2020版高考数学(理科数学)刷题小卷练1(含解析)

合集下载

2020年高考数学(理)必刷试卷1(解析版)

2020年高考数学(理)必刷试卷1(解析版)

2020年高考必刷卷(新课标卷)01数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,若复数()13i z i -=-,则z =( )A .1B .1-C D .2或1【答案】C 【解析】分析:根据表达式得31iz i-=-,化简可求得2z i =+,根据模的定义即可求得z 。

详解:()()()()313111i i i z i i i -+-==--+ 4222ii +==+所以z ==所以选C点睛:本题考查了复数的简单运算和模的定义,化简过程中注意共轭复数和符号的变化,是简单题。

2.若集合{}|11A x x =-<<,{}2|log 1B x x =<,则 A B =I ( )A .(11)-,B .(01),C .(12)-,D .(0)2,【答案】B 【解析】集合{}|11A x x =-<<,{}2|log 1B x x =<=()0,2故得到()01A B ⋂=,故答案为:B 。

3.若椭圆2231x ky += 的一个焦点的坐标是()0,1,则其离心率等于( )A .2B ..12C .D 【答案】D 【解析】依题意可知,b=13 ,a=1k =1, ∴e=c a 故选B .点睛:根据题意可知a 和b ,进而根据c ,进而根据e=ca求得e . 4.2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为( )A .715B .1315C .1415D .2930【答案】C 【解析】【分析】至少有2位关注此次大阅兵的对立事件为恰有2位不关注此次大阅兵,根据对立事件的概率公式计算概率. 【详解】解:从这10位外国人中任意选取3位做一次采访,其结果为310120C =个,恰有2位不关注此次大阅兵有21288C C =个,则至少有2位关注大阅兵的概率212831014115C C P C =-=. 故选:C 【点睛】本题考查排列组合的应用与古典概型,考查运算求解能力,属于基础题.5.正方体ABCD -A 1B 1C 1D 1中,E 是棱AB 上的动点,则直线A 1D 与直线C 1E 所成的角等于 ( ) A .60° B .90°C .30°D .随点E 的位置而变化【答案】B 【解析】∴A 1D ∴AB ,A 1D ∴AD 1,1AB AD A =I , ∴A 1D ∴平面AD 1C 1B , 又1C E ⊂平面AD 1C 1B , ∴A 1D ∴C 1E .∴直线A 1D 与直线C 1E 所成的角等于90°.选B . 6.已知tanα=–2,则212sin sin cos 45ααα+的值为( ) A .125B .257C .725D .2517【答案】A 【解析】tan 2α=-Q ,所以原式222221212sin +sin cos tan +tan 4545==sin +cos tan +1αααααααα()124+2145==4+125⨯⨯- ,故选A. 7.在平行四边形ABCD 中,4AB =,1AD =,60BAD ∠=︒,DE DC λ=u u u r u u u r ,29AE DB ⋅=u u u r u u u r,则λ=( )A .12B .14C .47D .34【答案】B 【解析】 【分析】根据向量的线性运算及向量的数量积计算可得. 【详解】解:4AB =Q ,1AD =,60BAD ∠=︒,DE DC λ=u u u r u u u r,29AE DB ⋅=u u u r u u u rAE AD DE AD AB λ∴=+=+u u u r u u u r u u u r u u u r u u u r ,DB AB AD =-u u u r u u u r u u u r ()()AE DB AD DE AB AD ∴⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r()()AD AB AB AD λ=+⋅-u u u r u u u r u u u r u u u r()221AD AB AB AD λλ=-++-⋅u u u r u u u r u u u r u u u r()9161114cos601412λλλ=-+-⨯⨯⨯︒=+=,所以14λ=.故选:B 【点睛】本题考查平面向量的数量积,考查运算求解能力,属于基础题.8.三世纪中期,魏晋时期的数学家刘徽利用不断倍增圆内接正多边形边数的方法求出圆周率的近似值,首创“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的程序框图,则输出的n 值为( )(参考数据:7.50.1305,150.2588sin sin ≈≈o o )A .6B .12C .24D .48【答案】C 【解析】 【分析】根据程序框图运行程序,直到满足 3.10s ≥时输出结果即可. 【详解】按照程序框图运行程序,输入6n =则3sin 60s ==o 3.10s ≥,循环; 12n =,6sin 303s ==o ,不满足 3.10s ≥,循环;24n =,12sin15 3.1056s =≈o ,满足 3.10s ≥,输出结果:24n =本题正确选项:C 【点睛】本题考查根据程序框图循环结构计算输出结果,关键是能够准确判断是否满足输出条件,属于基础题.9.