MEMS陀螺仪发展综述和技术研究

合集下载

MEMS陀螺仪精讲

MEMS陀螺仪精讲

MEMS陀螺仪的分类
1.振动式微机械陀螺仪 振动式微机械陀螺仪利用单晶硅或多晶硅制成的振动质 量,在被基带动旋转时的哥氏效应感测角速度。
2.转子式微机械陀螺仪 转子式微机械陀螺仪的转子由多晶硅制成,采用静电悬 浮,并通过力短再平衡回路测出角速度。从功能看,转 子式微机械陀螺仪属于双轴速率陀螺仪或双轴角速率传 感器。 3.微机械加速度计陀螺仪 微机械加速度计陀螺仪是由参数匹配的两个微机械加速 度计做反向高频抖动 而构成的多功能惯性传感器,兼 有测量加速度和角速度的双重功能。
2、日前,意法半导体(ST)新推出13款单轴和双轴陀螺 仪。这种陀螺仪有以下值得关注的地方: ①这种全新高性能角运动传感器 可运用于手势控制的游戏机和遥 控指向产品、数字摄像机或数码 相机的图像稳定功能,以及GPS 导航辅助系统。 ②意法半导体的陀螺仪包括关断模式 (当整个器件完全关断时)和睡眠模式, 部分电路在睡眠模式下被关断,不但 大幅降低功耗,并可快速唤醒,使电 源开关更加智能化。 ③意法半导体的高性能MEMS陀螺仪 拥有抗机械应力,并改进了内部自 检功能,使客户在组装后可以验证 传感器功能,无需在测试过程中移 动电路板。
MEMS陀螺仪的应用发展史
1.MEMS陀螺仪的第一波应用是1990年代的汽车安 全系统
2.MEMS陀螺仪第二波应用是始于2000年的消费电 子产品 3.MEMS陀螺仪的第三波应用将开始出现在医疗、工 业器械等领域
MEMS陀螺仪的军事应用优势
在现今的世界格局中,战争以 信息化战争的对抗为主,重点 是发展精确制导武器,MEMS陀 螺仪在其中发挥了重要作用。
整合MEMS加速计和陀螺仪地磁的模块 正在进入廉价的电子玩具市场,传感 器模块提供的动作感应功能可实现互 动的游戏体验,还能让更小的儿童上 网分享快乐:孩子们很快就能够用自 然的动作玩这些玩具,不再使用按钮 或键盘一类的东西。

2024年MEMS陀螺仪市场发展现状

2024年MEMS陀螺仪市场发展现状

2024年MEMS陀螺仪市场发展现状引言微电机系统(MEMS)陀螺仪是一种基于微纳技术的小型化陀螺仪装置,主要用于测量角速度和角位移。

近年来,随着物联网、智能手机等技术的快速发展,MEMS 陀螺仪市场也呈现出快速增长的趋势。

本文旨在探讨MEMS陀螺仪市场的发展现状,并分析市场前景和发展趋势。

1. MEMS陀螺仪市场概述MEMS陀螺仪广泛应用于航空航天、汽车、消费电子等领域。

随着无人机、自动驾驶车辆等技术的普及,对高性能MEMS陀螺仪的需求越来越大。

目前,市场上的MEMS陀螺仪主要分为三个主要类别:光学陀螺仪、电容陀螺仪和振动陀螺仪。

•光学陀螺仪:利用光纤的光相位差或光频差来测量角速度,具有高精度和高稳定性的特点。

•电容陀螺仪:基于电容变化来测量角速度,具有低功耗和较小尺寸的优势。

•振动陀螺仪:通过测量振动模式的变化来获取角速度信息,具有高灵敏度和高阻尼能力。

2. MEMS陀螺仪市场现状目前,全球MEMS陀螺仪市场处于快速增长阶段。

据市场研究机构统计,2019年全球MEMS陀螺仪市场规模达到XX亿美元,并预计未来几年将以复合年增长率XX%持续增长。

以下是市场现状的几个主要方面:2.1 市场驱动因素•物联网技术的快速发展推动了MEMS陀螺仪市场的增长。

物联网应用中需要大量的传感器进行数据采集和处理,而MEMS陀螺仪作为一种重要的角速度传感器,被广泛应用于物联网设备中。

•智能手机市场的快速增长也推动了MEMS陀螺仪的需求。

智能手机中的陀螺仪主要用于姿态感知和图像稳定等功能,随着智能手机用户数量的增加,对MEMS陀螺仪的需求也在增加。

•自动驾驶技术的发展对高性能MEMS陀螺仪提出了更高的要求。

自动驾驶车辆需要准确的姿态感知和导航功能,这就需要高性能的MEMS陀螺仪来提供精确的角速度测量。

2.2 市场挑战虽然MEMS陀螺仪市场发展迅速,但仍面临一些挑战:•技术挑战:尽管MEMS陀螺仪在小尺寸、低成本和低功耗等方面具有优势,但仍需要克服一些技术难题,例如陀螺仪的精度和稳定性问题。

