广东省东莞市大岭山中学七年级数学上册 1.2 有理数教案 (新版)新人教版

合集下载

1.2有理数人教版数学七年级上第一章第一课时教案

1.2有理数人教版数学七年级上第一章第一课时教案

1.2有理数人教版数学七年级上第一章第一课时教案1.2 有理数-第一课时(参考课时:2课时)1 教学目标1.1 知识与技能:①使学生理解整数、分数、有理数的概念。

并会判断一个给定的数是整数或分数或有理数。

②会初步对有理数进行分类,培养学生观察、比较和概括的思维能力。

③使学生知道数轴上有原点、正方向和单位长度,会画数轴,并用数轴上的点表示整数或分数。

④能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示。

1.2 过程与方法:①采用启发式教学,设法引导学生去归纳、整理。

②引导同学动笔画,学生自主探索去观察、比较、交流1.3 情感态度与价值观:①在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。

②向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。

2 教学重点/难点/易考点2.1 教学重点①整数、分数、有理数的概念。

②数轴的三要素和有理数在数轴上的表示方法教学。

2.2 教学难点①给一个数能正确说出它属于的集合。

②有理数与数轴上点的对应关系。

3 专家建议“数学教学是数学活动的教学”。

我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。

也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。

这一节课,从数的分类,到数轴的介绍,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的。

4 教学方法情境引入——引导同学进行数的分类——有理数概念介绍——有理数的分类——集合概念初步——数轴介绍及画法——数轴与有理数对应关系——课程小结——巩固练习5 教学用具6 教学过程6.1 情境引入2004年雅典奥运会中国队战绩辉煌。

在男子110米栏决赛中,中国选手刘翔以12.91秒的成绩夺得金牌,这个成绩打破了12.96的奥运会纪录,平了世界纪录,实现了中国男子田径金牌0的突破。

人教版七年级数学上册1.2有理数优秀教学案例

人教版七年级数学上册1.2有理数优秀教学案例
(三)情感态度与价值观
1. 培养学生对数学学科的兴趣,使学生感受到数学的乐趣,从而激发学生学习数学的内在动力。
2. 培养学生积极思考、勇于探索的精神,使学生在面对数学问题时,能够积极寻求解决办法,增强学生的自信心。
3. 通过对有理数的学习,使学生认识到数学在生活中的重要性,培养学生的数学应用意识,提高学生的数学素养。
5. 教学策略:本节课运用了情景创设、问题导向、小组合作和反思与评价等多种教学策略,使学生在轻松愉快的氛围中学习有理数,提高了学生的学习效果和学科素养。
2. 有理数的性质:讲解有理数的加法、减法、乘法、除法运算规则,以及有理数的相反数、倒数等概念。
3. 举例说明:通过具体例子,让学生理解和掌握有理数的性质和运算规则。
(三)学生小组讨论
1. 设计具有探究性和实践性的讨论话题,如“有理数的加法运算规则是什么?请用实例进行说明。”
2. 引导学生积极开展小组讨论,鼓励学生发表自己的观点,培养学生的合作能力和口头表达能力。
二、教学目标
(一)知识与技能
1. 让学生掌握有理数的概念,理解有理数的分类,包括整数、分数、正数、负数、正有理数、负有理数、零等,并能正确地进行分类。
2. 让学生掌握有理数的性质,包括有理数的加法、减法、乘法、除法运算规则,以及有理数的相反数、倒数等概念。
3. 培养学生运用有理数解决实际问题的能力,使学生能够运用有理数的知识解决生活中的数学问题。
2. 问题导向:本节课以问题驱动的教学策略,引导学生发现并提出问题,激发学生的问题意识,培养学生的分析问题和解决问题的能力。
3. 小组合作:本节课通过小组合作的方式,让学生在讨论和交流中共同探讨有理数的概念和运算规则,培养了学生的团队合作能力和自主学习能力。

