人教版九年级数学上册1.函数y=x2-4的图象与y轴的交点坐标是( )

合集下载

人教版九年级数学上册《二次函数图像与性质》课件(共14张PPT)

人教版九年级数学上册《二次函数图像与性质》课件(共14张PPT)

相同点:开口:向上, 顶点:原点(0,0)——最低点 对称轴: y 轴
增减性:y 轴左侧,y随x增大而减小
y 轴右侧,y随x增大而增大
y x2
8 6
y 2x2
பைடு நூலகம்
不同点:a 值越大,抛物线的开 口越小.
4 2 -4 -2
y 1 x2 2
24
探究
画出函数 yx2,y1x2,y2x2 的图象,并考虑这些抛物 2
|a|越大,抛物线的开口越小;
二次函数y=ax2的性质
y=ax2
a>0
a<0
图象
(0,0)最低点
开口方向 开口向上
开口向下
对称轴 对称轴是y轴,即直线x=0
顶点
顶点坐标是原点(0,0)
最值 当x=0时,y最小值=0 当x=0时,y最大值=0
增减性
当x<0时,y随x的增大而减小 当x<0时,y随x的增大而
1
2
3 ···
y = x2 ··· 9 4 1 0 1 4 9 ···
2. 根据表中x,y的数值在坐标平面中描点(x,y)
3.连线 如图,再用平滑曲线顺次
9
连接各点,就得到y = x2 的图象

6
y = x2
3
-3
3
二次函数 y = x2的图象是一条曲线,它的形状类似于投篮球时球在空中 所经过的路线,只是这条曲线开口向上,这条曲线叫做抛物线 y = x2 ,
谢谢观赏
You made my day!
我们,还在路上……
当x>0时,y随x的增大而增大
增大;当x>0时,y随x的 增大而减小
|a|越大,抛物线的开口越小;

人教版九年级数学上册《二次函数与一元二次方程》二次函数PPT优质课件

人教版九年级数学上册《二次函数与一元二次方程》二次函数PPT优质课件
反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的 值为0,求自变量 x 的值.
新课讲解
新课讲解
练一练
已知二次函数 y=-x2+2x+m 的部分图象如图所示,则关于 x 的一元二次方程 -x2+2x=-m 的解为 x1=-1,x2=3 .
分析:由图可知,抛物线的对称轴为x=1,抛物线与x
轴的一个交点的横坐标为3, 所以另一个交点的横坐标为2×1-3=-1,
所以关于x的一元二次方程-x2+2x=-m, 即-x2+2x+m=0的解为x1=-1,x2=3.
新课讲解
知识点2 公共点的问题
例 2 下列二次函数的图象与 x 轴有公共点吗?如果有,公共点 的横坐标是多少?当 x 取公共点的横坐标时,函数的值是多少? 由此你能得出相应的一元二次方程的根吗? (1) y=x2-x+1; (2) y=x2-6x+9; (3) y=x2+x-2.
当球飞行0 s和4 s时,它的高度为0 m.
即0 s时球从地面飞出,4 s时球落回地面.
新课讲解
从上面发现,一般地,当 y 取定值且 a≠0 时,二次函数为一元二次方程. 如:y=5 时,5=ax2+bx+c 就是一个一元二次方程.
所以二次函数与一元二次方程关系密切.
例如,已知二次函数 y=-x2+4x 的值为 3,求自变量 x 的值,可以解一 元二次方程 -x2+4x=3(即x2-4x+3=0).
第二十二章 二次函数 二次函数与一元二次方程
学习目标
1.通过探索,理解二次函数及其图象、性质确定方程的解
或不等式的解集.

人教版九年级数学上册第22章《二次函数》单元测试题含答案

人教版九年级数学上册第22章《二次函数》单元测试题含答案

人教版九年级数学上册第22章《二次函数》单元测试题一、选择题:(每题3,共30分) 1.抛物线2(1)2y x =-+的顶点坐标是( ). A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)2. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+3、抛物线y=(x+1)2+2的对称轴是( ) A .直线x=-1 B .直线x=1 C .直线y=-1 D .直线y=14、二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .35、若,,,,,123351A yB yC y 444⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.132y y y <<6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )OxyOxyOxyOxy(A)(B)(C)(D)7.〈常州〉二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 (1)二次函数y =ax 2+bx +c 有最小值,最小值为-3;(2)当-12<x <2时,y <0;(3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( )A.3B.2C.1D.08.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9、二次函数与882+-=x kx y 的图像与x 轴有交点,则k 的取值范围是( ) A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且10. 如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为( ).二、填空题:(每题3,共30分)11.已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.12、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。

人教版九年级数学上册《第22章二次函数》单元测试卷(含答案)

人教版九年级数学上册《第22章二次函数》单元测试卷(含答案)