微机械陀螺仪概述和发展

微机械陀螺仪概述和发展

微机械陀螺仪概述和发展目前陀螺仪在国内外依然处于比较热门的领域,各国都投入了大量财力物力。

国外已经开始致力于高精度的陀螺仪的研究,我国正处于追赶阶段。

MEMS 微机械陀螺在汽车导航、工业控制、、消费电子、移动应用、航空航天等领域得到了广泛的应用。

由于陀螺仪芯片体积小(1-10毫米),所以其研究难点重点在于结构设计、加工制造、封装和性能、成品率、成本等方面。

标签:陀螺仪;科氏效应;发展1 陀螺仪分类分析陀螺仪种类多,原理也不尽相同,通过对陀螺仪的分析,加强对各个种类陀螺仪的了解和认识,选取分类号为G01C19/56下的微机械陀螺进行分析,2006年版本IPC分类表中只有G01C19/56,随着振动陀螺仪的发展,单一的分类号已经不能满足陀螺仪分类的需求,在2012年IPC修订中增添G01C19/56下14个分类号以及G01C19/57下的12个分类号。

2 微机械陀螺概述当前,研究和开发微纳米级的微机电系统和专用微型仪表,包括传动件、智能材料、执行器以及微纳米传感器等已成为很多领域的热门课题。

随着微机械结构的出现和发展,航天航空微系统时代将伴随而来,微机械结构技术的发展,为未来宇航、飞行、导弹等高端航空航天飞行器的设计提供更精确的服务和很大的发挥空间。

2.1 微机械陀螺仪种类微机械陀螺仪属于一种振动式角速率传感器,用于测量旋转速度或旋转角或加速度,作为重要的惯性器件,具有质量轻、体积小、稳定性高、功耗低、精度高、性能优等诸多优点。

MEMS 陀螺分类方式有多种。

选取其中较为基础的几种进行介绍。

2.2 陀螺种类介绍(1)固体微陀螺。

2006 年,日本Hyogo大学在期刊上发表了了一种新型的压电振动固态微陀螺,该陀螺仪结构较简单,仅仅由一个带电极的锆钛酸铅(PZT)长方体构成。

它利用PZT的逆压电效应激振,以第29 阶纵向谐振模态作为参考线振动,利用压电效应检出角速率信号。

在2009 年,国内的上海交通大学[2-3]率先开展了对于该种新型固态陀螺的研究,陈文元申请的压电微固体模态陀螺采用带质量块的陀螺,在振动模态下,压电体上各点沿着轴向振动,轴向上相对两个棱边同为拉伸或压缩运动,相邻两个棱边的对应点运动方向相反,利用这种形式的振动作为压电微固体模态陀螺的工作振动模态,由于哥氏角速度效应,压电体上的压电电势发生变化,检测质量块上的压电体电压变化,即得出加速度。

MEMS陀螺仪发展综述及技术研究ppt课件

MEMS陀螺仪发展综述及技术研究ppt课件
带宽(Hz)
应用范围
惯性级 <0.01 <0.001 <0.001 >400 ~100 飞机、船舶、航 天器等
战术级 0.01~10 0.001~0.5 0.001~0.1
>500 ~100 航向参考系统、制 导导弹等
速率级 10~1000
>0.5 0.1~1 30~1000 >70 移动终端、汽车、 照相机等
按照制作原理及结构可将其 大致分为转子陀螺仪、光学陀 螺仪、振动陀螺仪三类。
振动式陀螺是基于柯氏效应 工作的机械陀螺,可动部件为 谐振子,谐振子的加工工艺主 要有传统工艺和微机械加工工 艺两种方式。
各种原理的陀螺仪
4
基于微机械加工工艺制造 的陀螺仪称为MEMS陀螺仪。 MEMS陀螺仪主要有转子式、 振动式和介质类三种。目前, MEMS陀螺仪的主流是振动式 的,转子式和介质类的MEMS 陀螺较为少见。
(a)振动轮式结构
(b)双质量块陀螺结构
北京大学研制的微机械陀螺仪
11
(a)振动轮式结构
(b)双解耦Z 轴体硅陀振动轮式结构
(b)线振动解耦陀螺结构
清华大学研制的微机械陀螺仪 12
2、 MEMS陀螺仪基本知识
MEMS陀螺仪基本原理 MEMS陀螺仪分类及基本结构 MEMS陀螺仪设计流程及工具 MEMS陀螺仪工艺方法 MEMS陀螺仪制造技术难点
左图为清华大学2004 年提出的数字化测控 电路原理图
16
微机构陀螺可以从以下几个方面进行划分:振动结构,材料,加工方式,驱 动方式,检测方式和工作模式。
旋转振动结构
振动盘结构陀螺 旋转盘结构陀螺
振动平板结构 振动梁结构
按振动结构
线性振动结构

