四年级奥数知识讲解-周期问题

合集下载

四年级奥数综合复习之[周期问题]

四年级奥数综合复习之[周期问题]

四年级奥数复习之:周期问题周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期。

周期性问题的基本解题思路:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

1、观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,18÷2=9,所以第18个数是2。

2、如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16÷3=5……1,所以第16个数是1。

3、如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算。

例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(16-1) ÷2=7……1,所以第16个数是2.4、遇到日期问题,求星期几,如果求的日期> 已知日期,则使用顺推,如果求的日期< 已知日期,则倒推。

第一讲:图形中的周期问题1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【黑/26】2、小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.第10颗黄珠子是从头起第几颗?第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【47/14】3、如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们,B”……第62组是什么?如果“爱,C”代表1991年,“科,D”代表1992年……问2008年对应怎样的组?【们,F/学,F】4、如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。

举一反三- 四年级奥数 - 第28讲 周期问题

举一反三- 四年级奥数 - 第28讲 周期问题

第28讲周期问题一、知识要点:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。

二、精讲精练例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。

(1)□△□△□△□△……(2)□△△□△△□△△……练习一(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?例2:有一列数,按5、6、2、4、5、6、2、4…排列。

(1)第129个数是多少?(2)这129个数相加的和是多少?练习二1、有一列数:1,4,2,8,5,7,1,4,2,8,5,7…(1)第58个数是多少?(2)这58个数的和是多少?2、小青把积存下来的硬币按先四个1分,再三个2分,最后两个5分这样的顺序一直往下排。

(1)他排到第111个是几分硬币?(2)这111个硬币加起来是多少元钱?例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…练习三1、有a、b、c三条直线,从a线开始,从1起依次在三条直线上写数(如下图),22、59、2001各在哪一条线上?c b2、假设所有自然数如下图排列起来,36、43、78、2000应分别排在哪个字母下面?A B C D1 2 3 48 7 6 59 10 11 12…例4:1991年1月1日是星期二。

(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?练习四1、1990年9月22日是星期六,1991年元旦是星期几?2、1989年12月5日是星期二,那么再过10年的12月5日是星期几?例5:我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年,第三年就是虎年…。

四年级奥数讲义-第28讲周期问题通用版

四年级奥数讲义-第28讲周期问题通用版

四年级奥数重点常考第二十八讲周期问

专题简析:
在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。

王牌例题1
黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○…,第2000颗珠子是什么颜色的?
【思路导航】从图中可以看出:除了第一颗珠子,从左起第二颗开始,都是按照一黑二白的规律排列的,每组4颗珠子。

2000颗珠子一共有(2000-1)÷4=499组…3颗,第2000颗珠子就是第500组的左起第三颗,是白色的。

小学奥数周期问题

小学奥数周期问题

周期问题一、知识要点周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。

在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。

这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。

二、精讲精练【例题1】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?【思路导航】根据题意可知,小木球涂色的次序是5红、4黄、3绿、2黑、1白,即5+4+3+2+1=15个球为一个周期,不断循环。

因为2001÷15=133……6,也就是经过133个周期还余6个,每个周期中第6个是黄的,所以第2001个球涂黄色。

练习1:1.跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?2.有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?7=0.……,小数点后面第100个数字是多少?【例题2】有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。

最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?【思路导航】(1)我们把二盏红灯、四盏蓝灯、三盏黄灯这9盏灯看作一组,47÷9=5(组)……2(盏),余下的两盏是第6组的前两盏灯,是红灯,所以最后一盏灯是红灯;(2)由于47÷9=5(组)……2(盏),所以红灯共有2×5+2=12(盏),占总数的12/47;蓝灯共有4×5=20(盏),占总数的20/47;黄灯共有3×5=15(盏),占总数的15/47。

练习2:1.有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?2.黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○……,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?3.在100米长的跑道两侧每隔2米站着一个同学。

小学四年级奥数-周期问题

小学四年级奥数-周期问题

周期问题(一)我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。

在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。

解答这类题目只有找到规律,才能获得正确的方法。

例1.●●○●●○●●○……上面黑、白两色小球按照一定的规律排列着,其中第90个是( )例2.有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。

第144个珠是什么颜色?例3.有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?例4.有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。

三种颜色的弹子各有多少个?例5.上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是( )练习与思考1.根据图中物体的排列规律,填空。