已知函数()2cos f x x =-,若将曲线()2y f x =向左平移12π个单位长度后,得到曲线()y g x =,则不等式()1g x …的解集是( )A .()5,124k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .()3,124k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()37,84k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()52,262k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】A 【解析】 【分析】根据三角函数的变换规则求得()g x 的解析式,再根据余弦函数的性质解不等式即可. 【详解】解:将曲线()2y f x =向左平移12π个单位长度后,得到曲线2cos 26y x π⎛⎫=-+ ⎪⎝⎭,则()2cos 26g x x π⎛⎫=-+ ⎪⎝⎭.由()1g x „,得2cos 216x π⎛⎫-+⎪⎝⎭„,得1cos 262x π⎛⎫+- ⎪⎝⎭…,则22222363k x k πππππ-++剟,()k Z ∈,得()5124k x k k ππππ-+∈Z 剟. 故选:A 【点睛】本题考查三角函数的图象及其性质,考查推理论证能力与运算求解能力. 10.现有三条曲线:∴曲线22x y e =-;∴曲线2sin y x =;∴曲线32y x x =--.直线2y x =与其相切的共有( ) A .0条 B .1条 C .2条 D .3条【答案】D 【解析】 【分析】分别求出函数的导数,根据导数的几何意义一一判断. 【详解】解:若()2e 2x f x =-,则由()2e 2xf x '==,得0x =,点()0,0在直线2y x =上,则直线2y x=与曲线22xy e =-相切;若()2sin f x x =,则由()2cos 2f x x '==,得()2x k k =π∈Z ,当0k =时0x =,点()0,0在直线2y x =上,则直线2y x =与曲线2sin y x =相切;若()32f x x x =--,则由()2312f x x '=-=,得1x =±,其中()1,2--在直线2y x =上,所以直线2y x =与曲线32y x x =--相切.故选:D 【点睛】本题考查导数的几何意义,考查逻辑推理与数学运算的核心素养,属于基础题.11.设双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,直线l :()ay x c b=-与双曲线C 在第一、三象限的渐近线的交点为P ,若12PF PF ⊥,则双曲线的离心率为( ) AB .2CD【答案】B 【解析】由题可知双曲线C 在第一、三象限的渐近线方程为,by x a=联立方程组 2222222222,,,(,()by xa c abc a c abc ax y P a a b a b a b a b y x c b⎧=⎪⎪∴=∴=∴⎨----⎪=-⎪⎩),设点O 为坐标原点,由12PF PF ⊥A 可知22222212222|,|.()(),a c abc OP OF c OP c c a b a b ==∴=∴+=-- 化简得4222222222222(3,3,4, 2.a a b a b a b a c a a c e +=-∴=∴=-∴=∴=),故选B. 12.已知函数()f x 为偶函数,当0x ≥时,()242x x x xf x =-,则( )A .()()()0.20.329.13f f f --->>B .()()()0.30.239.12f f f -->>-C .()()()0.30.2239.1f f f --->>D .()()()0.20.39.132f f f -->>-【解析】 【分析】 令()()1022xx g x x =-…,则()()()214f xg x =-,对()g x 求导,分析其单调性, 再根据指数函数的性质比较0.29.1-,0.33-的大小关系,根据函数的单调性判断大小/. 【详解】解:()221142224x x x x x x f x ⎛⎫=-=-- ⎪⎝⎭,令()()1022x x g x x =-…,()1ln 22xx g x -'=. 当20log e x <„时,()0g x '>,()g x 单调递增; 当2log e x >时,()0g x '<,()g x 单调递减. 因为()()120g g ==,所以当01x <„时,()0g x <,且()g x 单调递增. 又0.20.20.40.309.19331----<<-<<,所以()()()0.20.29.1310g g g --<<<,()()()214f x g x =-Q 在(),0-∞上单调递减,且()min 14f x =- ()()()21122244f f g -==-=-Q故()()()0.20.29.132f f f -->>-.故选:D 【点睛】本题考查函数的综合应用,考查数学抽象与逻辑推理的核心素养,属于难题.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。