MEMS陀螺仪驱动算法研究与应用

MEMS陀螺仪驱动算法研究与应用

MEMS陀螺仪驱动算法研究与应用MEMS陀螺仪驱动算法研究与应用陀螺仪是一种测量和感应角度速度的设备,广泛应用于航空航天、导航系统、无人机等领域。

随着微电子系统技术的进步,MEMS陀螺仪在小型化、低成本等方面具备了优势,逐渐成为研究重点。

然而,MEMS陀螺仪受到温度、震动等环境因素的影响导致测量误差,因此,陀螺仪驱动算法的研究与应用显得尤为重要。

一、MEMS陀螺仪原理MEMS陀螺仪采用微机电系统技术制造而成,其原理利用微小结构的振动模态在转动时发生变化,从而测量出转动角速度信息。

陀螺仪通常由敏感元件、信号处理电路和驱动电路组成。

敏感元件一般采用压电材料或电容式传感器,通过测量振动元件的电压或电容变化来获得输出信号,然后通过信号处理电路和驱动电路对输出信号进行处理和驱动。

二、MEMS陀螺仪的驱动算法分类陀螺仪驱动算法主要分为基于模型的算法和基于数据的算法两类。

1. 基于模型的算法基于模型的算法主要利用陀螺仪自身的数学模型来进行状态估计和校正。

常见的方法包括卡尔曼滤波(Kalman Filter)、扩展卡尔曼滤波(Extended Kalman Filter)和粒子滤波(Particle Filter)等。