人教版九年级上册第22章二次函数单元测试卷一、选择题(共8题;共24分)1.二次函数y=x 2-2x+3顶点坐标是( )A. (-1,-2)B. (1,2)C. (-1,2)D. (0,2) 2.已知抛物线y=13(x−4)2-3与y 轴交点的坐标是( )A. (0,3)B. (0,-3)C. (0,73)D. (0, -73) 3.二次函数y= -2x 2+4x +1的图象如何移动就得到y =-2x 2的图象( )A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位 4.在平面直角坐标系xOy 中,将抛物线y=2x 2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为( )A. y=2(x-1)2-3B. y=2(x-1)2+3C. y=2(x+1)2-3D. y=2(x+1)2+35.已知二次函数y =ax 2+bx +c 的图象如下图所示,则四个代数式abc ,b 2−4ac ,2a +b ,a −b +c 中,值为正数的有( )A. 4个B. 3个C. 2个D. 1个6.如图,二次函数y=ax 2+bx+c 的图象与x 轴交于点A (﹣1,0),B (3,0).下列结论:①2a ﹣b=0;②(a+c )2<b 2;③当﹣1<x <3时,y <0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x ﹣2)2﹣2.其中正确的是( )A. ①③B. ②③C. ②④D. ③④ 7.已知一次函数y=ax 2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc <0;②b 2﹣4ac=0;③a >2;④4a ﹣2b+c >0.其中正确结论的个数是( )A. 1B. 2C. 3D. 48.如图,已知顶点为(-3,-6)的抛物线y=ax 2+bx+c 经过点(-1,-4),则下列结论中错误的是( )A. b 2>4acB. ax 2+bx+c≥-6C. 若点(-2,m ),(-5,n )在抛物线上,则m >nD. 关于x 的一元二次方程ax 2+bx+c=-4的两根为-5和-1二、填空题(共10题;共30分)9.若抛物线y =(a −2)x 2的开口向上,则a 的取值范围是________.10.抛物线y =2x 2−1的顶点坐标是________.11.若A (−134,y 1),B (−54,y 2),C (1,y 3)为二次函数y= x 2 +4x ﹣5的图象上的三点,则y 1、y 2、y 3的大小关系是________.12.抛物线与x 轴交于点(1,0),(﹣3,0),则该抛物线可设为:________.13.把二次函数y=﹣2x 2+4x+3化成y=a (x ﹣m )2+k 的形式是________.14.如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.15.将二次函数y =x 2-2x 化为y =(x -h)2+k 的形式,结果为________16.二次函数y=x 2+(2m+1)x+(m 2﹣1)有最小值﹣2,则m=________.17.若二次函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是________.18.抛物线y=ax 2+bx+c 满足下列条件:(1)4a ﹣b=0;(2)a ﹣b+c >0;(3)与x 轴有两个交点,且两交点的距离小于2.以下有四个结论:①a <0;②c >0;③ac=b 2;④ <a <.则其中正确结论的序号是________. 三、解答题(共9题;共66分)19.如图,一块矩形草地的长为100m ,宽为80m ,欲在中间修筑两条互相垂直的宽为x (m )的小路,这时草坪的面积为y (m 2).求y 与x 的函数关系式,并求出x 的取值范围.20.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n<t,直接写出m的取值范围.x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,21.直线l:y=﹣34(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图像指出当m的函数值大于0的函数值时x的取值范围.22.如图,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),B两点,交y轴于点D.(1)求点B、点D的坐标,(2)判断△ACD的形状,并求出△ACD的面积.23.某产品每件成本28元,在试销阶段产品的日销售量y(件)与每件产品的日销售价x(元)之间的关系如图中的折线所示.为维持市场物价平衡,最高售价不得高出83元.(1)求y与x之间的函数关系式;(2)要使每日的销售利润w最大,每件产品的日销售价应定为多少元?此时每日销售利润是多少元?24.已知,抛物线y=ax²+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线y=a x2+bx+4对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F 的坐标;若不存在,请说明理由.25.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方),若FG=2 √2DQ,求点F的坐标.26.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.27.已知如图,在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中点,点N在AB上(不同于A、B),将△ANM 绕点M逆时针旋转90°得△A1PM(1)画出△A1PM(2)设AN=x,四边形NMCP的面积为y,直接写出y关于x的函数关系式,并求y的最大或最小值.参考答案一、单选题1.B2.C3.C4.C5.A6.D7.C8.C二、填空题9.a>2 10.(0,-1)11.y2<y1<y312.y=a(x﹣1)(x+3)(a≠0)17.1 18.①13.y=﹣2(x﹣1)2+5 14.直线x=2 15.y=(x−1)2−116.34三、解答题19.解:设中间修筑两条互相垂直的宽为x(m)的小路,草坪的面积为y(m2),根据题意得出:y=100﹣80﹣80x﹣100x+x2=x2﹣180x+8000(0<x<80)20.解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.21.解:∵y=﹣x+6交y轴于点A,与x轴交于点B,∴x=0时,y=6,∴A(0,6),y=0时,x=8,∴B(8,0),∵过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),BC=5,∴C(3,0).