2020年高考_理科数学模拟试卷(含答案和解析)

2020年高考_理科数学模拟试卷(含答案和解析)

【高仿咫卷•理科数学 笫1页(共4页)】2020年普通高等学校招生全国统一考试高仿密卷理科数学注意事项:L 本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号 厦写在试题卷和答题卡上,并将准考证号条影码粘贴在答勉卡上的曲 定位JL 。

2.选择题的作答:每小题选出答案后•用2B 铅爸把答题卡上对应题目的答案 标号涂浜,写在试晦卷、草稿纭和答题卡上的非答题区域均无殁°3,非选释题的作答:用签字名直报答在卷麴卡上对应的答意区域内。

客在试 场卷、草稿纸和答邈卡上的非答邈.区域均无效。

4.选考题的作冬:先把所选题目的期号在笔超卡上指定的位置用2B 铅笔涂耍.至案写在答题卡上 对应的冬题区域内,写在试题卷、草稿纸和答题卡上的非答麴区域均无效. 5,考试结束后,请将本试四卷和答题于一并上交,一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要 求的61.已知复数2=~<i 为虚数单位八则|片十2| = £ 1 A.ZB.75D.HH IgGr-DV1卜廿二《衣|2炉一9父+4t0},则AD 《C RB>=A. (1,4)B. (y.4)C. (4J + /I^)D. (1,14-710)2 .已知集合A={3 .已知向量:%。

