三角形的性质,解题关键是熟练运用旋转的性质得出角的度数.15.30°##30度【分析】利用旋转的性质可求得AC =AC ′,∠CAB =∠C ′AB ′,由平行线性质和三角形内角和定理可求得∠C ′AC ;进而求得∠CAB ′即可解答;【详解】解:∵CC AB '∥,∴∠C ′CA =∠CAB =70°,由旋转的性质可得:AC =AC ′,∠CAB =∠C ′AB ′=70°,∴∠ACC ′=∠AC ′C =70°,∴∠C ′AC =180°-70°-70°=40°,∴∠CAB ′=∠C ′AB ′-∠C ′AC =70°-40°=30°,∵B D AC '∥,∴∠AB ′D =∠CAB ′=30°,故答案为:30°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,平行线的性质;掌握旋转的性质是解题关键.16.2【分析】由旋转的性质可得4AB AD ==,60BAD ∠=︒,可证ABD △是等边三角形,由直角三角形的性质可求解.【详解】解:如图,连接BD ,过点D 作DH BC ⊥于H ,将ABC 绕点A 逆时针旋转60︒,4AB AD ∴==,60BAD ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,60ABD ∠=︒,30DBC ∴∠=︒,DH BC ⊥,122DH BD ∴==, ∴点D 到BC 的距离是2,故答案为:2.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,掌握旋转的性质是解题的关键.17.见解析【分析】根据题意画出旋转后的图形即可;【详解】:如图,【点睛】本题主要考查了图形的旋转,掌握旋转图形的画法是解题的关键.18.(1)作图见详解,(4,5)-(2)作图见详解,13,03⎛⎫- ⎪⎝⎭(3)2-【分析】(1)已知ABC 三点坐标,ABC 关于原点O 对称的111A B C △各对应点的坐标与原坐标的横纵坐标均为相反数,由此即可作图;(2)作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小; (3)构造全等三角形求出等E 坐标,利用待定系数法即可解问题.【详解】(1)解:已知ABC 三点坐标(4,5)A -,(5,2)B -,(3,4)C -,关于原点对称,则对应点的坐标分别是1(4,5)A -,1(5,2)B -,1(3,4)C -,连接1A ,1B ,1C 所组成的图形为所求图形111A B C △,如图所示,(2)解:作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小,如图所示,已知(4,5)A -,(5,2)B -,(3,4)C -,点B'是点B 关于x 轴的对称点,∴'(5,2)B --、(34)C -,, ∴直线'BC 解析式为313y x =+,当0y =时,133x , ∴1303D ⎛⎫- ⎪⎝⎭,. (3)解:如图所示,作CH x ⊥轴于H EK x ⊥,轴于K ,根据题意得,(34)C -,,90CHP CPE PKE ∠=∠=∠=︒, ∴9090CPH HCP CPH EPK ∠+∠=︒∠+∠=︒,,∴PCH EPK ∠=∠,∵PC PE =,∴(AAS)PCH EPK △≌△,∴43PK CH EK PH t ====+,,∴4OK t =+,∴(43)E t t ++,,∵点E 在直线25y x =-+上,∴3245t t +=-++(),∴2t =-.【点睛】本题考查平面直角坐标系中图形的旋转变换,一次函数图像上的点的特征,轴对称最短问题等知识,解题的关键是熟练掌握旋转变换的性质,根据题意添加常用辅助线,构造全等三角形解决问题.19.(1)见解析(2)见解析【分析】(1)按照轴对称的意义得出答案即可;(2)按照轴对称的定义和中心对称的定义设计,所设计的图案既是中心对称图形,又是轴对称图形.(1)解:(1)参考图案,如图所示:(2)(2)参考图案,如图所示:【点睛】本题考查利用轴对称或中心对称设计图案,关键是理解轴对称和中心对称的定义.20.(1)见解析(2)见解析(3)6【分析】(1)首先确定C 点的平移规律,依此规律平移A 、B 两点,从而得到111A B C △; (2)利用中心对称的性质作出A 、B 、C 的对应点2A 、2B 、2C 即可;(3)先求112AC C 的面积,四边形1221A C A C 的面积为112AC C 面积的2倍.(1)解:如图所示,111A B C △为所求作;(2)解:如图所示,222A B C △为所求作; (3)解:如图,123C C =,1A 到12C C 距离为2; 则112AC C 的面积为:13232⨯⨯=. ∴由图可得四边形1221A C A C 的面积为236S =⨯=.【点睛】本题考查了坐标的平移,中心对称图形的画法,网格中图形面积的求法,解题的关键是根据题意画出图象. 21.(1)见解析 (2)见解析,()3,3-【分析】(1)利用平移的坐标特征写出1A 、1B 、1C 的坐标,然后描点依次连接即可; (2)利用网格特点和旋转的性质找出 A 、B 、C 的对应点 2A 、2B 、2C ,然后描点依次连接即可得 (1)解:经过平移可得:()11,4A -,()14,4B -,()13,2C -,顺次连接,如图所示:111A B C △即为所求作;(2)解:旋转后的点的坐标分别为:()21,1A -,()21,4B -,()23,3C -,然后顺次连接, 如图所示:222A B C △即为所求作,2C 的坐标()3,3-【点睛】本题考查了作图:平移及旋转变换,找到对应点的坐标,然后顺次连接各点是解题关键. 22.(1)180 (2)12AF BE =,证明见解析;【分析】(1)由旋转可知∠DAE =180°-a ,所以得到:∠BAC +∠DAE =a +180°-a =180°; (2)连接并延长AF ,使FG =AF ,连接DG ,CG ;因为DF =CF ,AF =GF ;可以得到四变形ADGC 为平行四边形;从而有∠DAC +∠ACG =180°,再证∠ACG =∠BAE 继而证明△ABE ≌△CAG 得到BE =AG ,即可得线段AF 与BE 的数量关系; 【详解】(1)解:由旋转可知∠DAE =180°-a , ∠BAC +∠DAE =a +180°-a =180° 故答案为:180(2)解:如图所示:连接并延长AF ,使FG =AF ,连接DG ,CG ; ∵DF =CF ,AF =GF ;∴四变形ADGC 为平行四边形; ∴∠DAC +∠ACG =180°,即∠ACG =180°-∠DAC ,∠BAE =∠BAC +∠DAE-∠DAC =180°-∠DAC , 所以∠ACG =∠BAE ,∵四变形ADGC 为平行四边形; ∴AD =CG , 又∵AD =AE , AE =CG ,在△ABE 和△CAG 中,{AB CA BAE ACG AE CG=∠=∠=∴△ABE ≌△CAG , ∴BE =AG , ∴AF =12AG =12BE ,故线段AF 与BE 的数量关系:AF =12BE ;【点睛】本题考查了旋转的性质,旋转角的定义,以及全等三角形的性质的判定,解题的关键是熟悉并灵活应用以上性质. 23.