设抛物线m的解析式为y=a(x﹣3)(x﹣8),将A(0,6)代入,得24a=6,解得a= ,∴抛物线m的解析式为y= (x﹣3)(x﹣8),即y= x2﹣x+6;函数图像如下:当抛物线m的函数值大于0时,x的取值范围是x<3或x>8.22.解:(1)∵抛物线的顶点坐标为(1,4),∴可设抛物线解析式为y=a (x ﹣1)2+4,∵与x 轴交于点A (3,0),∴0=4a+4,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+4=﹣x 2+2x+3,令y=0,可得﹣x 2+2x+3=0,解得x=﹣1或x=3,令x=0,可得y=3∴B 点坐标为(﹣1,0),D 点坐标为(0,3);(2)∵A (3,0),D (0,3),C (1,4),∴AD=√32+32=3√2,CD=√(1−0)2+(4−3)2=√2,AC=√(1−3)2+(4−0)2=2√5,∴AD 2+CD 2=(3√2)2+(√2)2=20=(2√5)2=AC 2,∴△ACD 是以AC 为斜边的直角三角形,∴S △ACD =12AD•CD=12×3√2×√2=3.23.解:(1)当30<x≤40时,设此段的函数解析式为:y=kx+b ,{30k +b =6640k +b =36解得,k=﹣3,b=156∴当30<x≤40时,函数的解析式为:y=﹣3x+156;当40<x≤80时,设此段函数的解析式为:y=mx+n ,{40m +n =3680m +n =16解得,m=−12,n=56,∴当40<x≤80时,函数的解析式为:y=−12x +56;当80<x≤83时,y=16;由上可得,y 与x 之间的函数关系式是:y={−3x +15630<x ≤40−12x +5640<x ≤801680<x ≤83;(2)当30<x≤40时,w=(x ﹣28)y=(x ﹣28)(﹣3x+156)=﹣3x 2+240x ﹣4368=﹣3(x ﹣40)2+432∴当x=40时取得最大值,最大值为w=432元;当40<x≤80时,w=(x ﹣28)y=(x ﹣28)(−12x +56)=−12x 2+70−1586=−12(x −70)2+882,∴当x=70时,取得最大值,最大值为w=882元;当80<x≤83时,w=(x ﹣28)×16∴当x=83时,取得最大值,最大值为w=880元;由上可得,当x=70时,每日点的销售利润最大,最大为882元,即要使每日的销售利润w 最大,每件产品的日销售价应定为70元,此时每日销售利润是882元. 24.(1)由A (-3,0)和B (2,0),得:y =a (x +3)(x −2)即y =ax 2+ax −6a = ax²+bx+4∴ −6a =−4∴ a =−23∴ y =−23x 2−23ax −4 .(2)易得C (0,4),则BC= √42+22=2√5 .由y =−23x 2−23ax −4可对称轴为x= −−232×(−23)=−12 , 则可设点G 的坐标为(−12,y),∵点D 是BC 的中点∴点D 的坐标为(1,2),DB =12CB =√5由旋转可得,DG =DB∴ (1+12)2+(y −2)2=(√5)2 ……………∴ y =2±√112 ……… ∴点G 的坐标为(−12,2+√112)或(−12,2−√112) (3)①当BE 为对角线时,因为菱形的对角线互相垂直平分,所以此时D 即为对称轴与AC 的交点或对称轴对BC 的交点,F 为点D 关于x 轴的对称点,设y AC =kx +b ,∵C (0,4),A (−3,0),∴ {b =4−3k +b =0, ∴ {b =4k =43,∴ y AC =43x +4,∴当x =−12时,y =103,∴D (−12,103),∴F(−12,−103);易得y BC=−2x+4∴当x=−12时,y=5,∴D(−12,5),∴F(−12,−5);②当BE为菱形的边时,有DF∥BEI)当点D在直线BC上时y BC=−2x+4设D(a,−2a+4),则点F(−12,−2a+4)∵四边形BDFE是菱形∴FD=DB根据勾股定理得,(a+12)2=(a−2)2+(−2a+4)2整理得:4a2−21a+794=0,解得:a1=21+5√58,a2=21−5√58∴F(−12,−5−5√54)或(−12,−5+5√54)II)当点D在直线AC上时设D(a,43a+4),则点F(−12,43a+4)∵四边形BFDE是菱形,∴FD=FB ,根据勾股定理得,(a+12)2=(2+12)2+(43a+4)2整理得:7a2+87a+198=0,解得:a1=−3(舍去),a2=−667∴F(−12,−607),综上所述,点F的坐标分别为:(−12,−103),(−12,−5),(−12,−5−5√54),(−12,−5+5√54),(−12,−607).25.(1)解:当y=0时,﹣x2﹣2x+3=0,解得x1=1,x2=﹣3,则A(﹣3,0),B(1,0);当x=0时,y=﹣x2﹣2x+3=3,则C(0,3);(2)解:抛物线的对称轴为直线x=﹣1,设M(x,0),则点P(x,﹣x2﹣2x+3),(﹣3<x<﹣1),∵点P 与点Q 关于直线=﹣1对称,∴点Q (﹣2﹣x ,﹣x 2﹣2x+3),∴PQ=﹣2﹣x ﹣x=﹣2﹣2x ,∴矩形PMNQ 的周长=2(﹣2﹣2x ﹣x 2﹣2x+3)=﹣2x 2﹣8x+2=﹣2(x+2)2+10, 当x=﹣2时,矩形PMNQ 的周长最大,此时M (﹣2,0),设直线AC 的解析式为y=kx+b ,把A (﹣3,0),C (0,3)代入得{−3k +b =0b =3,解得{k =1b =3, ∴直线AC 的解析式为y=3x+3,当x=﹣2时,y=x+3=1,∴E (﹣2,1),∴△AEM 的面积= 12 ×(﹣2+3)×1= 12;(3)解:当x=﹣2时,Q (0,3),即点C 与点Q 重合,当x=﹣1时,y=﹣x 2﹣2x+3=4,则D (﹣1,4),∴DQ= √12+(3−4)2 = √2,∴FG=2 √2 DQ=2 √2 × √2 =4,设F (t ,﹣t 2﹣2t+3),则G (t ,t+3),∴GF=t+3﹣(﹣t 2﹣2t+3)=t 2+3t ,∴t 2+3t=4,解得t 1=﹣4,t 2=1,∴F 点坐标为(﹣4,﹣5)或(1,0).26.解:由题意得:C (0,1),D (6,1.5),抛物线的对称轴为直线x=4, 设抛物线的表达式为:y=ax 2+bx+1(a≠0),则据题意得:{−b 2a =41.5=36a +6b +1, 解得:{a =−124b =13, ∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124 x 2+ 13 x+1, ∵y=﹣124(x ﹣4)2+ 53, ∴飞行的最高高度为53米 27.(1)解:如图所示:△A 1PM ,即为所求;(2)解:过点M 作MD ⊥AB 于点D , ∵AB=BC=4,∠ABC=90°,M 是AC 的中点, ∴MD=2,设AN=x ,则BN=4﹣x ,故四边形NMCP 的面积为: y= 12 ×4×4﹣12 x×2﹣12 x×(4﹣x ) = 12 x 2﹣3x+8= 12(x ﹣3)2+ 72,故y 的最小值为:72。