则“E| =㈤"是口一2川=12。

一加”的 A.充分不必要条件 C,充要条件B.必鬟不充分条件 口既不充分也不必要条件4 .我国古代名著仪孙子算经》中有如卜有趣的问题广今有三女,长女五日一归,中女四日一归•少女三日一归.问三女何n 相会之意思是「一家有三个女儿郴已出嫁.大女儿五天回一次娘家9二女儿四天回一 次娘家,小女儿三天回一次娘家,三个女儿从娘冢同一天走后•至少再隔多少天三人可以再次在娘家相 会?:三人再次在娘家相会■则要隔的天数可以为A. 90 天C. 270 天S.执行如图所示的程序框图,则输出S 的值为B. 180天B. 2 020 *2 019 2Q21 '2 020n 2 020I I ------- 276.已知等差数列{。

2020版高考数学(理)刷题小卷练 1 Word版含解析

2020版高考数学(理)刷题小卷练 1 Word版含解析

刷题增分练集合的概念与运算刷题增分练①小题基础练提分快一、选择题.[·全国卷Ⅱ]已知集合={},={},则∩=( ).{} .{}.{} .{}答案:解析:∩={}∩{}={}.故选..[·全国卷Ⅰ]已知集合={-->},则∁=( ).{-<<} .{-≤≤}.{<-}∪{>} .{≤-}∪{≥}答案:解析:∵-->,∴ (-)(+)>,∴>或<-,即={>或<-}.在数轴上表示出集合,如图所示.由图可得∁={-≤≤}.故选..[·河南质检]已知全集={},集合={},={},则∩(∁)=( ).{} .{}.{} .{}答案:解析:因为∁={},所以∩(∁)={}.故选..[·武邑调研]已知全集=,集合={<<,∈}和={-<<,∈}关系的图如图所示,则阴影部分所表示集合中的元素共有( ).个.个.个.无穷多个答案:解析:因为={<<,∈},所以∁={≤或≥}.题图中阴影部分表示的集合为(∁)∩={-<≤,∈}={-,-,-,},故该集合中共有个元素.故选..[·惠州调研]已知集合={-},={=,∈},则∁=( ).{} .{-}.∅.{-}答案:解析:∵={=,∈}={},∴∁={-},故选..[·河北联考]已知集合={<},={--<},则( ).∩={<} .∪=.∪={<} .∩={-<<}答案:解析:∵--<,∴-<<,∴={-<<},∴∪={<},∩={-<<},故选..[·赣州模拟]已知集合={-≤≤},={<},则∩=( ).{<<}.{<≤} .{<≤}答案:解析:∵-≤≤,∴≤≤,∴=.由<知<,∴={<},∴∩=.故选..[·广西模拟]已知全集=,集合={(-)(+)≥},={-≤≤},则(∁)∩=( ) .[-,-] .[-].[-) .[]答案:解析:因为全集=,集合={(-)(+)≥}={≤-或≥},所以∁={-<<}.又={-≤≤},所以(∁)∩=[-).故选.二、非选择题.已知集合={,},={,},若∩=,则=.答案:或解析:∵∩=,∴⊆,∴=或=,解得=,=(舍去)或=..[·南昌模拟]已知集合={},={(,)∈,∈,+∈},则集合的子集的个数为.答案:解析:∵集合={},集合={(,)∈,∈,+∈},∴={(),(),()},∴集合有个元素,∴集合的子集个数为=..[·石家庄质检]已知集合={-<<},={=(-)},则∩(∁)=.答案:(-]解析:由题意得={=(-)}=(,+∞),∴∁=(-∞,],∴∩(∁)=(-]..[·辽宁联考]已知集合={-->},={≥},∪=,则的取值范围是.答案:(-∞,-]。