(2)□○△□○△……第55个是( )2.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢?3.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。

“72”是谁报的?“190”呢?4.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……5.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。

黑珠共有几个?第68个珠子是什么颜色?6.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?7.第26列的字母和数字各是什么?B ),第26组是什么?周期问题(二)例1.10个2连乘的积的个位数是几?例2.1998年元旦是星期四,1999年元旦是星期几?例3.黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……例4.把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。

(周期问题)四年级奥数辅导教材(十三)

(周期问题)四年级奥数辅导教材(十三)

大拇指辅导空间四年级奥数辅导教材(十三)姓名家长签名周期问题一、周期问题就是按照一定的规律不断重复的现象的数学问题。

二、解答周期问题的方法:1、先找出这种现象的周期。

2、确定这种现象的总数量。

三、解答周期问题的数量关系式:1、没有余数时:总数量÷周期=周期的个数(这种现象表示周期的末项)2、有余数时:总数量÷周期=周期的个数······余数(这种现象,如果余数是几,就表示周期的第几个数)四、例题分析:例1、有一列数,5、6、2、4、5、6、2、4······①第129个数是多少?②这129个数相加的和是多少?例2、2003年1月1日是星期三,(1)该月的22号是星期几?(2)2003年4月5日是星期几?(3)2008年1月1日是星期几?例3、我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年,第三年就属虎年。

如果公元1年属鸡年,那么公元2001年属什么年?例4、假设所有的自然数排列起来,如下所示,39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89······例5、用1、2、3、4这四张卡片可以组成不同四位数,如把它们从小到大依次排列出来,第1个是1234,第2个是1243,第15个是多少?例6、把分数74化成小数后,小数点第110位上的数字是多少?例7、节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是什么灯?例8、在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?。

四年级奥数综合复习之【周期问题】

四年级奥数综合复习之【周期问题】

四年级奥数综合复习之【周期问题】四年级奥数复习之:周期问题周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期。

周期性问题的基本解题思路:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

1、观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,18÷2=9,所以第18个数是2。

2、如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16÷3=5……1,所以第16个数是1。

3、如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算。

例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(16-1) ÷2=7……1,所以第16个数是2.4、遇到日期问题,求星期几,如果求的日期 > 已知日期,则使用顺推,如果求的日期 < 已知日期,则倒推。

第一讲:图形中的周期问题1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【黑/26】2、小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.第10颗黄珠子是从头起第几颗?第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【47/14】3、如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们, B”……第62组是什么?如果“爱,C”代表1991年,“科,D”代表1992年……问2008年对应怎样的组?【们,F/学,F】4、如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。

小学四年级奥数第28讲 周期问题(含答案分析)

小学四年级奥数第28讲 周期问题(含答案分析)

第28讲周期问题一、知识要点:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。

二、精讲精练例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。

(1)□△□△□△□△……(2)□△△□△△□△△……练习一(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?例2:有一列数,按5、6、2、4、5、6、2、4…排列。

(1)第129个数是多少?(2)这129个数相加的和是多少?练习二1、有一列数:1,4,2,8,5,7,1,4,2,8,5,7…(1)第58个数是多少?(2)这58个数的和是多少?2、小青把积存下来的硬币按先四个1分,再三个2分,最后两个5分这样的顺序一直往下排。

(1)他排到第111个是几分硬币?(2)这111个硬币加起来是多少元钱?例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…练习三1、有a、b、c三条直线,从a线开始,从1起依次在三条直线上写数(如下图),22、59、2001各在哪一条线上?c b2、假设所有自然数如下图排列起来,36、43、78、2000应分别排在哪个字母下面?A B C D1 2 3 48 7 6 59 10 11 12…例4:1991年1月1日是星期二。

(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?练习四1、1990年9月22日是星期六,1991年元旦是星期几?2、1989年12月5日是星期二,那么再过10年的12月5日是星期几?例5:我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年,第三年就是虎年…。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★小学四年级奥数专题讲解之“周期问题”
杨启令
专题简析:在日常生活中,有一些按照一定的规律不断重复出现。