人教版九年级数学上册第22章二次函数训练题(一)(含答案)

人教版九年级数学上册第22章二次函数训练题(一)(含答案)

人教版九年级数学上册第22章二次函数训练题(一)(含答案)一.选择题1.下列函数中属于二次函数的是()A.y=x B.y=2x2﹣1C.y=D.y=x2++12.关于二次函数y=﹣2(x+1)2+5,下列说法正确的是()A.最小值为5B.最大值为1C.最大值为﹣1D.最大值为53.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是()A.m≤0B.0<m≤1C.m≤1D.m≥14.二次函数y=ax2+bx+c的图象如右图所示,若M=5a+4c,N=a+b+c,则()A.M>0,N>0B.M>0,N<0C.M<0,N>0D.M<,N<05.如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c <0;③5a+4c<0;④4ac﹣b2>0;⑤若P(﹣5,y1),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其中正确结论的个数是()A.1B.2C.3D.46.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.67.函数y=ax2﹣a与y=ax﹣a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.8.对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②其图象与直线y =x﹣1有且只有一个公共点;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中正确结论的个数是()A.1B.2C.3D.49.已知抛物线y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为A(﹣1,y1),B(2,y2),C(4,y3),则y1,y2,y3的大小关系为()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y110.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此变换进行下去,若点P(21,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.3二.填空题11.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(x1,0),(x2,0),则x1+x2=.12.二次函数y=x2﹣3x+2的图象与x轴的交点坐标是.13.如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有.14.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是m.15.二次函数y=ax2+bx+1(a≠0)的图象与x轴有两个交点A,B,顶点为C.若△ABC恰好是等边三角形,则代数式b2﹣2(2a﹣5)=.三.解答题16.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标为P(h,k),h≠0.(1)若该函数图象过点(2,1),(5,7),h=3.①求该函数解析式;②t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,则t的值为;(2)若点P在函数y=x2﹣3x+c的图象上,且≤a≤2,求h的最大值.17.已知二次函数的解析式是y=x2﹣2x﹣3.(1)把它变形为y=a(x﹣h)2+k的形式:;(2)它的顶点坐标是;当x时,y随x的增大而减小.(3)在坐标系中利用描点法画出此抛物线;x……y……(4)结合图象回答:当﹣2<x<2时,函数值y的取值范围是.18.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价是多少元?(2)若该型号自行车的进价不变,按标价出售,该店平均每月可售出60辆;若每辆自行车每降价50元,每月可多售出10辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?19.阅读以下材料:对于三个数a、b、c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}==;min{﹣1,2,3}=﹣1,…解决下列问题:(1)填空:如果min{2,2x+2,4﹣2x}=2,则x的取值范围为;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论:如果M{a,b,c}=min{a,b,c},那么(填a、b、c的大小关系),证明你发现的结论.③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,+2x﹣y},则x+y(3)在同一直角坐标系中作出函数y=x+1,y=(x﹣1)2,y=2﹣x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x﹣1)2,2﹣x}的最大值为.20.在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.参考答案一.选择题1.解:A、y=x是正比例函数,故本选项不符合题意;B、y=2x2﹣1是二次函数,故本选项符合题意;C、y=不是二次函数,故本选项不符合题意;D、y=x2++1不是二次函数,故本选项不符合题意.故选:B.2.解:∵二次函数y=﹣2(x+1)2+5,可得函数开口向下,∴函数有最大值,∴当x=﹣1时,函数有最大值5,故选:D.3.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.4.解:∵当x=2.5时,y=a+b+c>0,∴25a+10b+4c>0,∵﹣=1,∴b=﹣2a,∴25a﹣20a+4c>0,即5a+4c>0,∴M>0,∵当x=1时,y=a+b+c>0,∴N>0,故选:A.5.解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,当x=时,y<0,即a+b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C.6.解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.7.解:①当a>0时,二次函数y=ax2﹣a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y=ax ﹣a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y=ax2﹣a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.8.解:①当y=0,ax2﹣(2a﹣1)x+a﹣1=0,解得x1=1,x2=,则二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故①正确,符合题意;②由题意得:ax2﹣(2a﹣1)x+a﹣1=x﹣1,化简得:x2﹣2x+1=0,△=22﹣4=0,故抛物线图象与直线y=x﹣1有且只有一个公共点,故②正确,符合题意;③该抛物线对称轴为x=1﹣,顶点的纵坐标为y=,则y=(1﹣)﹣,即无论a取何值,抛物线的顶点始终在直线y=x﹣上,所以③正确,符合题意;④由①知,二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故无论a取何值,函数图象都经过同一个点(1,0),故④正确,符合题意.故选:D.9.解:y=ax2﹣2ax+b(a>0),对称轴是直线x=﹣=1,即二次函数的开口向上,对称轴是直线x=1,即在对称轴的右侧y随x的增大而增大,A点关于直线x=1的对称点是D(3,y1),∵2<3<4,∴y3>y1>y2,故选:A.10.解:∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4,∴OA1=A1A2=A2A3=A3A4=4,∵点P(21,m)在这种连续变换的图象上,∴x=21和x=1时的函数值互为相反数,∴﹣m=﹣1×(1﹣4)=3,∴m=﹣3,故选:C.二.填空题(共5小题)11.解:由韦达定理得:x1+x2=﹣=2,故答案为2.12.解:当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,所以二次函数y=x2﹣3x+2x的图象与x轴的交点坐标是(1,0),(2,0).故答案为(1,0)、(2,0).13.解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a>0,﹣>0,c<0,∴b<0,∴ab<0,说法①正确;②二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,∴方程ax2+bx+c=0的根为x1=﹣1,x2=3,说法②正确;③∵当x=2时,函数y<0,∴4a+2b+c<0,说法③正确;④∵抛物线与x轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x=1,∵图象开口向上,∴当x>1时,y随x值的增大而增大,说法④正确;⑤∵抛物线与x轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y<0时,﹣1<x<3,说法⑤错误;⑥∵当x=﹣1时,y=0,∴a﹣b+c=0,∴抛物线的对称轴为直线x=1=﹣,∴b=﹣2a,∴3a+c=0,∵c<0,∴3a+2c<0,说法⑥正确.故答案为⑤.14.解:地面,墙面所在直线为x轴,y轴建立平面直角坐标系,设抛物线解析式:y=a(x﹣1)2+,把点A(0,5)代入抛物线解析式得:a=﹣,∴抛物线解析式:y=﹣(x﹣1)2+.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3(m).故答案为3.15.解:如图,过C作CE⊥AB于E.当△ABC等边三角形时,CE=AC•sin60°=AC=AB,令y=ax2+bx+1=0,解得x=,则AB==,而CE=﹣,即==×,∵b2﹣4a>0,故b2﹣4a=12.则b2﹣2(2a﹣5)=b2﹣4a+10=22,故答案是22.三.解答题(共5小题)16.解:(1)①设解析式为y=a(x﹣h)2+k,将(2,1),(5,7),h=3代入,得解得a=2,k=﹣1,所以,解析式为y=2(x﹣3)2﹣1,即y=2x2﹣12x+17,②把y=1代入y=2x2﹣12x+17求得x=2或4,把y=﹣1代入y=2x2﹣12x+17求得x=3,∵t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,∴t=1或t=4,故答案为t=1或t=4.(2)设解析式为y=a(x﹣h)2+k,由y=ax2+bx+c(a≠0)知图象过(0,c),∴c=ah2+k.∵点P在函数y=x2﹣3x+c的图象上,∴k=h2﹣3h+c,∴h2﹣3h+ah2=0,∵h≠0,∴,∵,h随a的增大而减小,∴当时,h的值最大,h的最大值为2.17.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故答案为y=(x﹣1)2﹣4;(2)抛物线的顶点坐标为(1,﹣4),当x<1时,y随x的增大而减小.故答案为(1,﹣4),<1;(3)列表:x…﹣10123…y…0﹣3﹣4﹣30…描点,连线画出函数图象如图:(3)当﹣2<x<2时,函数值y的取值范围是﹣4≤y<5,故答案为﹣4≤y<5.18.解:(1)设进价为x元,则由题意得:(1500×0.9﹣x)×8=(1500﹣100﹣x)×7,解得:x=1000,∴改型号自行车进价1000元;(2)设自行车降价x元,获利为y元,则:==,∴对称轴:x=100,∵,∴当x=100时,=32000,答:降价100元时每月利润最大,最大利润为32000元.19.解:(1)由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1,故答案为:0≤x≤1;(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴,解得:,∴x=1;②证明:由M{a,b,c}=min{a,b,c},可令=a,即b+c=2a;又∵,解之得:a+c≤2b,a+b≤2c;把b+c=2a代入a+c≤2b可得c≤b;把b+c=2a代入a+b≤2c可得b≤c;∴b=c;将b=c代入b+c=2a得c=a;∴a=b=c,故答案为:a=b=c;③据②可得,解之得y=﹣1,x=﹣3,∴x+y=﹣4,故答案为:=﹣4;(3)作出图象,由图可知min{x+1,(x﹣1)2,2﹣x}的最大值为1,故答案为:1.20.解:(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)当a>0时,∵A(0,﹣4)和B(2,0),∴对称轴x=﹣=﹣=1﹣≤0,∴0<a≤1;当a<0时,对称轴x=1﹣≥2,∴﹣1≤a<0;综上所述:﹣1≤a≤1且a≠0;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=1﹣=﹣1,∴a=;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p)=,∴a=1.。

人教版九年级数学上册(课件)22.1.4 二次函数y=ax +bx+c

人教版九年级数学上册(课件)22.1.4 二次函数y=ax  +bx+c

y

1 2
x2

4x

3
解: (1) a = 3 > 0Байду номын сангаас物线开口向上
x顶


2 23


1 3
y顶

22 43


1 3
顶点坐标为

1 3
,

1 3

对称轴x 1
3
当x


1 3
时,y最小值=-
1 3
(2) y x2 2x
解: a = -1 < 0抛物线开口向下
九年级数学上册·R
第22章 二次函数
22.1.4 二次函数y=ax +bx+c 的图象和性质
回顾:二次函数y=a(x-h)2+k的性质
y=a(x-h)2 +k(a≠0) 开口方向 顶点坐标 对称轴 增 减 性
极值
a>0
a<0
向上 (h ,k)
向下 (h ,k)
x=h
x=h
当x<h时,
当x<h时,
y随着x的增大而减小。 y随着x的增大而增大。
所以当 x b 时,二次函数 y ax2 bx c
2a
4ac b2
有最小(大)值
4a
练习
1.写出下列抛物线的开口方向、对称轴及顶点坐标.当x为何值时y的
值最小(大)?
(1) y 3x2 2x
(2) y x2 2x
(3)y 2x2 8x 8
(4)
我们知道,像 y ax h2 k 这样的函数,容易确定相应抛物线的