(1)①()3,0,②()1,3- (2)①(3,3)a a ++,【分析】(1)①②根据“垂直图形”的定义可得答案;(2)①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,利用AAS证明PEG HGE '△≌△得3E H PG a '==+,3GH EP ==,从而得出答案;②由点E '的坐标可知,满足条件的点E '在第一象限的O 上,求出点E '的坐标,从而解决问题. (1)解:①点A 的坐标为()0,3, ∴点B 的坐标为()3,0,故答案为:()3,0;②当()3,1B 时,如图,()1,3A -,故答案为:()1,3-; (2)解:①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,90EGE ∠'=︒,EG E G =',90EGP E GH ∴∠+∠'=︒,90EGP E ∠+∠=︒, E E GH ∴∠=∠',EPG GHE ∠=∠',∴AAS HG PEG E '△≌△(), 3E H PG a ∴'==+,3GH EP ==,3OH a ∴=+,3,3E a a ∴'++();②如图,观察图象知,满足条件的点E '在第一象限的O 上,()3,3E a a '++,2OE '=,()()222332a a ∴+++=,3a +=负值舍去),3a ∴=,E ∴',EE ∴'EE ∴'【点睛】本题是几何变换综合题,主要考查了全等三角形的判定与性质,“垂直图形”的定义,坐标与图形,求出点E '的坐标是解题的关键.24.(1)见解析;(2)①见解析; 【分析】(1)证明△AMO ≌△BNO 即可;(2)①连接BN ,证明△AMO ≌△BNO ,得到∠A =∠OBN =45°,进而得到∠MBN =90°,且△OMN 为等腰直角三角形,再在△BNM 中使用勾股定理即可证明; ②分两种情况分别画出图形即可求解.【详解】解:(1)∵AOB 和MON △都是等腰直角三角形, ∴90OA OB ON OM AOBNOM ,,,又=+=90+AOM NOM AON AON ,=+=90+BON AOB AON AON ,∴=BON AOM , ∴()AMO BNO SAS ≌, ∴AM BN =;(2)①连接BN ,如下图所示:∴==90AOM AOBBOM BOM , ==90BON MONBOM BOM ,且OA OB OM ON ,==, ∴()AMO BNO SAS ≌, ∴45A OBN,AM BN =,∴454590ABNABOOBN,且OMN ∆为等腰直角三角形,∴MN ,在Rt BMN ∆中,由勾股定理可知:22222(2)2BM BN MN OM OM ,且AM BN =∴2222AM BM OM +=; ②分类讨论:情况一:如下图2所示,设AO 与NB 交于点C ,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AMAH HM; 情况二:如下图3所示,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AM AH HM;故46322AM或.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 25.(1)见解析 (2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C ∴∠=∠AED AEC ∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠,1802EAC C ∠=︒-∠, ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒, 90ABC C ∴∠+∠=︒, 90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.。

人教版九年级数学上册 第23章 练习题(含答案)

人教版九年级数学上册 第23章 练习题(含答案)

人教版九年级数学上册23.1图形的旋转一.选择题(共6小题)1.如图△ABC绕点A旋转至△ADE,则旋转角是()A.∠BAD B.∠BAC C.∠BAE D.∠CAD2.香港特别行政区的区徽中间紫金花图案如图所示,则至少需要旋转()和原图案重合.A.72°B.60°C.36°D.18°3.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=30°,则旋转角度是()A.10°B.30°C.40°D.70°4.如图,△OAB绕某点旋转到△OCD的位置,则旋转中心是()A.点A B.点B C.点O D.无法确定5.在平面直角坐标系中,已知点A(﹣2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,用左面的三角形连续的旋转可以得到右面的图形,每次旋转()度.A.60B.90C.120D.150二.填空题(共6小题)7.如图,将△ABC绕点A逆时针旋转50°得△ADE,若∠BAC=20°,则∠BAE的度数是.8.如图,△ABC中,∠ACB=30°,将△ABC绕点A按顺时针方向旋转85°得到△ADE,则∠AED的度数为°.9.如图,风车图案围绕着旋转中心至少旋转度,会和原图案重合.10.时钟的时针不停地旋转,从上午6时到上午10时,时针旋转的旋转角是度.11.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=.12.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点O,并能绕O点自由旋转,设∠AOC=α,∠BOD=β,则α与β之间的数量关系是.三.解答题(共3小题)13.如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.(1)指出旋转中心;(2)若∠B=21°,∠ACB=26°,求出旋转的度数;(3)若AB=5,CD=3,则AE的长是多少?为什么?14.如图,P是等边三角形ABC内一点,且P A=6,PB=8,PC=10,若将△P AC绕点A 逆时针旋转后,得到△P′AB.求:(1)PP′的长度;(2)∠APB的度数.15.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.求证:△BCD≌△FCE.参考答案一.选择题(共6小题)1.如图△ABC绕点A旋转至△ADE,则旋转角是()A.∠BAD B.∠BAC C.∠BAE D.∠CAD【解答】解:∵△ABC绕点A旋转至△ADE,∴旋转角为∠BAD或∠CAE,故选:A.2.香港特别行政区的区徽中间紫金花图案如图所示,则至少需要旋转()和原图案重合.A.72°B.60°C.36°D.18°【解答】解:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是360°÷5=72°,∴这四次旋转中,旋转角度最小是72°,故选:A.3.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=30°,则旋转角度是()A.10°B.30°C.40°D.70°【解答】解:∵∠AOB=40°,∠BOC=30°,∴∠AOC=70°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=70°,故选:D.4.如图,△OAB绕某点旋转到△OCD的位置,则旋转中心是()A.点A B.点B C.