如:人的12生肖,一年有春夏秋冬四个季节,一个星期有七天等等。

像这些问题,我们称为“简单周期问题”。

这一类问题一般要利用余数的知识来解答。

所以这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。

例题1:2001年10月1日是星期一,问10月25日是星期几?
分析:我们知道,每个星期有7天,也就是说以7天为一个周期不断地重复。

那么从10月1日到10月25日经过了25—1=24(天)。

因此用除法算式解答。

解:(1)、从10月1日到10月25日有:25—1=24(天)
(2)、24天里有多少个星期余多少天?24÷7=3(个星期)……3(天)
(说明24天中包含3个星期还多3天,最后一天起,再过3天就应是星期四)
答:10月25日是星期四。

练习题:
1、2001年5月3日是星期四,问5月20日是星期几?
2、2008年8月1日是星期三,问8月28日是星期几?
3、2001年6月1日是星期五,问9月1日是星期几?
例题2:100个3相乘,积的个位数字是几?
分析:我们只需考虑积的个位数的排列规律就可以了。

解:(1)、1×3=3……1个3相乘积的个位数字是:3
(2)、3×3=9……2个3相乘积的个位数字是:9
(3)、3×3×3=27……3个3相乘积的个位数字是:7
(4)、3×3×3×3=81……4个3相乘积的个位数字是:1
(5)、3×3×3×3×3=243……5个3相乘积的个位数字是:3(已经重复出现)
(说明:可以发现积的个位数分别以3、9、7、1不断出重复出现的。

即每4个3的积的个位数为一个周期。


所以100个有多少个周期?100÷4=25(个)(整除说明是最后一个即个位为1)
答:积的个位数字是1。

练习题:
1、23个3相乘,积的个位数字是几?答:。

2、100个2相乘,积的个位数字是几?答:。

3、50个7相乘,积的个位数字是几?答:。

例题3:
上表是中,每一列两个符号组成一组,如第一组“A万”,第二组“B事”,……问第20个组是什么?
分析:观察上表,发现有两个独立的排列规律。

上面一组是以“A、B、C”三个字母为一个周期重复出现的,下一组是以“万、事、如、意”四个字为一个周期重复出现的。

要求出
第20个组是什么,就要分别求出上下两行各是什么才行。

解:(1)、上面一组:20÷3=6(组)……2(个)(说明第20个字母是:“B”)(2)、下面一组:20÷4=5(组)(说明第20个字是:“意”)
答:第20个组是“B意”两个符号。

练习题:1、
上表中每一列两个符号为一组,如:第一组为“A1”,第二组为“B2”,……问第25组是什么?
2、有同样大小的红、白、黑球共120个,按先3个红的,后2个白的,再1个黑的排列,问(1)、白球一共有多少个?(2)、第68个球是什么颜色球?
例题4:有一列数按“432791864327918643279186……”排列。

那么前54个数字之和是多少?
分析:观察发现,重复出现的部分是“43279186”,周期数是8。

要求出这列数字的和,就要求出这一列数里共有多少组“43279186”,再求出这组的和。

解:(1)、54÷8=6(组)……6(个)
(2)、4+3+2+7+9+1+8+6=40 (3)、6×40=240
(4)、余下的6个数的和为:4+3+2+7+9+1=26
(5)、240+26=266
答:前54个数字之和是266。

练习题:
1、有一列数按“294736294736294……”排列。

那么前40个数字之和是多少?
2、有一列数按“9453672945367294……”排列。

那么前50个数字之和是多少?
例题5:小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字,如果这本书有128页,而第1页是文字,这本书共有插图多少页?
分析:已知这本书3页插图前后各有1页文字,也就是说这本书是按“1页文字3页插图”的规律重复排列的,把“1页文字3页插图”看做一周期。

128页中含有:
128÷(1+3)=32(个)周期。

所以这本书共有插图:3×32=96(页)
解:(1)、128÷(1+3)=32(个)(2)、3×32=96(页)
答:这本书共有插图96页。

练习题:
1、校门口摆了一排花,每两盆菊花之间摆3盆月季花。

一共摆了112盆花,如果第一盆花是菊花,那么共摆了多少盆月季花?
2、同学们做早操,36个同学排成一列,每两个女生中间是两个男生,第一个是女生,这列队伍中男生有多少人?
3、一个圆形花坛周围长30米,沿周围每隔3米插一面红旗,每两面红旗中间插两面黄旗,花坛周围共插了多少面黄旗?。

相关文档
最新文档