2020九年级数学上册 第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.3 二次函数y=a(x-h)2+k的图

22.1.3二次函数y =a(x -h)2+k 的图象与性质(2)——二次函数y =a(x-h)2的图象与性质学习目标:1.会画二次函数y =a (x-h )2的图象;2.掌握二次函数y =a (x-h )2的性质,并要会灵活应用; 一、复习:1.在同一直角坐标系内画出二次函数y = 12 x 2,y = 12 x 2+2,y =12 x 2-2的图象(草图),并回答:(1)三条抛物线的位置关系。

(2)分别说出它们的对称轴、开口方向和顶点坐标。

(3)说出它们所具有的公共性质。

2.(1)在同一直角坐标系中,二次函数y =ax 2+k 与y =ax 2的图象有什么关系? (2)二次函数y =ax 2+k 的图象开口方向、对称轴、 顶点坐标分别是什么?二、探索新知:1.二次函数y =2(x -1)2和y =2(x+1)2的图象与二次函数y =2x 2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?画出二次函数y =2(x -1)2和y =2(x+1)2与二次函数y =2x 2的图象,并加以观察x … -4 -3 -2 -1 0 1 2 3 4 … y =2x 2…… y =2(x -1)2 …… y =2(x+1)2……161284y 2x431-1 -2 -3 -4 0观察图像得:函数y =2(x -1)2和y =2(x+1)2的图象相同点是: ; 不同的是:函数y =2(x -1)2的顶点坐标是 ,对称轴是 ,有最 值是 ;函数y =2(x+1)2的顶点坐标是 ,对称轴是 ,有最 值是 。

把抛物线y =2x 2向 平移 个单位就得抛物线y =2(x -1)2;把抛物线y =2x 2向 平移 个单位就得抛物线y =2(x+1)2。

2.画出二次函数y =-12 (x +1)2,y=-12 (x -1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.先列表:x… -4 -3 -2 -1 0 1 2 3 4 … y =-12 (x +1)2… … y =-12 (x -1)2……描点并画图.(1)、观察图象,填表:函数开口方向顶点 对称轴 最值增减性(对称轴右侧) 平移y =-12 (x+1)2y =-12(x -1)2三、整理知识点y =ax 2y =ax 2+k y =a (x-h)2a>0a<0a>0a<0a>0a<0开口方向增减性(对称轴左侧)顶点坐标对称轴最值x= 时,y最值=平移对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.四、课堂训练1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.5.抛物线y= -3(x+2)2开口向,对称轴为,顶点坐标为 .6.抛物线y=3(x+0.5)2可以看成由抛物线向平移个单位得到的;7.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,再向上平移2个单位得,到的抛物线的表达式为____________________.8.抛物线y=3(x-3)2可由抛物线y=3x2沿轴向平移个单位得到,也可以由抛物线y=3(x-7)2沿轴向平移个单位得到。

人教版数学九年级上册《二次函数的图像和性质》综合练习(附答案)

22.1二次函数图像性质 综合练习题(附答案)1、函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 。

2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。

(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位。

3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个)。

4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式。

5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积。

6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6。

求:(1)求出此函数关系式。

(2)说明函数值y 随x 值的变化情况。

7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值。

2、()k h x a y +-=2的图象与性质 1、请写出一个以(2, 3)为顶点,且开口向上的二次函数: 。

2、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。

3、函数 y =12 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。

4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到。

5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y 。

(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x= 时,抛物线有最 值,是 。

人教版九年级数学上册作业课件 第二十二章 二次函数 阶段自测(三)


(2)由题意得 CD=y1-y2=-x2+4-(-15 x2-45 x-45 ),即 CD=-45 x2+45 x+254 =-45 (x-12 )2+5,当 x=12 时,CD 最大=5,∴S△BCD=12 ×5×(3-12 )=245
18.(14 分)(2020·杭州)在平面直角坐标系中,设二次函数 y1=x2+bx+ a,y2=ax2+bx+1(a,b 是实数,a≠0).
A.y=x
B.y=x+1
C.y=x+12
D.y=x+2
7.(2020·德阳)已知不等式 ax+b>0 的解集为 x<2,则下列结论正确的 个数是( C )
(1)2a+b=0;(2)当 c>a 时,函数 y=ax2+bx+c 的图象与 x 轴没有公共 点;(3)当 c>0 时,抛物线 y=ax2+bx+c 的顶点在直线 y=ax+b 的上方; (4)如果 b<3 且 2a-mb-m=0,则 m 的取值范围是-34 <m<0.
解:(1)由题意可得-b2 =3,解得 b=-6,∵函数 y1 的图象经过(a,-6), ∴a2-6a+a=-6,解得 a=2 或 3,∴函数 y1=x2-6x+2 或 y1=x2-6x +3
(2)∵函数 y1 的图象经过点(r,0),其中 r≠0,∴r2+br+a=0,∴1+br +
a r2
=0,即
三、解答题(共44分) 15.(8分)(2020·临沂)已知抛物线y=ax2-2ax-3+2a2(a≠0). (1)求这条抛物线的对称轴; (2)若该抛物线的顶点在x轴上,求其解析式; (3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范 围.
解:(1)∵抛物线 y=aቤተ መጻሕፍቲ ባይዱ2-2ax-3+2a2=a(x-1)2+2a2-a-3.∴抛物线的 对称轴为直线 x=1

解析卷-人教版九年级数学上册第二十二章二次函数章节测试试卷(含答案详解)