点O D.无法确定【解答】解:由题意得△OAB绕某点旋转到△OCD的位置,则旋转中心是点O.故选:C.5.在平面直角坐标系中,已知点A(﹣2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:如图,∵点A(﹣2,3),若将OA绕原点O逆时针旋转180°得到OA′,∴A′的坐标是(2,﹣3),即点A′在第四象限,故选:D.6.如图,用左面的三角形连续的旋转可以得到右面的图形,每次旋转()度.A.60B.90C.120D.150【解答】解:根据图形可得出:这是一个由基本图形绕着中心连续旋转3次,每次旋转120度角形成的图案.故选:C.二.填空题(共6小题)7.如图,将△ABC绕点A逆时针旋转50°得△ADE,若∠BAC=20°,则∠BAE的度数是30°.【解答】解:由题意可得,∠CAE=50°,∵∠BAC=20°,∴∠BAE=∠CAE﹣∠BAC=50°﹣20°=30°,故答案为:30°.8.如图,△ABC中,∠ACB=30°,将△ABC绕点A按顺时针方向旋转85°得到△ADE,则∠AED的度数为30°.【解答】解:∵将△ABC绕点A按顺时针方向旋转85°得到△ADE,∴△ABC≌△ADE,∴∠ACB=∠AED=30°,故答案为:30°.9.如图,风车图案围绕着旋转中心至少旋转60度,会和原图案重合.【解答】解:∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.故答案为:60.10.时钟的时针不停地旋转,从上午6时到上午10时,时针旋转的旋转角是120度.【解答】解:∵时针从上午的6时到10时共旋转了4个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×4=120°.故答案为:120.11.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=2.【解答】解:∵△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,∴AC′=AC=1,∴BC′=AB﹣AC′=3﹣1=2.故答案为2.12.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点O,并能绕O点自由旋转,设∠AOC=α,∠BOD=β,则α与β之间的数量关系是α+β=180°.【解答】解:∵使直角的顶点重合于点O,并能绕O点自由旋转,∴∠BOC=∠AOD,∵∠BOC+∠AOC=90°,∴∠AOD+∠AOC=90°,∵α+β=∠AOC+∠BOD=∠AOC+∠BOC+∠AOC+∠AOD=180°,∴α+β=180°,故答案为:α+β=180°.三.解答题(共3小题)13.如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.(1)指出旋转中心;(2)若∠B=21°,∠ACB=26°,求出旋转的度数;(3)若AB=5,CD=3,则AE的长是多少?为什么?【解答】解:(1)旋转中心为点A;(2)∵∠B=21°,∠ACB=26°,∴∠BAC=180°﹣21°﹣26°=133°,∴旋转的度数为133°;(3)由旋转性质知:AE=AC,AD=AB,∴AE=AB﹣CD=2.14.如图,P是等边三角形ABC内一点,且P A=6,PB=8,PC=10,若将△P AC绕点A 逆时针旋转后,得到△P′AB.求:(1)PP′的长度;(2)∠APB的度数.【解答】解:(1)∵△P AC绕点A逆时针旋转后,得到△P′AB,∴∠P AP′=60°,P′A=P A=6,∴△APP′是等边三角形,∴PP′=P A=6;(2)∵△P AC绕点A逆时针旋转后,得到△P′AB,∴P′B=PC=10,∵△APP′是等边三角形,∴∠APP′=60°,∵PB2+PP′2=82+62=100,P′B2=102=100,∴PB2+PP′2=P′B2,∴△P′PB是直角三角形,∠BPP′=90°,∴∠APB=∠APP′+∠BPP′=60°+90°=150°.15.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.求证:△BCD≌△FCE.【解答】证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).人教版九年级数学上册23.2.1中心对称一.选择题(共6小题)1.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′2.下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组3.如图,△ABC与△A′B′C′成中心对称,ED是△ABC的中位线,E′D′是△A′B′C′的中位线,已知BC=4,则E′D′=()A.2B.3C.4D.1.54.如图,已知图形是中心对称图形,则对称中心是()A.点C B.点D C.线段BC的中点D.线段FC的中点5.已知下列命题,其中正确的个数是()(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等形;(3)两个全等的图形一定关于中心对称.A.0个B.1个C.2个D.3个6.已知△ABC和△DEF关于点O对称,相应的对称点如图所示,则下列结论正确的是()A.AO=BO B.BO=EOC.点A关于点O的对称点是点D D.点D在BO的延长线上二.填空题(共6小题)7.关于某一点成中心对称的两个图形,对称点的连线都经过,并且被平分.8.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为.9.如图,△ABC与△DEC关于点C成中心对称,则线段AB与DE的大小关系是.10.如图,△ABC绕点A旋转180°,得到△A′B′C′,A为旋转中心,则△ABC与△A′B′C′关于点中心对称;若∠C=90°,∠B=30°,BC=1,则BB′的长为.11.与电子显示的四位数6925不相等,但为全等图形的四位数是.12.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,观察点A 与点P,点B与点Q,点C与点R的坐标之间的关系.在这种变换下,如果△ABC中任意一点M的坐标为(x,y),那么它们的对应点N的坐标是.三.解答题(共3小题)13.如图所示的两个图形成中心对称,请找出它的对称中点.14.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.15.如图,矩形ABCD和矩形A'B'C'D关于点D成中心对称.求证:四边形ACA'C'是菱形.参考答案一.选择题(共6小题)1.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′【解答】解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.2.下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组【解答】解:根据中心对称的概念,知②③④都是中心对称.故选:C.3.如图,△ABC与△A′B′C′成中心对称,ED是△ABC的中位线,E′D′是△A′B′C′的中位线,已知BC=4,则E′D′=()A.2B.3C.4D.1.5【解答】解:∵△ABC与△A′B′C′成中心对称,∴△ABC≌△A′B′C′,∴B′C′=BC=4,∵E′D′是△A′B′C′的中位线,∴E′D′=B′C′=×4=2.