2020年全国高考理科数学模拟试卷及答案解析

2020年全国高考理科数学模拟试卷及答案解析

2020 国1⅛二模拟考试(T数学(理科)吋⅛J2O 分绅满分:巧。

分注言舉项:I •答题讯卽f∙∙务必4⅞ΠL 1的孙名、纲'•;"C 舍!⅛∣∙.∙ Vr √Zll 存选择题时•閨Ii 毎小S8养案蹄•川那S 把?;収甘IF M 迪[I 的祥案标号济黒Tli 阪越•川 橡皮按I 净圧・肉•涂选口他答案标θv m IN 逸择越时•将谷案冯在答題P 上吗在木试卷I xXie ;3•号试酷JKvh 籽不试卷和袴題k •并交柯 一、选择題(本題共I?小题,勺小題,分,共胡分•在超小題给出的四个选项中,只有一项足符合题目实 求的)L LL 加 U ;存 M-;・F |/ .Lg0; .N= {j IOO<3} •则 Mn λ 一 Λ.<-2.2> Ik ((>∙3) C. (0,2) 2. & i 为除数单位•苦复数=满足二∙ (2-i> = 3-5i.则复数7的甫部为 \ 1 l λ i C. -2 S. L LΛI<∕ log. 2.Λ 3 Y lug.2.则i.我们軽 肉心率,一叫1的Wm 叫优关桶岡•下列納论正确的个数足① 个焦点、•个R 潮闻也打•个K 轴顶点构成宜角•侑形的Ifim 是优羌桶伽②划轴KqK 紬KIK- l∙3> ( )∣λ 2i ( )∣λ^(<u之匕为汙1的榔圓是优IH⅜hb WJ■V" √⅛-ι楚・优艾・WIH: 0;佐IH i •知轴K 、K 轴K 成等It欽列的的IffiI 列定ItXIffiIMl ・5•我尺传统丈化中彳M F 地支之说•夭干为“叭乙•丙.几戊上•决•汉T:.^. HJIHlLz./HfW 木•IJKUy-I 1L Γ7∏r4S 火•归南方•戊、t:•归屮央•决•辛Ti 行换金∙l⅛艸力• 1\癸IlfrFX 水4 北方•血犬Γ L 个/中随仇取阿个・刈宅们五行属性相利的tt4⅛⅛,k⅛A.τ-&函数/(.r ) = ( r-2j M 的图象ΛJ¾是∣4K7∙ S Ih^Ii>114汀∙∏⅛址 211RI 3' IoAIΛ — R — • 6K3I5∣AnlJJIlJ7∏.∏βθW<ffi>j11.已HI 祈数 y(.r) = α5in.ι /∕α∣5 .r(.r ∈ R}.Zf .r=x.∙ Si⅛5⅛ JΛ.vU(i •条对称轴•丨1 Ifm V ~3•则点3“所在的fi 线方櫟为I). 3.∕-÷v «)12. d>41HIfIi 体“BCD 的PM 个顶点都在球O 的球面I ∙M 为4”屮山∙ZvWX∙∕M"D/(T)M 那是正•角权"I” 6•划球仆的衣面枳为 I). <!∙,π二. 填空題(本题共1小题,毎小题5分,共2(分.) 13. IfhMi y C ∙ SinJ - Ii 点⑴小处的切线方W 为IL idS...为等出放列 h(的Hijn^ 411.也 L<η-‰. ∙H ∣S,- 1二何心捫11洲猎⅜r 的战牛中•某市场防疫检测所得加•批共m 只猪中i 昆入了 3只携帝病成的昭•化设仃传染扩放前•吗I il 个不放何地檢测•每次抽中齐只猪的机会均等•"到检制出所右病偌就伴 Ih 检测∙ WJtft 任第六次检测府停Kl-JWJf ¼al∙λ LlMim 物线.√-Kf 的©心刘収刑线小二一3!" •“啲渐近线的距离不大J 、広則忍曲线 Cr卜:的肉心书的M½s. IMf KlfU 的保序桩国・为快输:l ; > IiWl 小十91 •则输人的IE 整数 '的彊小们为Γ>. ;•'」•记集合Al •八::“二•“ :“:•“•“ •…•川I ■"为公X;大J n 的弄总数列•若小;3•和.则IM 凰于C∙∕h[)・山10. LLMlm 罰|「的两个焦点为⑴∙ IUilWA 1A 的直tζ∕∣∣i y=⅛l .f ^jl,ty ≈k..t -u<u≠ι [的交点恰好金(T:・IL 化A- 2•则(•的方秤为c ∙f +f-1K.r-3v 0 A. 32πK 3If(I •“三、解答鬆(共R分■窟答应写出文字说明、证明过祥或済算步骤.M ∣7-" Sg为必考題,每个试題考主都必须作答.第22.23 55为诜考鬆,考生祝庭姜茨作答.)(一;必石題:共M分.17.(12 分〉LL)4】向Ml m~(√3>in-• 1 ;皿一(心十.eo^-γ-)∙ IxX}~m ∙ n.(】I求八2的届小值•并求此时,的fit<21花U(•中•内巾4』,(•所对的边分别为⑴儿C且满足/(B) ⅛j∙.U 2y :仁求Sin .4的们・18.< 12分MMl右图所示的儿何休屮•叫血形CDEF为矩形•屮而CDEF f∙IfilAJJdhPM边形A/X7)为血角怫形.∏. Aii//CD.Ab_ClKeD= 2Λ!i= 2ΛI) 2■点M ⅛f⅛B(,的中点・(Il^证MLLLF(2苦忙线W川我川7所成巾为I亿求1呈线BF号平面BCr所成角的I9.<12分〉域Ij活办••竝我牛*必扬传呎除I识枪薜鄴•最话冇张肛乍泮两位选F进人包亜军PK扒规期⅛ιι下:依次从忠、扒仁、义、礼.信用匕个题片沖毎一次Ki机迭取•道题利人抢答•胜冷得?- 分•败杵不扣分(Jt平知)•先冯I 2分杵为冠军•结柬HC ill J WA阅彥习惯的区別・金前Ifif的比赛中越山:张删住忠、孝、礼、椰加加1帖j优势•脏孝为u∙6∙兀它加血两人不分们仲・胜率邯艮U.3.< 1)求PK结束时爷诗恰得25分的概彳心⑵IPK貉束时抢答场敦为"•求J的分和列及期银2o. ()2分>U知l½砌线€:y;s.r的佟点为F•斜半为牛的宵线/ 4 (•的交点为-A •久⅛ #轴的仝点为化{】)若∣∕∖F∣ + ∣HF∣= ∙∣.^/ 的方陆⑵乃寸一3皿.求∣.M∣.汎m和已知補I H=√ I I I dn H心“为常Q(I)q U-HIj.,R √<,r)4 .r-l 处的切线力程*⑵对任虑M个不Hl等的止S U •『:•求UE √l r <r≤o时•都Vf Z-J-'./ ,-'小(⅛l ).(二)选石融:共10分・i青石生在策2次23题中任选一题作答,如果乡做,懸按所做的策一砸计分.22.[选修I- ,ψf d;系与参数方程](")分)I A = COS α•A-I f Ifh坐杯糸."UU-CXiiItlI⅛<∖: S为参数》•任以坐林曲点门为极点∙I轴止乍轴为{y Mna极紬的极A b标系∣"∙nll线 C :γ)-⅛.IlhfJc (;“ 2>in (?.小求IIh级「与U的交点M的町f]坐标,⑵设点,4∙B分別为me2.C, I.的动点•蚓∙1B∣的最小備.23.[运烤1—6不等式迪讲H IO分)设臥数儿门Ir-Il-12,r- H的尿大值为" 门)求"『的偵:IZyyi a I Ze Mi一川・求Ub I ZfHλflt2020届全国l ⅛三模拟考试(一)参考答案・数学(理科)I 〜5 C ∖∖H(∖∖6. B 悴析:八』> = (・卩一 2W •故”2>巾件个极備点±√Σ・乂 ∙r<L 。