人教版九年级数学上册第二十二章二次函数章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线y=ax 2+bx+3(a≠0)过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离记为d ,满足0<d≤1,则实数m 的取值范围是( )A .m≤2或m≥3B .m≤3或m≥4C .2<m <3D .3<m <42、已知抛物线y =ax 2+bx +c (a <0)过A (-3,0),B (1,0),C (-5,y 1),D (5,y 2)四点,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定3、已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;②24b ac ->0;③40a b +=;④不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是( )A .1B .2C .3D .44、二次函数y=x 2+px+q ,当0≤x≤1时,此函数最大值与最小值的差( )A .与p 、q 的值都有关B .与p 无关,但与q 有关C .与p 、q 的值都无关D .与p 有关,但与q 无关5、如图,抛物线2(0)y ax bx c a =++≠交x 轴于点A ,B ,交y 轴于点C .若点A 坐标为(4,0)-,对称轴为直线1x =-,则下列结论错误的是( )A .二次函数的最大值为a b c -+B .0a b c ++>C .240b ac ->D .20a b +=6、若二次函数y=ax2+bx+c 的x 与y 的部分对应值如下表:则下列说法错误的是( )A .二次函数图像与x 轴交点有两个B .x≥2时y 随x 的增大而增大C .二次函数图像与x 轴交点横坐标一个在-1~0之间,另一个在2~3之间D .对称轴为直线x=1.57、为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y 轴对称,//AE x 轴,4AB cm =,最低点 C 在x 轴上,高 1CH cm =,2BD cm =,则右轮廓DFE 所在抛物线的解析式为( )A .21(3)4y x =+ B .21(3)4y x =- C .21(3)4y x =-+ D .21(3)4y x =-- 8、关于二次函数228=+-y x x ,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(2,0)-和(4,0)D .y 的最小值为-99、已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤<10、当0≤x ≤3,函数y =﹣x 2+4x +5的最大值与最小值分别是( )A .9,5B .8,5C .9,8D .8,4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点O 是正方形ABCD 的对称中心,射线OM ,ON 分别交正方形的边AD ,CD 于E ,F 两点,连接EF ,已知2AD =,90EOF ∠=︒.(1)以点E ,O ,F ,D 为顶点的图形的面积为_________;(2)线段EF 的最小值是_________.2、下列关于二次函数22()1y x m m =--++(m 为常数)的结论,①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图像上,其中所有正确的结论序号是__________.3、将二次函数y =x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.4、若直线y=m (m 为常数)与函数y=()()2282x x x x⎧≤⎪⎨>⎪⎩的图象有三个不同的交点,则常数m 的取值范围________5、如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加______m.三、解答题(5小题,每小题10分,共计50分)1、某工艺厂设计了一款成本为每件30元的产品,并投放市场进行试销,经过调查,发现每天的销售数量y 件与销售单价x (元)存在一次函数关系3180.y x =-+(1)要使每天销售利润达到600元,销售单价应定为每件多少元?(2)销售单价定为多少时,该厂每天获取的利润最大?最大利润是多少?2、已知抛物线y =ax 2+3ax +c (a ≠0)与y 轴交于点A①当a =1,c =-1,求该抛物线与x 轴交点坐标;②点P (m ,n )在二次函数抛物线y =ax 2+3ax +c 的图象上,且n -c >0,试求m 的取值范围;(2)若抛物线恒在x 轴下方,且符合条件的整数a 只有三个,求实数c 的最小值;(3)若点A 的坐标是(0,1),当-2c <x <c 时,抛物线与x 轴只有一个公共点,求a 的取值范围. 3、2020年春节期间,新型冠状病毒肆虐,突如其来的疫情让大多数人不能外出,网络销售成为这个时期最重要的一种销售方式.某乡镇贸易公司因此开设了一家网店,销售当地某种农产品.已知该农产品成本为每千克10元.调查发现,每天销售量y (kg )与销售单价x (元)满足的函数关系式为640(1014)20920(1430)x y x x <≤⎧=⎨-+<≤⎩(其中1030x <) (1)分别求出销售单价为12元、20元时每天的销售利润.(2)当销售单价为多少元时,每天的销售利润最大?最大利润是多少?4、某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y (个)与销售单价x (元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1)求遮阳伞每天的销出量y (个)与销售单价x (元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w (元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?5、若二次函数2y x bx c =++图像经过(1,0)A -,(3,4)B -两点,求b 、c 的值.-参考答案-一、单选题1、B【解析】把A (4,4)代入抛物线y=ax 2+bx+3得4a+b=14,根据对称轴x=-2b a ,B (2,m ),且点B 到抛物线对称轴的距离记为d ,满足0<d≤1,所以0<|2-(-2b a )|≤1,解得a≥18或a≤-17,把B (2,m )代入y=ax 2+bx+3得:4a+2b+3=m ,得到a=78-4m ,所以78-4m ≥18或78-4m ≤-18,即可解答. 【详解】把A(4,4)代入抛物线y=ax 2+bx+3得:16a+4b+3=4,∴16a+4b=1, ∴4a+b=14, ∵对称轴x=−2b a,B(2,m),且点B 到抛物线对称轴的距离记为d ,满足0<d≤1, ∴0<|2−(−2b a)|≤1 ∴0<|42a b a|≤1, ∴|18a|≤1, ∴a≥18或a≤−18, 把B(2,m)代入y=ax 2+bx+3得:4a+2b+3=m ,2(2a+b)+3=m , 2(2a+14−4a)+3=m , 72−4a=m ,a=78-4m,∴78-4m≥18或78-4m≤-18,∴m≤3或m≥4.故答案选:B.【考点】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质.2、A【解析】【分析】根据二次函数图象的对称轴位置以及开口方向,可得C(-5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,进而即可得到答案.【详解】∵抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),∴抛物线的对称轴是:直线x=-1,且开口向下,∵C(-5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,∴y1>y2,故选A.【考点】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键.3、A【解析】【分析】根据抛物线的开口方向、于x 轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.【详解】解:∵抛物线的开口向上,∴a >0,故①正确;∵抛物线与x 轴没有交点∴24b ac -<0,故②错误∵由抛物线可知图象过(1,1),且过点(3,3)1933a b c a b c ++=⎧⎨++=⎩ ∴8a+2b=2∴4a +b =1,故③错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x 交于这两点∴()21ax b x c +-+<0可化为2ax bx c x ++<,根据图象,解得:1<x <3故④错误.故选A .【考点】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键.4、D【解析】【分析】分别求出函数解析式的最小值、当0≤x ≤1时端点值即:当x =0和x =1时的函数值.