故选:A.4.如图,已知图形是中心对称图形,则对称中心是()A.点C B.点DC.线段BC的中点D.线段FC的中点【解答】解:∵此图形是中心对称图形,∴对称中心是线段FC的中点.故选:D.5.已知下列命题,其中正确的个数是()(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等形;(3)两个全等的图形一定关于中心对称.A.0个B.1个C.2个D.3个【解答】解:关于中心对称的两个图形一定全等,两个全等的图形不一定关于中心对称.故只有(2)说法正确,故选:B.6.已知△ABC和△DEF关于点O对称,相应的对称点如图所示,则下列结论正确的是()A.AO=BOB.BO=EOC.点A关于点O的对称点是点DD.点D在BO的延长线上【解答】解:A、AO=OE,错误;B、BO=DO,错误;C、点A关于点O的对称点是点E,错误;D、点D在BO的延长线上,正确;故选:D.二.填空题(共6小题)7.关于某一点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.【解答】解:根据中心对称的性质,得对称点的连线都经过对称中心,并且被对称中心平分.8.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为4.【解答】解:∵在Rt△ABC中,∠B=30°,AC=1,∴AB=2AC=2,根据中心对称的性质得到BB′=2AB=4.故答案为:4.9.如图,△ABC与△DEC关于点C成中心对称,则线段AB与DE的大小关系是AB=DE.【解答】解:∵△ABC与△DEC关于点C成中心对称,∴AB=DE故答案为:AB=DE.10.如图,△ABC绕点A旋转180°,得到△A′B′C′,A为旋转中心,则△ABC与△A′B′C′关于点A中心对称;若∠C=90°,∠B=30°,BC=1,则BB′的长为.【解答】解:∵如图,△ABC绕点A旋转180°,得到△A′B′C′,A为旋转中心,∴△ABC与△A′B′C′关于点A中心对称;∵在直角△ABC中,∠B=30°,BC=1,∴AB===∴BB′=2AB=.故答案是:A;.11.与电子显示的四位数6925不相等,但为全等图形的四位数是5269.【解答】答:5269.12.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,观察点A 与点P,点B与点Q,点C与点R的坐标之间的关系.在这种变换下,如果△ABC中任意一点M的坐标为(x,y),那么它们的对应点N的坐标是(﹣x,﹣y).【解答】解:由图可知两三角形关于点O成中心对称,关于原点成中心对称的坐标的特点为横纵坐标均互为相反数,故点N的坐标是(﹣x,﹣y).三.解答题(共3小题)13.如图所示的两个图形成中心对称,请找出它的对称中点.【解答】解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.14.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.【解答】解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8;(3)∵在△ABD和△CDE中,,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<8,∴1<AD<4.15.如图,矩形ABCD和矩形A'B'C'D关于点D成中心对称.求证:四边形ACA'C'是菱形.【解答】解:∵矩形ABCD与矩形AB′C′D′关于点D成中心对称,∴∠ADC=90°,CD=CD′,DA=DA′,∴四边形ACA'C'是平行四边形,AA′⊥CC′,∴四边形ACA'C'是菱形.人教版九年级数学上册23.2.2中心对称图形一.选择题(共6小题)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.下列所述图形中,仅是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形4.下列图形中(不考虑颜色),不是中心对称图形的是()A.B.C.D.5.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个6.如图,在平面直角坐标系xOy中,△ABC与△A1B1C1是中心对称图形.则对称中心的坐标是()A.(1,1)B.(1,0)C.(1,﹣1)D.(1,﹣2)二.填空题(共6小题)7.在平面内将一个图形绕某一定点旋转度,图形的这种变化叫做中心对称.8.下列4种图案中,既是轴对称图形,又是中心对称图形的有个.9.下列图形中,其中是中心对称图形有个.①圆;②平行四边形;③长方形;④等腰三角形.10.如图,△A1B1C1是△ABC关于点O成中心对称的图形,点A的对称点是点A1,已知AO=4cm,那么AA1=cm.11.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是.12.如图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在处(填写区域对应的序号).三.解答题(共3小题)13.如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.14.下列这些是电子屏上显示的数字.(1)仔细观察后回答下列问题:①是中心对称图形而不是轴对称图形的数字是;②是轴对称图形,而不是中心对称图形的数字是;③既是轴对称又是中心对称图形的数字是;④能成中心对称的两个数字是;⑤能成轴对称的两个数字是.(2)小丽站在镜子前,从镜子中看到镜子对面墙上挂着的电子钟上显示的读数如图所示,那么这时的实际时间是.15.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是度,它中心对称图形.图形B的最小旋转角是度,它中心对称图形.图形C的最小旋转角是度,它中心对称图形.图形D的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.参考答案一.选择题(共6小题)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形又是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:B.2.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、该图既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B、该图不是中心对称图形,是轴对称图形,故本选项不合题意;C、该图既是轴对称图形,又是中心对称图形,故本选项符合题意;D、该图不是中心对称图形,是轴对称图形,故本选项不合题意.故选:C.3.下列所述图形中,仅是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形【解答】解:A、等边三角形不是中心对称图形,是轴对称图形,故本选项不合题意;B、平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意;C、矩形既是中心对称图形,又是轴对称图形,故本选项不合题意;D、菱形既是中心对称图形,又是轴对称图形,故本选项正确.