卡尔曼滤波是一种递归算法,可以估计系统的状态变量,并且可根据测量值和模型来减小误差。

然而,卡尔曼滤波算法对于非线性系统和噪声存在限制。

扩展卡尔曼滤波是对卡尔曼滤波算法的扩展,适用于非线性系统。

通过在状态和观测方程中引入泰勒展开,将非线性系统线性化,然后使用卡尔曼滤波进行递归估计。

粒子滤波是一种基于蒙特卡洛方法的滤波算法,适用于非线性和非高斯的系统。

通过使用一组随机粒子来表示可能的系统状态并进行样本重采样,可以有效地估计系统的状态。

2. 基于数据的算法基于数据的算法主要利用陀螺仪的输出数据进行校准和误差补偿。

常见的方法包括零偏校准、尺度因子校准和温度补偿等。

零偏校准是通过运动停止时陀螺仪输出的零偏量来进行校准,通常采用零偏平均法或零偏回归法。

MEMS陀螺技术的发展现状与趋势

MEMS陀螺技术的发展现状与趋势

( 称微 机械 陀螺 ) 也 已经成 为过 去几 十年 内广 泛研 究和发 展 的 主题 。M MS陀螺 与传 统 的机械 陀螺 、 E 固
体陀螺、 学陀螺等相 比, 光 具有成本低、 尺寸小、 重量轻、 可靠性 高、 功耗低等优 点, 其精度 正不断得到提
高 , 用领 域也 随之 不 断扩 大。ME 应 MS陀螺 已成为 未 来战术级 和 中低精 度导航 应 用的主 流惯 性传 感 器 , 美 国 H ny e 公 司 HG 90 H 13 组 件 中均使 用 了 ME oew l l I0 、 G 90等 MS陀螺 , 并成 功 的 应 用 于联 合 制 导 弹 药 (D M) J A 等精 确 制导 弹 药中。 民用级 ME MS产品在 今后 几年 的年 增长 率将超过 10 。 0%
关 键词 M MS 微机 械 陀螺 E 哥 氏加 速度
1 引 言
ME S技术 在 欧洲 称 为微 系统 技 术 M T( — M S Mi coSs m T cnl ) 在 1 称 为 微 机 械 ( ir r yt eho g , 3本 e o Mc o M cie) 现 在 广 泛 地 称 为 微 电 子 机 械 系 统 ahns , (E ) M MS 。ME S陀螺是该项技 术 的典型应用 。 M ME S陀 螺 的特征 尺寸 量级 在微 米 到毫 米之 M
过 程 , 由白噪 声 和慢 变 随 机 函数 组 成 。 白噪声 它 是 一个 平稳 随机 过 程 , 义 为单 位检 测 带 宽 平方 定
根下等价旋 转角速 率 的标 准偏 差, 位 (/ ) 单 。s/ H 或 者 (/ )  ̄ z z 。h / / 。白噪 声 也可 以用 单 位 / H
的I c电路和高真空的封装 。 从 2 世纪 6 年代的体机械加工 , 2 世纪 0 0 到 o 8 年代的表面微机械加工, 0 再到 LG IA加工技术 ( i o r hcG lao r u ga dA fr u g 光 Lt ga i a nf m n n bom n )( h p v o

MEMS陀螺仪发展综述和技术研究

MEMS陀螺仪发展综述和技术研究

MEMS陀螺仪发展综述和技术研究随着科技的进步和应用领域的拓展,MEMS陀螺仪(Micro-Electro-Mechanical Systems Gyroscope)作为一种集成化、微型化的惯性传感器,在导航、飞行控制、智能手机等众多领域得到广泛应用。

本文将对MEMS陀螺仪的发展历程进行综述,并介绍当前的技术研究方向。

MEMS陀螺仪是一种基于微机电系统技术制作的陀螺仪。

它采用了微纳加工技术,将传统陀螺仪的结构缩小到微米尺寸,并采用微电子技术将其与电子设备集成在一起。

早期的MEMS陀螺仪主要用于惯性导航系统中的姿态测量,但由于其体积小、成本低和低功耗等优势,被广泛用于智能手机、游戏手柄和运动追踪等消费类电子产品中。

MEMS陀螺仪的研究始于20世纪80年代,在此之后经历了几个重要的发展阶段。

最初的MEMS陀螺仪采用了压电效应来测量转动速度,并通过微机电系统制作的微结构来实现传感器结构。

这种陀螺仪具有简单结构和较高的灵敏度,但在测量范围、动态响应和耐久性方面存在一定的局限性。

进入21世纪后,MEMS陀螺仪开始采用新的结构和材料来提高性能。

例如,光纤陀螺仪(FOG)和激光陀螺仪(LIG)等技术被引入到MEMS陀螺仪中,提高了其测量精度和稳定性。

此外,利用新的材料和制造工艺,如纳米材料、纳米加工技术和三维打印技术等,也为MEMS陀螺仪的发展提供了新的可能性。

当前,MEMS陀螺仪的技术研究主要集中在以下几个方向:1.提高精度和稳定性:通过改进传感器的结构和材料,以及优化电路设计和信号处理算法,提高MEMS陀螺仪的精度和稳定性。

例如,引入微纳米加工技术制作更精细的结构,采用优化的校准方法和自适应滤波算法等。

2.扩大测量范围和动态响应:目前的MEMS陀螺仪通常具有较小的测量范围和有限的动态响应能力。

因此,研究人员正在努力开发新的结构和方法来扩大其测量范围和提高动态响应能力。

其中一种可行的方法是将多个陀螺仪互补使用,以提高测量范围和精度。

MEMS流体陀螺研究

MEMS流体陀螺研究

MEMS流体陀螺研究引言MEMS 技术的发展使得惯性技术领域正在经历一场深刻的变化。

惯性传感器是利用物体的惯性性质来测量物体运动情况的一类传感器,包括加速度计和陀螺。

其中微陀螺在惯性导航系统如航空航天和航海事业中发挥着越来越重要的作用。

除了传统的机械式振动陀螺外,各种新型陀螺也层出不穷,如静电支撑陀螺、磁支撑陀螺、微流体陀螺、超导陀螺等,这些新型陀螺在性能和尺寸上都有各自的优势,下面就流体陀螺的研究和发展应用前景进行介绍。

1 各种流体陀螺简介流体类陀螺仪与传统陀螺仪相比,由于没有悬挂质量块,结构大大简化,制作难度降低,更重要的是,省去了复杂的活动部件,其抗冲击、抗振动能力大大提高,特别适合在高冲击、高振动环境下使用。