2020高考数学(理)必刷试题+参考答案+评分标准 (96)

2020高考数学(理)必刷试题+参考答案+评分标准 (96)

2020高考数学模拟试题(理科)第I卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知复数与为共轭复数,其中,为虚数单位,则A. 1B.C.D.2.已知集合,则A. B. C. D.3.已知单位向量的夹角为,且,若向量m=2-3,则|m|=A. 9B. 10C. 3D.4.下列说法正确的是A. 若命题均为真命题,则命题为真命题B. “若,则”的否命题是“若”C. 在,“”是“”的充要条件D. 命题“”的否定为“”5.已知正项等比数列的前项和为,若,则A. B. C. D.6.已知函数.若不等式的解集中整数的个数为,则的取值范围是A. B. C. D.7.已知程序框图如图,则输出i的值为A. 7B. 9C. 11D. 13 8.曲线的一条切线l 与轴三条直线围成的三角形记为,则外接圆面积的最小值为 A.B.C.D.9.已知为实数,,若,则函数的单调递增区间为A. B. C.D.10.定义在R 上的函数()2,10{ ,01x x f x x x -≤<=≤<,且()()()12,2f x f xg x x +==-,则方程()()f x g x =在区间[]5,9-上的所有实数根之和最接近下列哪个数A. 14B. 12C. 11D. 10 11.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿着DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径的长度为A .505B .507.5011 D .501912.()f x 是定义在R 上的奇函数,对x R ∀∈,均有()()2f x f x +=,已知当[)0,1x ∈时, ()21x f x =-,则下列结论正确的是( )A. ()f x 的图象关于1x =对称B. ()f x 有最大值1C. ()f x 在[]1,3-上有5个零点D. 当[]2,3x ∈时, ()121x f x -=-第II 卷 非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分) 13.在中,已知,若,则周长的取值范围为__________.14.曲线在点(0,0)处的切线方程为______________;15.各项均为正数的等比数列的前项和为,已知,,则_____.16.已知且,则______。

2020高考数学(理)必刷试题+参考答案+评分标准 (72)

2020高考数学(理)必刷试题+参考答案+评分标准 (72)