故选:B.4.下列图形中(不考虑颜色),不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项不合题意;C、不是中心对称图形,是轴对称图形,故此选项符合题意;D、是中心对称图形,故此选项不合题意;故选:C.5.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个【解答】解:矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选:C.6.如图,在平面直角坐标系xOy中,△ABC与△A1B1C1是中心对称图形.则对称中心的坐标是()A.(1,1)B.(1,0)C.(1,﹣1)D.(1,﹣2)【解答】解:对称中心的坐标是(1,﹣1),故选:C.二.填空题(共6小题)7.在平面内将一个图形绕某一定点旋转180度,图形的这种变化叫做中心对称.【解答】解:在平面内将一个图形绕某一定点旋转180度,图形的这种变化叫做中心对称.故答案为180.8.下列4种图案中,既是轴对称图形,又是中心对称图形的有1个.【解答】解:第一个图形是轴对称图形,也是中心对称图形;第二个图形不是轴对称图形,也不是中心对称图形;第三个图形不是轴对称图形,也不是中心对称图形;第四个图形是轴对称图形,不是中心对称图形.故答案为:1.9.下列图形中,其中是中心对称图形有3个.①圆;②平行四边形;③长方形;④等腰三角形.【解答】解:①圆;②平行四边形;③长方形是中心对称图形,共3个,故答案为:3.10.如图,△A1B1C1是△ABC关于点O成中心对称的图形,点A的对称点是点A1,已知AO=4cm,那么AA1=8cm.【解答】解:∵△A1B1C1是△ABC关于点O成中心对称的图形,点A的对称点是点A1,AO=4cm,∴OA1=OA=4cm,∴AA1=OA+OA1=8cm,故答案为:8.11.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是方块5.【解答】解:方块5旋转180°后得到图乙,故答案为:方块5.12.如图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在②处(填写区域对应的序号).【解答】解:把正方形添加在②处,使它与阴影部分组成的新图形是中心对称图形,故答案为:②.三.解答题(共3小题)13.如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.【解答】解:连接BB′,找BB′中点O或者连接BB′、CC′,交点为对称中心O.如图所示:14.下列这些是电子屏上显示的数字.(1)仔细观察后回答下列问题:①是中心对称图形而不是轴对称图形的数字是2和5;②是轴对称图形,而不是中心对称图形的数字是3;③既是轴对称又是中心对称图形的数字是1,8,0;④能成中心对称的两个数字是6和9;⑤能成轴对称的两个数字是2和5.(2)小丽站在镜子前,从镜子中看到镜子对面墙上挂着的电子钟上显示的读数如图所示,那么这时的实际时间是21:01.【解答】解:(1)①是中心对称图形而不是轴对称图形的数字是2和5;②是轴对称图形,而不是中心对称图形的数字是3;③既是轴对称又是中心对称图形的数字是1,8,0;④能成中心对称的两个数字是6和9;⑤能成轴对称的两个数字是2和5.故答案为:2和5;3;1,8,0;6和9;2和5.(2)从镜子中看到镜子对面墙上挂着的电子钟上显示的读数如图所示,那么这时的实际时间是21:01,故答案为:21:01.15.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.【解答】解:(1)如图所示,(2)图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.人教版九年级数学上册23.2.3关于原点对称的点的坐标一.选择题(共6小题)1.点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)2.点P(5,﹣3)关于原点对称的点P'的横坐标是()A.5B.﹣5C.D.﹣3.已知点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,则()A.x=﹣1,y=2B.x=﹣1,y=8C.x=﹣1,y=﹣2D.x=1,y=8 4.点P(m,2)关于原点O的对称点为P'(﹣3,n),则m、n的值为()A.m=3,n=2B.m=3,n=﹣2C.m=﹣3,n=2D.m=﹣3,n=﹣2 5.已知A点坐标为(﹣4,5),将点A向右平移5个单位,再向下平移8个单位,得到点A1,再作点A1关于原点的对称点A2,则A2坐标为()A.(﹣1,3)B.(1,﹣3)C.(9,8)D.(﹣9,﹣8)6.若点P(a+1,a﹣2)关于原点对称的点位于第二象限,则a的取值范围表示正确的是()A.B.C.D.二.填空题(共6小题)7.点M(1,﹣4)关于原点对称的点的坐标是.8.若点A(3,5)与点B(﹣3,n)关于原点对称,则n的值为.9.如果点P(x,y)关于原点的对称点为(2,3),则x+y=.10.在平面直角坐标中,点A(2,3)关于x轴的对称点是;关于y轴的对称点是;关于原点的对称点是.11.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.12.在平面直角坐标系中,点P(m2+1,﹣3)关于原点对称点在第象限.三.解答题(共3小题)13.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.14.如图,已知M(3,4),点N是点M关于原点的对称点,过点M作x轴的垂线,过点N作y轴的垂线,两条垂线相交于点P,求△MNP的面积.15.如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;(2)从对称的角度来考虑,说一说你是怎样得到的;(3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.参考答案一.选择题(共6小题)1.点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)【解答】解:点M(1,2)关于原点对称的点的坐标是(﹣1,﹣2).故选:C.2.点P(5,﹣3)关于原点对称的点P'的横坐标是()A.5B.﹣5C.D.﹣【解答】解:点P(5,﹣3)关于原点对称的点P'的横坐标是:﹣5.故选:B.3.已知点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,则()A.x=﹣1,y=2B.x=﹣1,y=8C.x=﹣1,y=﹣2D.x=1,y=8【解答】解:∵点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,y﹣5=﹣3,解得:x=﹣1,y=2,故选:A.4.点P(m,2)关于原点O的对称点为P'(﹣3,n),则m、n的值为()A.m=3,n=2B.m=3,n=﹣2C.m=﹣3,n=2D.m=﹣3,n=﹣2【解答】解:∵点P(m,2)关于原点O的对称点为P'(﹣3,n),∴m、n的值为:m=3,n=﹣2,故选:B.5.