流体陀螺的基本原理主要有两种:一种是在外界的控制下流体本身产生角动量,流体作为常规的转子,形成测量外界角速度的角动量,当外界有角速度输入时,利用转动流体与壳体的相对运动来产生敏感变化的输出信号。

另一种则是利用流体系统的科氏加速度来产生敏感变化的输出信号。

1.1 气体对流陀螺图1 是由清华大学设计、中国电子集团第13 研究所加工而成的微流体陀螺仪。

它是利用气体流速方向在哥氏加速度作用下发生偏转的原理,采用微机械加工工艺制作的。

此微流体传感器由隔热腔体、加热器和两对对称的温度传感器构成。

加热器和温度传感器悬在腔体上面。

加热器加热使其周围的气体温度升高,密度减小。

在重力加速度的作用下,腔体内的气体发生对流。

位于加热器相等距离上的一对温度传感器用来测量加热器两边的温差。

器件封装在密封的隔热管壳内,防止外部气流和温度对器件的影响。

敏感方向无哥氏加速度时,腔体内的加热气体只在重力加速度的作用下发生对流,如加热器水平方向上两边相等位置上的温度相等,两对温度传感器的输出相等。

敏感方向上有哥氏加速度时,腔体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Qs2
(s0
d 0 )(s0
d0 )
2

2 2 d0 s0
d 0
cos(d 0t
tan 1
Qss 0
1


d 0 s0
2
90)
谐振状态下工作模态稳态解
krz crz
M wry
M e _ ny
敏感轴 M cz2 y
y
s M dz M kz M cy2z
I ry
M ky
M M e _ nz
wrz
z
驱动轴
I rz
M dy
d
kry
cry
动力学模型
I rz

0
0 I ry

ds


crz crzry
cryrz cry

ds


krz krzry
kryrz d
kry

结构设计相关内容 22
结构参数
优化设计
静态分析
结构应力
哥氏效应
瞬态分析
有限元软件
路径分析
敏感器 件位置
振动幅值 限位位移
谐COMSOL
模态分析
振型和频率
23
3.1 MEMS陀螺仪设计流程及工具
结构 设计
灵敏度
频率匹配 Q值设计
理论计算 初始化尺寸
灵敏度 噪声

2 2 d0 s0
x
z
I rz

0
0 I ry

ds


crz crzry
cryrz cry

ds


krz krzry
kryrz d
kry

s

d 0
cos(d 0t
tan 1
有无阻尼




灵敏度

中等
中等

电路复杂程度

中等


成本




交叉轴敏感度
主要取决于机械设计,而非转导作用
光学
\ 小 大 宽 低 无 很高 高 高
结构设计原则
工艺先行原则
结构最优原则
尺 寸 可 行 性
精 度 可 行 性
温 度 兼 容 性
腐 蚀 兼 容 性
工 艺 兼 容 性
工 艺 重 复 性
满 足 环 保 要 求
按材料

硅材料 非硅材料
非正交线振动结构
单晶硅 多晶硅 石英 其它
振动平板结构 振动梁结构 振动音叉结构
体微机械加工
按加工方式
表面微机械加工
LIGA(光刻、电铸和注塑)
17
微机构陀螺可以从以下几个方面进行划分:振动结构,材料,加工方式,驱 动方式,检测方式和工作模式。
旋转振动结构
振动盘结构陀螺 旋转盘结构陀螺
左图为清华大学2004 年提出的数字化测控 电路原理图
16
微机构陀螺可以从以下几个方面进行划分:振动结构,材料,加工方式,驱 动方式,检测方式和工作模式。
旋转振动结构
振动盘结构陀螺 旋转盘结构陀螺
振动平板结构 振动梁结构
按振动结构
线性振动结构
正交线振动结构
振动音叉结构 加速度计振动结构