2020高考数学模拟试题(理科)第I 卷(选择题部分,共60分)一、选择题:本大题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

l.己知集合A ={x|lnx>0},集合B ={x ∈N|(x -1)(x -5)≤0},则A ∩B = A.{0,l ,2,3,4,5} B.{l ,2,3,4,5} C.{l ,2,3,4} D.{2,3,4,5}2.下列函数中,在其定义域内是增函数且是奇函数的是A.y =xln|x|B.y =xcosxC.y =2x -2-x D.y =e x +e -x 3.设a ∈R ,则“y =sinax 周期为2π”是“a =1”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =1,3,6c A π==,则B =A.6π B.3π C.6π或2π D.3π或23π5.设函数f(x)在R 上可导,其导函数为f'(x),且函数y =(x -l)f'(x)的图像如图所示,则下列结论中一定成立的是A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)6.已知函数g(x)是定义在R 上的偶函数,且在(0,+∞)上单调递减,a =g(log 20.2),b =g(20.2),c =g(0.20.3),则a ,b ,c 的大小关系为A.a<b<cB.a<c<bC.c<a<bD.b<c<a 7.若实数a 满足2log 13a<,则a 的取值范围是A.(23,1) B.(0,23)∪(1,+∞) C.(1,+∞) D.(23,1)∪(1,+∞) 8.函数y =3|x|sin2x 的图像可能是9.若130,0,cos(),sin()2243422ππππβαβα<<-<<+=-=,则sin()2βα+= A.539-B.33C.539D.33- 10.设x ∈R ,函数f(x)单调递增,且对任意实数x ,有f[f(x)-e 2x ]=e 2+1(其中e 为自然对数的底数),则f(ln2)=A.e 2+1B.3C.e 4+1D.5 11.将函数y =cos2x 的图象向右平移(0)2πϕϕ<<个单位长度得到y =f(x)的图象。

2020届理科高考数学专题练习含解析(对数与对数函数)

2020届理科高考数学专题练习含解析(对数与对数函数)

2020届理科高考数学专题练习含解析(指数与指数函数)1、下列运算中正确的是( )A .236a a a ⋅=B .2332()()a a -=-C .01)1=D . 2510()a a -=-2、函数()21,x f x =-使()0f x ≤成立的 x 的集合是( )A. {|0}x x <B. {}=0x xC. {|1}x x <D. {}|1x x =3、如果指数函数()y f x =的图象经过点12,4⎛⎫- ⎪⎝⎭,那么()()42f f ⋅等于( )A.8B.16C.32D.644、若函数1()2x f x a ⎛⎫=- ⎪⎝⎭的图象经过一、二、四象限,则()f a 的取值范围为( ) A. ()0,1 B. 1,12⎛⎫-⎪⎝⎭ C. ()1,1- D. 1,2⎛⎫-+∞ ⎪⎝⎭5、已知函数1()2x f x a +=-(0a >且1a ≠),且函数()y f x =-的图像经过定点()1,2-,则实数a 的值是( )A.1B.2C.3D.46、下列函数中,与函数22x x y -=-的定义域、单调性与奇偶性均一致的函数是( )A.sin y x =B.3y x =C.1()2x y = D.2log y x =7、函数2212x x y -⎛⎫= ⎪⎝⎭的值域为( ) A. 1,2⎡⎫+∞⎪⎢⎣⎭B. 1,2⎛⎤-∞ ⎥⎝⎦C. 10,2⎛⎤ ⎥⎝⎦D. (]0,28、已知函数()133xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( ) A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数9、函数()log (1)x a f x a x =++ (0a >且1a ≠)在[]0,1上的最大值与最小值之和为a ,则a 的值为( ) A.12B. 14C. 2D. 410、已知函数()(0,1)x x f x a a a a -=->≠,且(1)0f >,则关于 x 的不等式的解集为( )A.()2,1- B.()(),21,-∞-⋃+∞ C.()1,2- D. ()(),12,-∞-⋃+∞11、已知5.0log 2=a ,6.03=b ,36.0=c ,c b a ,,大小关系为_______.12、若集合{}31log ,1,,1,2||x A y y x x B y y x ⎛⎫==>==> ⎪⎧⎫⎪⎪⎨⎬⎭⎪⎪⎩⎭⎝则A B ⋂=__________ 13、若2510a b ==,则11a b +=__________ 14、已知函数()()0,1x f x a a a =>≠是定义在R 上的单调递减函数,则函数()()log 1a g x x =+的图像大致是__________.15、已知函数()()()()log 1log 301a a f x x x a =-++<< 1.求函数()f x 的定义域 2.若函数()f x 的最小值为4-,求a 的值答案以及解析1答案及解析:答案:D解析:2答案及解析:解析:3答案及解析:答案:D解析:设()(0x f x a a =>且1)a ≠ 由已知得221,44a a -== ∴2a =于是()2x f x =所以()()4264222264f f ⋅=⋅==.4答案及解析:答案:B解析:依题意可得(0)1,0,f a a =-⎧⎨-<⎩解得01a <<,1()2a f a a ⎛⎫=- ⎪⎝⎭. 设函数1()2xg x x ⎛⎫=- ⎪⎝⎭,则()g x 在()0,1上为减函数,故1(),12f a ⎛⎫∈- ⎪⎝⎭.5答案及解析:答案:B解析:6答案及解析:答案:B解析:7答案及解析:答案:D8答案及解析:答案:B解析:()f x 的定义域是R ,关于原点对称,由11()33()33x xx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭可得()f x 为奇函数.单调性:函数 3?x y =是R 上的增函数,函数13x y ⎛⎫= ⎪⎝⎭是R 上的减函数,根据单调性的运算,增函数减去减函数所得新函数是增函数,即1()33xx f x ⎛⎫=- ⎪⎝⎭是R 上的增函数.综上选B9答案及解析:答案:A解析:10答案及解析:答案:A解析:11答案及解析:答案:a c b <<解析:12答案及解析: 答案:10,2⎛⎫ ⎪⎝⎭解析:13答案及解析:解析:14答案及解析:答案:④解析:根据指数函数的单调性先确定a 的范围,然后得出对数函数log a yx =的图像,最后利用平移变换得到()()log 1a gx x =+的图像. 由函数()()0,1x f x a a a =>≠是定义在R 上的单调递减函数,得01a <<,将log a y x =的图像向左平移1个单位长度得到()()log 1a gx x =+的图像.故填④.15答案及解析: 答案:1.要使函数有意义,则有10{30x x ->+>解之得31x -<<,所以函数的定义域为()3,1-2.()()()()()22log 13log 23log 14a a a f x x x x x x =-+⎡⎤=--+=-++⎣⎦∵31x -<<∴()20144x <-++≤∵01a <<∴()2log 14log 4aa x ⎡⎤-++≥⎣⎦∴()min log 4a f x =由log 44a =-得44a -=∴144a -==解析:。