由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p 有关,但与q 无关【详解】解:依题意得:当0x =时,端点值1y q =,当1x =时,端点值21y p q =++, 当2p x =-时,函数最小值234p y q =-+, 由二次函数的最值性质可知,当0≤x ≤1时,此函数最大值和最小值是1y q =、21y p q =++、234p y q =-+其中的两个, 所以最大值与最小值的差可能是1p +或 24p 或214p p ++, 故其差只含p 不含q ,故与p 有关,但与q 无关故选:D .【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键.5、D【解析】【分析】根据抛物线的开口方向、对称轴、顶点坐标、与x 轴、y 轴的交点以及过特殊点时相应的系数a 、b 、c 满足的关系进行综合判断即可.【详解】解:抛物线y =ax 2+bx +c 过点A (−4,0),对称轴为直线x =−1,因此有:x=−1=−b2a,即2a−b=0,因此选项D符合题意;当x=−1时,y=a−b+c的值最大,选项A不符合题意;由抛物线的对称性可知,抛物线与x轴的另一个交点为(2,0),当x=1时,y=a+b+c>0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b2−4ac>0,故选项C不符合题意;故选:D.【考点】本题考查二次函数的图象和性质,掌握抛物线的位置与系数a、b、c的关系是正确判断的前提.6、D【解析】【分析】根据x=1时的函数值最小判断出抛物线的开口方向; 根据函数的对称性可知当x=2时的函数值与x=0时的函数值相同, 并求出对称轴直线方程可得答案.【详解】A、由图表数据可知x=1时, y的值最小, 所以抛物线开口向上. 所以该抛物线与x轴有两个交点.故本选项正确;B、根据图表知, 当x≥2时y随x的增大而增大.故本选项正确;C、抛物线的开口方向向上, 抛物线与y轴的交点坐标是(0,5-4),对称轴是x=1,所以二次函数图象与x轴交点横坐标一个在-1~0之间, 另一个在2~3之间. 故本选项正确;D、因为x=0和x=2 时的函数值相等,则抛物线的对称轴为直线x=1. 故本选项错误; 故选:D.【考点】本题主要考查二次函数性质与二次函数的最值.7、B【解析】【分析】利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(-3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.【详解】∵高CH=1cm,BD=2cm,且B、D关于y轴对称,∴D点坐标为(1,1),∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为(-3,0),∴右边抛物线的顶点F的坐标为(3,0),设右边抛物线的解析式为y=a(x-3)2,把D(1,1)代入得1=a×(1-3)2,解得a=14,∴右边抛物线的解析式为y=14(x-3)2,故选:B.【考点】本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.8、D【解析】【分析】先把抛物线的解析式化成顶点式,再根据二次函数的性质逐个判断即可.【详解】∵2228=(1)9y x x x =+-+-∴抛物线的对称轴为直线:x=-1,在y 轴的左侧,故选项A 错误;令x=0,则y=-8,所以图象与y 轴的交点坐标为(0,8)-,故选项B 错误;令y=0,则228=0x x +-,解得x 1=2,x 2=-4,图象与x 轴的交点坐标为(2,0)和(4,0)-,故选项C 错误; ∵2228=(1)9y x x x =+-+-,a=1>0,所以函数有最小值-9,故选项D 正确.故选:D .【考点】本题考查了二次函数的图象、二次函数的性质和二次函数的最值,能熟记二次函数的性质是解此题的关键.9、D【解析】【分析】由抛物线与x 轴没有公共点,可得∆<0,求得2a <,求出抛物线的对称轴为直线x a =,抛物线开口向上,再结合已知当1x <-时,y 随x 的增大而减小,可得1a ≥-,据此即可求得答案.【详解】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+,抛物线与x 轴没有公共点,22(2)4(36)0a a a ∴∆=---+<,解得2a <,抛物线的对称轴为直线 22a x a -=-=,抛物线开口向上,而当1x<-时,y随x的增大而减小,∴≥-,a1∴实数a的取值范围是12-≤<,a故选D.【考点】本题考查了二次函数图象与x轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键.10、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答.【详解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴当x=2时,最大值是9,∵0≤x≤3,∴x=0时,最小值是5,故选:A.【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键.二、填空题1、 1【解析】【分析】(1)连接AO ,DO ,证明()AEO DFO ASA ≌△△,可得EOFD S 四边形ADO S △=,求出Δ1414ADO S =⨯=即可求解;(2)设AE x =,则2ED x =-,由勾股定理可得()22212EF x =-+,即可求EF 的最小值.【详解】解:(1)连接AO ,DO ,∵90EOF ∠=︒,∴90EOD FOD ∠+∠=︒,∵四边形ABCD 是正方形,O 是中心,∴90AOD ∠=︒,AO DO =,45EAO FDO ∠=∠=︒,∴90EOD AOE ∠+∠=︒,∴FOD AOE ∠=∠,∴()AEO DFO ASA ≌△△,∴EOFD S 四边形ADO S △=,∵2AD =, ∴Δ1414ADO S =⨯=, ∴ 1.EOFD S 四边形故答案为:1;(2)设AE x =,则2ED x =-,AEO DFO ≌△△,,DF AE x在Rt EDF 中,()()222222244212EF x x x x x =+-=-+=-+,∴当1x =时,EF.【考点】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键.2、①②④【解析】【分析】①两个二次函数可以通过平移得到,由此即可得两个函数的图象形状相同;②求出当0x =时,y 的值即可得;③根据二次函数的增减性即可得;④先求出二次函数22()1y x m m =--++的顶点坐标,再代入函数21y x =+进行验证即可得.【详解】当0m >时,将二次函数2y x =-的图象先向右平移m 个单位长度,再向上平移21m +个单位长度即可得到二次函数22()1y x m m =--++的图象;当0m <时,将二次函数2y x =-的图象先向左平移m -个单位长度,再向上平移21m +个单位长度即可得到二次函数22()1y x m m =--++的图象∴该函数的图象与函数2y x =-的图象形状相同,结论①正确对于22()1y x m m =--++当0x =时,22(0)11y m m =--++=即该函数的图象一定经过点(0,1),结论②正确由二次函数的性质可知,当x m ≤时,y 随x 的增大而增大;当x m >时,y 随x 的增大而减小 则结论③错误22()1y x m m =--++的顶点坐标为2(),1m m +对于二次函数21y x =+当x m =时,21y m =+即该函数的图象的顶点2(),1m m +在函数21y x =+的图象上,结论④正确综上,所有正确的结论序号是①②④故答案为:①②④.【考点】本题考查了二次函数的图象与性质等知识点,熟练掌握二次函数的图象与性质是解题关键.3、y =x 2+2【解析】【详解】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4、0<m<4【解析】【分析】首先作出分段函数y=()()2282x xxx⎧≤⎪⎨>⎪⎩的图象,根据函数的图象即可确定m的取值范围.【详解】解:分段函数y=()()2282x xxx⎧≤⎪⎨>⎪⎩的图象如图:故要使直线y=m(m为常数)与函数y=()()2282x xxx⎧≤⎪⎨>⎪⎩的图象恒有三个不同的交点,常数m的取值范围为<m <4.故答案为0<m <4.【考点】本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.5、4【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0-代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离, 可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:x =±所以水面宽度增加到 4.故答案是: 4.【考点】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.三、解答题1、(1)要使每天销售利润达到600元,销售单价应定为每件40元或50元;(2)销售单价定为每件45元时,该厂每天获取的利润最大,最大利润是675元【解析】【分析】(1)根据利润=(售价-进价)⨯销量,列方程即可解答.