s


M e _ nz

M
e
_
ny


M wrz

M
wry


0 2 I ry x
2 I rz 0

x

ds

动力学方程
26
y
内环
zx
锚点
梳齿
灵y 敏z x度:
Sz
Bz 振动轮
2 F0
mx


2 x
(a)振动轮式结构
(b)双质量块陀螺结构
北京大学研制的微机械陀螺仪
11
(a)振动轮式结构
(b)双解耦Z 轴体硅陀螺结构
东南大学研制的微机械陀螺仪
(a)振动轮式结构
(b)线振动解耦陀螺结构
清华大学研制的微机械陀螺仪 12
2、 MEMS陀螺仪基本知识
MEMS陀螺仪基本原理 MEMS陀螺仪分类及基本结构 MEMS陀螺仪设计流程及工具 MEMS陀螺仪工艺方法 MEMS陀螺仪制造技术难点
6
微机械陀螺体积小、功耗低、 成本低、抗过载能力强、动态范 围大、可集成化等优点,可嵌入 电子、信息与智能控制系统中, 使得系统体积和成本大幅下降, 而且总体性能大幅提升,因此在 现代军事领域具有广泛的应用前 景。
在陀螺仪的传统应用领域, 国防军事应用中,高精度微机械 陀螺将可用于导弹、航空航天、 超音速飞行器等高精度需求的军 用产品中
带宽(Hz)
应用范围
惯性级 <0.01 <0.001 <0.001 >400 ~100 飞机、船舶、航 天器等
战术级 0.01~10 0.001~0.5 0.001~0.1
>500 ~100 航向参考系统、制 导导弹等
速率级 10~1000
>0.5 0.1~1 30~1000 >70 移动终端、汽车、 照相机等
按检测方式
压电检测 电容检测 压阻式检测

光学检测

隧道效应检测
类 闭环模式
速率陀螺
按工作模式
开环模式
速率积分陀螺
全角模式
20
部分检测方式的MEMS陀螺性能对比
技术指标 电容式 压电式 压阻式 隧道效应式
阻抗




电负载影响 非常大



尺寸


中等

温度范围
非常宽

中等
中等
线性度误差

中等


z2

敏感检测电极
工作原理示意图
krz
1

1


x
2

2

1 Qx2

x
2crz
M wry
M e _ ny
敏感轴 M cz2 y
y
s M dz M kz M cy2z
I ry
M ky
I rz
M dy
M M e _ nz
wrz
软件优化 优化尺寸 检验
结构 设计
灵敏度
频率匹配 Q值设计
理论计算 初始化尺寸
灵敏度 噪声
软件优化 优化尺寸 检验
25
y
内环
zx
锚点
梳齿
z
yx
振动轮
敏感检测电极
工作原理示意图
d
(d 0 )

Qd M e I rz
cos(d 0t)
s (d 0 )
2d 0QdQs M ex I rz
MEMS陀螺仪发展综述及技术研究
1
MEMS陀螺仪研究背景 MEMS陀螺仪基本知识
2
1、 MEMS陀螺仪研究背景
MEMS陀螺仪基本概念 MEMS陀螺仪主要性能指标 MEMS陀螺仪应用领域 MEMS陀螺仪国外研究现状 MEMS陀螺仪国内研究现状
3
陀螺仪也称角速率传感器, 是用来测量物体转动角速度或 角位移的传感器。
Qss 0
1


d 0 s0
2
90)

M e _ nz

M
e
_
ny


M wrz

M
wry


0 2 I ry x
2 I rz 0

x

ds

动力学方程
谐振状态下工作模态稳态解
27
厚膜、深刻蚀、次数少
7
随着先进的微电子技术的发展,成本和价格也会大幅下降。其低廉的价 格将使其在民用消费领域也将具有广阔的应用前景,有望在一些新的领域中, 如车载导航系统、天文望远镜、工业机器人、计算机鼠标、照相机甚至是机 器人玩具等中低端上应用需求的产品中得到应用。
8
微机械陀螺的研究始于20世纪80年代,经过几十年的研究国外相关已经比 较成熟,众多科研单位及公司如美国Draper实验室、ADI公司、Berkeley大学, 德国Daimler Benz公司、Bosch公司,挪威的Sensornor,日本Toyota公司,以及 土耳其、芬兰等国家,已有商业化产品。其中Boeing 公司的8mm 直径DRG 的 最好性能为零偏重复性0.01º/h、角度随机游走0.002º/rt-hr。Sensornor公司也 发布了零偏稳定性0.05º/h 的产品。国外研究的目标是研制零偏稳定性优于 0.01º/h的惯性级微机电陀螺,逐步取代激光陀螺和光纤陀螺等传统产品。
z
驱动轴
1
kry1


d

cry
z
2

2

1 Qz2



z
2

动力学模型
结论:当ω =ω =ω 时,陀螺的检测灵敏度最高。 s
(d 0
)
d
(d 0 Qs2
) Q2dIMrzd 0eQcdoQs(sMde0t)x Irz (s0 d 0 )(s0 d 0 ) 2
相关文档
最新文档