2020年高考理科数学模拟试题含答案及解析5套)

2020年高考理科数学模拟试题含答案及解析5套)

绝密★启用前2020年高考模拟试题(一)理科数学时间:120分钟分值:150分注意事项:封号位座1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

密第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一不号场考项是符合题目要求的.ab1.已知a,b都是实数,那么“2222”是“ab”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件订 22.抛物线x2py(p0)的焦点坐标为()装号证考准p A.,0 218p360 xy≤p218pB.,0C.0,D.0, 3.十字路口来往的车辆,如果不允许掉头,则行车路线共有()A.24种B.16种C.12种D.10种只4.设x,y满足约束条件xy2≥0,则目标函数z2xy的最小值为()x≥0,y≥0A.4B.2C.0D.2卷5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为()名姓A.5B.34C.41D.52此6.sinxfxxx,0U0,大致的图象是()A.B.C.D.级班7.函数fxsinxcosx(0)在,22 上单调递增,则的取值不可能为()A.14B.15C.12D.348.运行如图所示的程序框图,设输出数据构成的集合为A,从集合A中任取一个元素a,则函数ayx,x0,是增函数的概率为()A.35B.45C.34D.37开始x3否x≤3是22yxx结束输出yxx11x9.已知A,B是函数y2的图象上的相异两点,若点A,B到直线y的距离相等,2则点A,B的横坐标之和的取值范围是()A.,1B.,2C.,3D.,410.在四面体ABCD中,若ABCD3,ACBD2,ADBC5,则四面体ABCD的外接球的表面积为()A.2B.4C.6D.811.设x1是函数32fxa1xaxa2x1nN的极值点,nnn数列a n满足a11,a22,b n log2a n1,若x表示不超过x的最大整数,则201820182018L=()b b bbbb122320182019A.2017B.2018C.2019D.2020ax12.已知函数fxeaR在区间0,1上单调递增,则实数a的取值范围()xeA.1,1B.1,C.1,1D.0,第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“x00,2x0mx020”的否定是_________._C2π314.在△ABC中,角B的平分线长为3,角,BC2,则AB_________._15.抛物线24yx的焦点为F,过F的直线与抛物线交于A,B两点,且满足A FBF4,点O为原点,则△AOF的面积为_________._16.已知函数fxxxx223sincos2cos0222的周期为2π3,当πx0,3 时,函gxfxm数恰有两个不同的零点,则实数m的取值范围是_________._三、解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刷题增分练1集合的概念与运算
刷题增分练①小题基础练提分快
一、选择题
1.[2018·全国卷Ⅱ]已知集合A={1,3,5,7},B={2,3,4,5},则A∩B =()
A.{3}B.{5}
C.{3,5} D.{1,2,3,4,5,7}
答案:C
解析:A∩B={1,3,5,7}∩{2,3,4,5}={3,5}.故选C.
A=() 2.[2018·全国卷Ⅰ]已知集合A={x|x2-x-2>0},则∁
R A.{x|-1<x<2} B.{x|-1≤x≤2}
C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}
答案:B
解析:∵x2-x-2>0,∴ (x-2)(x+1)>0,∴x>2或x<-1,即A ={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.
由图可得∁R A={x|-1≤x≤2}.
故选B.
3.[2019·河南质检]已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},则A∩(∁U B)=()
A.{1} B.{2}
C.{4} D.{1,2}
答案:A
解析:因为∁U B={1,3,5},所以A∩(∁U B)={1}.故选A.
4.[2019·武邑调研]已知全集U=R,集合A={x|0<x<9,x∈R}和B={x|-4<x<4,x∈Z}关系的Venn图如图所示,则阴影部分所表示集合中的元素共有()
A.3个B.4个
C.5个D.无穷多个
共有9个.故选A.
2.[2019·湖南联考]已知全集U =R ,集合A ={x |x 2-3x ≥0},B ={x |1<x ≤3},则如图所示的阴影部分表示的集合为( )
A .[0,1)
B .(0,3]
C .(0,1]
D .[1,3]
答案:C 解析:因为A ={x |x 2-3x ≥0}={x |x ≤0或x ≥3},B ={x |1<x ≤3},所以A ∪B ={x |x >1或x ≤0},所以图中阴影部分表示的集合为∁U (A ∪B )=(0,1],故选C.
3.设集合A ={x |-3≤x ≤3,x ∈Z },B ={y |y =x 2+1,x ∈A },则集合B 中元素的个数是( )
A .3
B .4
C .5
D .无数个
答案:B
解析:∵A ={x |-3≤x ≤3,x ∈Z },∴A ={-3,-2,-1,0,1,2,3},∵B ={y |y =x 2+1,x ∈A },∴B ={1,2,5,10},故集合B 中元素的个数是4,选B.
4.[2019·四川统考]已知集合A ={x |x 2-4x <0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是( )
A .(0,4]
B .(-∞,4)
C .[4,+∞)
D .(4,+∞)
答案:C
解析:由已知可得A ={x |0<x <4}.若A ⊆B ,则a ≥4.故选C.
5.[2019·贵州遵义南白中学联考]已知集合A ={x |x 2+x -2<0},B ={x |log 12
x >1},则A ∩B =( )
A.⎝ ⎛⎭
⎪⎫0,12 B .(0,1) C.⎝ ⎛⎭⎪⎫-2,12 D.⎝ ⎛⎭
⎪⎫12,1 答案:A
解析:由题意,得A ={x |-2<x <1},B =⎩⎨⎧⎭
⎬⎫x ⎪⎪⎪
0<x <12,所以A ∩B
=⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫0<x <12=⎝ ⎛⎭
⎪⎫0,12.故选A. 6.[2019·河北唐山模拟]已知集合A ={x ∈N |x <3},B ={x |x =a -b ,a ∈A ,b ∈A },则A ∩B =( )
A .{1,2}
B .{-2,-1,1,2}
C .{1}
D .{0,1,2}
答案:D
解析:A ={x ∈N |x <3}={0,1,2},B ={x |x =a -b ,a ∈A ,b ∈A }.由题意知,当a =0,b =0时,x =a -b =0;当a =0,b =1时,x =a -b =-1;当a =0,b =2时,x =a -b =-2;当a =1,b =0时,x =a -b =1;当a =1,b =1时,x =a -b =0;当a =1,b =2时,x =a -b =-1;当a =2,b =0时,x =a -b =2;当a =2,b =1时,x =a -b =1;当a =2,b =2时,x =a -b =0,根据集合中元素的互异性,B ={-2,-1,0,1,2},∴A ∩B ={0,1,2}.故选D.
7.[2019·浙江模拟]已知集合P ={x ∈R |-2<x ≤3},Q =⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ∈R ⎪⎪⎪ 1+x x -3≤0,则( ) A .P ∩Q ={x ∈R |-1<x <3}
B .P ∪Q ={x ∈R |-2<x <3}
C .P ∩Q ={x ∈R |-1≤x ≤3}
D .P ∪Q ={x ∈R |-2<x ≤3}
答案:D
解析:由1+x x -3
≤0,得(1+x )(x -3)≤0且x ≠3,解得-1≤x <3,故P ∩Q ={x ∈R |-1≤x <3},P ∪Q ={x ∈R |-2<x ≤3}.故选D.
8.已知全集U =R ,集合A ={x |x 2-2x ≤0},B ={y |y =sin x ,x ∈R },则图中阴影部分表示的集合为( )
A .[-1,2]
B .[-1,0)∪(1,2]
C .[0,1]
D .(-∞,-1)∪(2,+∞)
答案:B
∴A∩B={x|2<x≤3}.
∵∁R B={x|x≤2},∴(∁R B)∪A={x|x≤3}.(2)由(1)知A={x|1≤x≤3},C⊆A.
当C为空集时,满足C⊆A,a≤1;
当C为非空集合时,可得1<a≤3.
综上所述,a的取值范围为(-∞,3].
实数a的取值范围为(-∞,3].。

相关文档
最新文档