已知A点坐标为(﹣4,5),将点A向右平移5个单位,再向下平移8个单位,得到点A1,再作点A1关于原点的对称点A2,则A2坐标为()A.(﹣1,3)B.(1,﹣3)C.(9,8)D.(﹣9,﹣8)【解答】解:∵A点坐标为(﹣4,5),将点A向右平移5个单位,再向下平移8个单位,得到点A1,∴点A1的坐标为:(1,﹣3),∵点A1关于原点的对称点A2,∴A2坐标为(﹣1,3).故选:A.6.若点P(a+1,a﹣2)关于原点对称的点位于第二象限,则a的取值范围表示正确的是()A.B.C.D.【解答】解:∵点P(a+1,a﹣2)关于原点的对称的点在第二象限,∴点P在第四象限,∴a+1>0,a﹣2<0,解得:﹣1<a<2,∴a的取值范围表示正确的是C.故选:C.二.填空题(共6小题)7.点M(1,﹣4)关于原点对称的点的坐标是(﹣1,4).【解答】解:M(1,﹣4)关于原点对称的点的坐标是(﹣1,4),故答案为:(﹣1,4).8.若点A(3,5)与点B(﹣3,n)关于原点对称,则n的值为﹣5.【解答】解:由点A(3,5)与点B(﹣3,n)关于原点对称,可得n=﹣5.故答案为:﹣5.9.如果点P(x,y)关于原点的对称点为(2,3),则x+y=﹣5.【解答】解:∵点P(x,y)关于原点的对称点为(2,3),∴x=﹣2,y=﹣3;∴x+y=﹣2﹣3=﹣5.故答案是:﹣5.10.在平面直角坐标中,点A(2,3)关于x轴的对称点是(2,﹣3);关于y轴的对称点是(﹣2,3);关于原点的对称点是(﹣2,﹣3).【解答】解:在平面直角坐标中,点A(2,3)关于x轴的对称点是(2,﹣3);关于y 轴的对称点是(﹣2,3);关于原点的对称点是(﹣2,﹣3).故答案为:(2,﹣3);(﹣2,3);(﹣2,﹣3).11.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是a<2.【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.12.在平面直角坐标系中,点P(m2+1,﹣3)关于原点对称点在第二象限.【解答】解:点P(m2+1,﹣3)关于原点对称点为(﹣m2﹣1,3),∵﹣m2﹣1<0,∴(﹣m2﹣1,3)在第二象限.故答案为:二.三.解答题(共3小题)13.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.【解答】解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.14.如图,已知M(3,4),点N是点M关于原点的对称点,过点M作x轴的垂线,过点N作y轴的垂线,两条垂线相交于点P,求△MNP的面积.【解答】解:如图所示:∵点N是点M关于原点的对称点,M(3,4),∴N(﹣3,﹣4),∴过点M作x轴的垂线,过点N作y轴的垂线,两条垂线相交于点P,∴△MNP的面积:6×8=24.15.如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;(2)从对称的角度来考虑,说一说你是怎样得到的;(3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.【解答】解:(1)左图案中的左眼睛坐标为(﹣4,3),右眼睛坐标为(﹣2,3),嘴角的左端点坐标为(﹣4,1),右端点坐标为(﹣2,1).(2)关于y轴对称的两个图形横坐标互为相反数,纵坐标不变;(3)(﹣2,﹣1),(﹣4,﹣1).。

第23章 旋转 单元测试-2022-2023学年九年级人教版数学上册(含答案)

第23章 旋转 单元测试-2022-2023学年九年级人教版数学上册(含答案)

第23章 旋转单元测试(附解析)学校:___________姓名:___________班级:___________考号:___________总分120分,考试时间120分钟一、单选题(共10个小题,每小题3分,共30分)1.下列与杭州亚运会有关的图案中,中心对称图形是( )A .B .C .D . 2.2022年冬奥会将在我国北京市和张家口市联合举行,下列历届冬奥会会徽的部分图案中,是中心对称图形的是( )A .B .C .D . 3.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,2)B .(-2,-3)C .(2,-3)D .(2,3)4.如图,矩形ABCD 的顶点1,0A ,()0,2D ,()5,2B ,将矩形以原点为旋转中心,顺时针旋转75°之后点C 的坐标为( )A .()4,2-B .()42,22-C .()42,2-D .()26,22- 5.如图,在钝角△ABC 中,35BAC ∠=︒,将ABC 绕点A 顺时针旋转70︒得到ADE ,点B ,C 的对应点分别为D ,E ,连接BE .则下列结论一定正确的是( )A .ABC AED ∠=∠B .AC DE = C .AD BE AC += D .AE 平分BED ∠ 6.平面直角坐标系中,O 为坐标原点,点A 的坐标为()5,1-,将OA 绕原点按逆时针方向旋转90︒得OB ,则点B 的坐标为( )A .()5,1-B .()1,5--C .()5,1--D .()1,5-7.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .48.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .25B .342-C .4D .341+9.如图,在Rt △ABC 中,∠ACB =90°,2AC BC ==将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A 6B .22C 3D 210.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB ∠等于( ).A .120°B .135°C .150°D .160°二、填空题(共10个小题,每小题3分,共30分)11.如图所示,P 是正方形ABCD 内一点,将△ABP 绕点B 按顺时针方向旋转能与△CBP '重合,若PB =3,则PP '=__________12.若点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,则a +b =_________. 13.对于下列图形:①等边三角形; ②矩形; ③平行四边形; ④菱形; ⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是_________________.(填写图形的相应编号) 14.若点P (a ,2)点Q (﹣4,b )关于原点对称,则点M (a ,b )在第___象限.15.如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转角等于___________度.16.如图,在矩形ABCD 中,23AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120︒得到线段DG ,连接AG ,则线段AG 的最小值为_________.17.