(2)设每天的销售利润为w 元,根据题意可以列出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可解答.【详解】(1)由题意得()()301803600x x --=解得:40x =或50x =答:要使每天销售利润达到600元,销售单价应定为每件40元或50元.(2)设每天的销售利润为w 元,由题意得(30)(1803)w x x =--232705400x x =-+-23(45)675x =--+当45x =时,即销售单价为45元时,w 取最大值675答:销售单价定为每件45元时,该厂每天获取的利润最大,最大利润是675元.【考点】本题考查了二次函数的应用,解题关键是明确题意,结合二次函数的性质解答.2、 (1)①,0),0)②m >0或m <-3 (2)-9 (3)49a =或12a ≥或14a -≤ 【解析】【分析】(1)当1a =,1c =-时,231y x x =+-,令0y =时,求解方程的解即可;②将P (m ,n )代入y =ax 2+3ax +c 中,要使n -c >0,即可得230am am c c ++->,解出不等式即可;(2)根据抛物线恒在x 轴下方,可得20Δ940a a ac <⎧⎨=-<⎩,求出a 的取值范围,根据符合条件的整数a 只有三个,判断并求出c 的取值范围,从而求出c 的最小值;(3)根据点A 的坐标得到抛物线解析式为231y ax ax =++,然后根据-2c <x <c 时,抛物线与x 轴只有一个公共点,分三种情况:①当0a >时,②当0a <时,③当2940a a ∆=-=时,进行分类讨论求出符合题意的a 的取值范围.(1)解:①当1a =,1c =-时,231y x x =+-,当0y =时,2310x x +-=,解得:1x =2x =∴抛物线与x 轴的交点坐标,0),0); ②0n c ->,0a >,230am am c c ∴++->,()30am m ∴+>,解得:0m >或3m <-;(2)解:∵抛物线恒在x 轴下方,20Δ940a a ac <⎧∴⎨=-<⎩,解得:409c a <<, ∵符合条件的整数a 只有三个,4439c ∴-≤<-, 解得:2794c -≤<-, c ∴的最小值为9-,(3)解:∵点A 的坐标是(0,1),1c ∴=,231y ax ax ∴=++,又∵当21x -<<时,抛物线与x 轴只有一个公共点,当2x =-时,46121y a a a =-+=-+,当1x =时,3141y a a a =++=+,①当0a >时,0210410a a a >⎧⎪∴-+≤⎨⎪+>⎩,解得:12a ≥, 或者0210410a a a >⎧⎪-+>⎨⎪+≤⎩,无解 ②当0a <时,0210410a a a <⎧⎪∴-+≤⎨⎪+>⎩,无解, 或者0210410a a a <⎧⎪-+>⎨⎪+≤⎩,解得:14a ≤, ③当2940a a ∆=-=时,解得:49a =, 此时,2244211933y x x x ⎛⎫=++=+ ⎪⎝⎭, 令0y =时,则22103x ⎛⎫+= ⎪⎝⎭,解得:1232x x ==-, 3212-<-<, ∴符合题意,综合上述可知:a 的取值范围为:49a =或12a ≥或14a -≤. 【考点】 此题主要考查的是函数图象与x 轴的交点问题,在x 的取值范围内,根据交点个数进行分类讨论,从而求出a 的取值范围.3、(1)销售单价为12元时,每天的利润为1280元;销售单价为20元时,每天的利润为5200元;(2)当销售单价x 为28元时,每天的销售利润最大,最大利润是6480元【解析】【分析】(1)设每天的利润为W 元,根据题意:当1014x <时,640y =,可得当12x =时的销售利润;当1430x <时,20920y x =-+,根据每件的利润乘以数量即可得出;(2)根据题意列出在两个范围内的函数解析式,然后根据一次函数及二次函数的性质,求出最大值进行比较即可得.【详解】(1)设每天的利润为W 元,当1014x <时,640y =,∴当12x =时,(1210)6401280W =-⨯=(元),当1430x <时,20920y x =-+,∴当20x 时,=(2010)(20920)5200W x -⨯-+=(元),∴销售单价为12元时,每天的利润为1280元;销售单价为20元时,每天的利润为5200元;(2)设每天的销售利润为W 元,当1014x <时,640(10)6406400W x x =⨯-=-,6400k =>,∴W 随着x 的増大而増大,当14x =时,46402560W =⨯=(元),当1430x <时,(10)(20920)W x x =--+,220(28)6480x =--+,200a =-<,开口向下,∴W 有最大值,1430x <,∴当28x =时,6480W =最大(元),64802560>,∴当28x =时,6480W =最大(元),答:当销售单价x 为28元时,每天的销售利润最大,最大利润是6480元.【考点】题目主要考查一次函数与二次函数的应用,理解题意,列出相应的函数解析式是解题关键.4、 (1)y =﹣10x +540;(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【解析】【分析】(1)设函数关系式为y =kx +b ,由销售单价为28元时,每天的销售量为260个;销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利润=每个遮阳伞的利润×销售量,列出函数关系式,再由二次函数的性质求解即可;(1)解:设一次函数关系式为y =kx +b ,由题意可得:2602824030k b k b=+⎧⎨=+⎩, 解得:10540k b =-⎧⎨=⎩, ∴函数关系式为y =﹣10x +540;(2)解:由题意可得:w =(x ﹣20)y =(x ﹣20)(﹣10x +540)=﹣10(x ﹣37)2+2890,∵﹣10<0,二次函数开口向下,∴当x =37时,w 有最大值为2890,答:当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元.【考点】本题考查了一次函数和二次函数的实际应用,待定系数法求解析式,掌握二次函数的性质是解题的关键.5、b=-3,c=-4.【解析】【分析】将()1,0A -,()3,4B -代入2y x bx c =++中,求解二元一次方程组即可解题.【详解】解:将()1,0A -,()3,4B -代入2y x bx c =++中得, 10493b c b c-+=⎧⎨-=++⎩ 解得:34b c =-⎧⎨=-⎩∴b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
1.函数y =x 2-4的图象与y 轴的交点坐标是( )
A.(2,0)
B.(-2,0)
C.(0,4)
D.(0,-4)
2.在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( )
A.3
B.2
C.1
D.0
3.抛物线经过第一、三、四象限,则抛物线的顶点必在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4. 二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( )
A.3<k
B.03≠<k k 且
C.3≤k
D.03≠≤k k 且
5.已知反比例函数y =k x 的图象在每个象限内y
随x 的增大而增大,则二次函数y =2kx 2-x +k 2
的图象大致为如图2中的( )
6. 二次函数y =ax 2+bx +c 的图象如图3,则点(b ,c a
)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
7.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 .
8.若点A (2,m )在抛物线y =x 2上,则点A 关于y 轴对称点的坐标是 .
9.已知二次函数y =ax 2+bx +c (a ≠0)与一次函数y =kx +m (k ≠0)的图象相交于点A (-2,4),B (8,
2),如图4所示,能使y 1>y 2成立的x 取值范围是 .
图2 图3 图1
10.已知抛物线与x轴交于点(1,0)和(2,0)且过点 (3,4).求抛物线的解析式.
11.已知二次函数y=x2-6x+8.求:
(1)抛物线与x轴和y轴相交的交点坐标;
(2)抛物线的顶点坐标;
(3)画出此抛物线图象,利用图象回答下列问题:
①方程x2-6x+8=0的解是什么?
②x取什么值时,函数值大于0?
③x取什么值时,函数值小于0?
12.当x=4时,函数y=ax2+bx+c的最小值为-8,抛物线过点(6,0).求:
(1)顶点坐标和对称轴;
(2)函数的表达式;
(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.
13.如图,宜昌西陵长江大桥属于抛物线形悬索桥,桥面(视为水平的)与主悬钢索之间用垂直钢拉索连接.桥两端主塔塔顶的海拔高度均是187.5米,桥的单孔跨度(即两主塔之间的距离)900米,这里水面的海拔高度是74米.若过主塔塔顶的主悬钢索(视为抛物线)最低点离桥面(视为直线)的高度为0.5米,桥面离水面的高度为19米.请你计算距离桥两端主塔100米处垂直钢拉索的长(结果精确到0.1米).。

相关文档
最新文档