如图,△ABC 边长为1的正三角形,BDC 是顶角120BDC ∠=︒的等腰三角形,以D 为顶点作一个60度角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,则AMN 的周长为__________.18.如图,在Rt △ABC 中,90ACB ∠=,30BAC ∠=,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.19.如图,在△ABC 中,3AB =,2AC =,60BAC ∠=︒,P 为ABC 内一点,则PA PB PC ++的最小值为__________.20.如图,点P 是等边三角形ABC 内一点,且6PA 2PB =22=PC ABC 的边长为________.三、解答题(共6个小题,每小题10分,共60分)21.如图,在△ABC 中,∠ACB =90°,∠B =60°,以C 为旋转中心,旋转一定角度后成△A ′B ′C ,此时B ′落在斜边AB 上,试确定∠ACA ′,∠BB ′C 的度数.22.四边形ABCD 各顶点坐标分别为(5,0)A ,(2,3)B -,(1,0)C -,(1,5)D --,作出与四边形ABCD 关于原点对称的图形.23.如图,在同一平面内,△BEC绕点B逆时针旋转60°得到△BAD,且AB⊥BC,BE=CE.连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.正方形ABCD中,点F为正方形ABCD内的点,BFC△绕着点B按逆时针方向旋转90︒后与△重合.BEA(1)如图①,若正方形ABCD的边长为2,1BE=,3FC=AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.。

人教版九年级上册数学第二十三章测试题带答案

人教版九年级上册数学第二十三章测试题带答案

人教版九年级上册数学第二十三章测试卷一、单选题1.如图,△ABC为等边三角形,将△ABC绕点A逆时针旋转75°,得到△AED,过点E作EF⊥AC,垂足为点F,若AC=8,则AF的长为( )A.4B.3 C.D.2.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°4.下列英文字母是中心对称图形,但不是轴对称图形的是( )A.N B.D C.W D.O5.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.6.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△A′B'C′,连接BB',若AC′∥BB',则∠C′AB ′的度数为( )A.45°B.30°C.20°D.15°7.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(2,2-)B.(2-,2)C.(2,2)D.(3,3-)8.如图,A,B,C,三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到AC B''△,则tan B'的值为()A.12B.13C.14D29.将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(-2,0),∠ABO=30°.则ΔAOB旋转过程中所扫过的图形的面积为()A.11233π+B.33π+C.33πD.1133π10.如图,在R t△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A .B .6C .D .3二、填空题11.点与点关于原点对称,则点的坐标是_________.12.如图,点D 是等腰ABC 的底边AB 上的点,若AC BC =且100ACB ∠=,将ACD 绕点C 逆时针旋转,使它与'BCD 重合,则'D BA ∠=______度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上册数学第23章测试题附答案(时间:120分钟满分:120分)姓名:______班级:______分数:______一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是(C)2.若点P(m-1,5)与点Q(3,2-n)关于原点成中心对称,则m+n 的值是(C)A.1B.3C.5D.73.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n 的最小值是(C)A.60 B.90 C.120 D.180第3题图第4题图4.如图所示,△ABC与△A′B′C′是中心对称的两个图形,下列说法不正确的是(D)A.S△ABC=S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′C.AB∥A′B′,AC∥A′C′,BC∥B′C′D.S△ABO=S△A′B′C′5.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM =1,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为( C)A.3 B.2 3 C.13 D.15第5题图第6题图6.将五个边长都为2 cm的正方形按如图所示的样子摆放,点A,B,C,D分别是四个正方形的中心,则图中四块阴影部分面积的和为(B)A.2 cm2B.4 cm2C.6 cm2D.8 cm2二、填空题(本大题共6小题,每小题3分,共18分)7.如图所示,等边三角形ABC经过顺时针旋转后成为△EBD,则其旋转中心是点B ,旋转角度是120° .第7题图第9题图第10题图8.下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是③.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=112°,则∠α的大小是__22°__. 10.如图,在△ABC中,∠B=15°,∠ACB=25°,AB=8 cm,△ABC 逆时针旋转一定角度后与△ADE重合,且点C恰好为AD的中点,则∠BAE=__80°__,AE的长为__4__cm.11.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A 在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC 绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的第11题图第12题图12.一幅三角板按如图所示叠放在一起,若固定三角板AOB,将三角板ACD绕着公共顶点A,按顺时针方向旋转α(0°<α<180°).当三角板ACD的边CD与三角板AOB的某一边平行时,相应的旋转角α的值是__30°或75°或165°__.三、(本大题共5小题,每小题6分,共30分)13.(1)如图所示,在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A顺时针旋转90°,画出旋转后的△AB′C′;解:△AB′C′即为所求.(2)如图所示,△ABC和△DEF是成中心对称的两个三角形,请找出它们的对称中心.解:如图,点O即为对称中心.14.直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.解:根据题意得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.15.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A 逆时针旋转后,能与△ACP′重合,如果AP=2,那么PP′的长等于多少?解:∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP=AP′,∠PAP′=∠BAC=90°,∴△APP′为等腰直角三角形,∴PP′=2AP=2 2.16.(北京中考)如图,四边形ABCD顶点的坐标分别为A(-3,1),B(-3,-1),C(-1,-1),D(-1,1).将正方形ABCD分别作下列变换,求变换后各图形的顶点坐标.(1)沿CD翻折180°;(2)绕点D逆时针旋转180°;(3)关于坐标原点O成中心对称;(4)向下平移2个单位.解:(1)A(1,1),B(1,-1),C(-1,-1),D(-1,1).(2)A(1,1),B(1,3),C(-1,3),D(-1,1).(3)A(3,-1),B(3,1),C(1,1),D(1,-1).(4)A(-3,-1),B(-3,-3),C(-1,-3),D(-1,-1).17.如图,正方形ABCD中,E为CD上一点,F 为BC延长线上一点,CE=CF.(1)△DCF可以看做是△BCE绕点C旋转某个角度得到的吗?(2)若∠CEB=60°,求∠EFD的度数.解:(1)△DCF可以看做是△BCE绕点C顺时针旋转90°而得到的.(2)∵∠CEB=60°,∴∠CFD=60°,∵∠DCF=90°,CE=CF,∴∠CFE=∠CEF=45°,∴∠EFD=∠CFD-∠CFE=60°-45°=15°.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,D是BC上一点,DE ∥AC交AB于点E,DF∥AB交AC于点F.(1)求证:四边形AEDF是中心对称图形;(2)若AD平分∠BAC,求证:点E,F关于直线AD对称.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∴四边形AEDF是中心对称图形.(2)连接EF.∵AD平分∠BAC,∴∠BAD=∠CAD.又∵DE∥AC,∴∠CAD=∠ADE.∴∠BAD=∠ADE.∴AE=DE.又∵由(1),知四边形AEDF是平行四边形,∴四边形AEDF是菱形,∴AD垂直平分EF.∴点E,F关于直线AD对称.19.将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=4,则CQ等于多少?(1)证明:∵将△A1B1C顺时针旋转45°,∴∠ACA1=45°,AC=A1C,∠A=∠A1.∵∠A1CB1=∠ACB=90°,∴∠BCA1=∠ACA1=45°,且AC=A1C,∠A=∠A1,∴△A1CQ≌△ACP1(ASA),∴CP1=CQ.(2)解:如图②,过点P1作P1E⊥AC.∵∠A=30°,AP1=4,P1E⊥AC,∴P1E=2.∵∠ACA1=45°,P1E⊥AC,∴CE=P1E=2,∴P1C=22,∴CQ=CP1=2 2.20.如图,点E,C在BF上,BE=FC,∠ABC=∠DEF=45°,∠A =∠D=90°.(1)求证:AB=DE;(2)若AC交DE于M,且AB=3,ME=2,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.(1)证明:∵BE=FC,∴BC=EF,又∠ABC=∠DEF,∠A=∠D,∴△ABC≌△DEF,∴AB=DE;(2)解:∵∠DEF=∠B=45°,∴DE∥AB,∴∠CME=∠A=90°,∴AC=AB=3,MC=ME=2,CG=CE=2,由勾股定理得AG=1=12CG,∴∠ACG=30°,∴∠ECG=∠ACB-∠ACG=45°-30°=15°.五、(本大题共2小题,每小题9分,共18分)21.如图,在△ABC中,AB=AC,△ABC与△FEC关于点C对称,连接AE,BF.(1)试猜想线段AE与BF具有怎样的位置关系和数量关系,并说明理由;(2)若△ABC的面积为3,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?并说明理由.解:(1)AE∥BF且AE=BF.理由:∵△FEC与△ABC关于点C对称,∴AC=FC,BC=EC,∴四边形ABFE是平行四边形,∴AE∥BF且AE=BF.(2)在▱ABFE中,易知S△ABC=S△BCF=S△CEF=S△ACE,又∵S△ABC=3,∴S▱ABFE=4S△ABC=12.(3)当∠ACB=60°时,四边形ABFE是矩形.理由如下:∵∠ACB=60°,AB=AC,∴△ABC为等边三角形,即AB=AC=BC.又∵AC=FC,BC=EC,∴AF=BE,∴▱ABFE是矩形.22.把两个全等的等腰直角三角板ABC和EFG(其直角边均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕点O按顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角形的重叠部分(如图②),在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?请证明你的发现.解:BH=CK,四边形CHGK的面积不变,始终为4,证明如下:∵△ACB及△EGF为全等的等腰直角三角形,O为AB中点,∴CG=12AB=BG.由旋转可知∠BGH=∠CGK,∠B=∠KCG=45°,故△BGH≌△CGK,∴BH=CK,又S四边形CHGK=S△CKG+S△CHG=S△BGH+S△CHG=S△CBG=12S△ACB=12×4×4×12=4,故当0<α<90 °,BH=CK,四边形CHGK的面积不变,始终为4.六、(本大题共12分)23.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图①,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)【思路梳理】∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB 与AD重合,∵∠ADG=∠B=90°,∴∠FDG=180°,点F,D,G 共线,根据SAS,易证△AFG≌△AFE,得EF=BE+DF;(2)【类比引申】如图②,四边形ABCD中,AB=AD,∠BAD=90°,点E,F分别在边BC,CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF;(3)【联想拓展】如图③,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC 上,且∠DAE=45°,猜想BD,DE,EC应满足的等量关系,并写出推理过程.解:猜想:DE2=BD2+EC2.理由:将△ABD绕点A逆时针旋转90°,则AB与AC重合,如图,连接ED′,则△ADE≌△AD′E,∴DE=D′E.又∵Rt△ABC中,∠B+∠ACB=90°,∠B=∠ACD′,∴∠ACD′+∠ACB=90°,即∠D′CE=90°,∴ED′2=EC2+CD′2,∴DE2=EC2+BD2.。

相关文档
最新文档