广东省东莞市大岭山中学七年级数学上册 第一章 有理数复习教案 (新版)新人教版

广东省东莞市大岭山中学七年级数学上册 第一章 有理数复习教案 (新版)新人教版

有理数 教学目的和要求:1.复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识。

2.培养学生综合运用知识解决问题的能力及渗透数形结合的思想。

教学重点和难点:重点:有理数概念和有理数运算。

难点:负数和有理数法则的理解。

教学工具和方法:工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。

教学过程:一、复习引入:阅读教材中的“全章小结”,给关键性词语打上横线。

二、讲授新课:1.利用数轴患讲有理数有关概念本章从引入负数开始,与小学学习的数一起纳入有理数范畴,我们学习的数的范围在不断扩大。

从数轴上看,小学学习的数都在原点右边(含原点),引入负数以后,数轴的左边就有了实际意义,原点所表示的0也不再是最小的数了,数轴上的点所表示的数从左向右越来越大,A 点所表示的数小于B 点所表示的数,而D 点所表示的数在四个数中最大。

我们用两个大写字母表示这两点间的距离,则AO >BO >CO ,这个距离就是我们说的绝对值。

由AO >BO >CO 可知,负数的绝对值越大其数值反而越小。

由上图中还可以知道CO=DO ,即C 、D 两点到原点距离相等,即C 、D 所表示的数的绝对值相等,又它们在原点两侧,那么这两数互为相反数。

从数轴上看,互为相反数就是在原点两侧且到原点等距的两点所表示的数。

利用数轴,我们可以很方便地解决许多题目。

2.例题:例1:(1)求出大于―5而小于5的所有整数;(2)求出适合3<x <6的所有整数;(3)试求方程x =5,x 2=5的解; (4)试求x <3的解解:(1)大于―5而小于5的所有整数,在数轴上表示±5之间的整数点,如图,显然有±4,±3,±2,±1,0。

(2)3<x <6在数轴上表示到原点的距离大于3个单位而小于6个单位的整数点。

在原点左侧,到原点距离大于3个单位而小于6个单位的整数点有―5,―4;在原点右侧距离原点大于3个单位而小于6个单位的整数点有4,5。

人教版数学七年级上册1.2《有理数》教学设计

人教版数学七年级上册1.2《有理数》教学设计

人教版数学七年级上册1.2《有理数》教学设计一. 教材分析人教版数学七年级上册1.2《有理数》是学生在初中阶段接触数学的基础概念之一。

本节内容主要介绍有理数的定义、分类、运算及其性质。

教材通过丰富的实例和生动的语言,让学生感受有理数在实际生活中的应用,培养学生对数学的兴趣和好奇心。

教材内容由浅入深,循序渐进,既注重知识传授,又注重能力培养,为学生进一步学习更高级的数学知识打下坚实基础。

二. 学情分析七年级的学生已具备一定的数学基础,但对有理数的概念、性质和运算可能还比较陌生。

因此,在教学过程中,教师要关注学生的认知水平,针对学生的特点进行引导和讲解。

同时,学生在这个年龄段具有较强的求知欲和好奇心,教师应充分利用这一点,通过丰富的教学手段激发学生的学习兴趣。

三. 教学目标1.让学生了解有理数的定义、分类和性质,理解有理数在实际生活中的应用。

2.培养学生掌握有理数的运算方法,提高学生的数学运算能力。

3.引导学生运用数形结合的思想方法,感受数学的趣味性和实用性。

4.培养学生的团队合作精神,提高学生的口头表达和交流能力。

四. 教学重难点1.有理数的定义和分类。

2.有理数的运算方法。

3.有理数的性质。

五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与实际的联系。

2.启发式教学法:引导学生主动思考、探究有理数的性质和运算方法。

3.小组合作学习:让学生在团队合作中交流想法,提高口头表达能力。

4.数形结合:利用图形辅助讲解,让学生更加直观地理解有理数的概念和性质。

六. 教学准备1.教学课件:制作富有生动形象的课件,辅助讲解和展示。

2.实例素材:准备一些与生活实际相关的问题,用于引入和巩固知识点。

3.练习题库:挑选一些有针对性的练习题,用于课堂练习和课后作业。

4.图形工具:准备一些图形工具,如数轴、坐标轴等,用于数形结合的讲解。

七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,激发学生的学习兴趣。

新人教版七年级数学上册 1.2.1《有理数》教学设计

新人教版七年级数学上册 1.2.1《有理数》教学设计

新人教版七年级数学上册 1.2.1《有理数》教学设计一. 教材分析新人教版七年级数学上册1.2.1《有理数》是学生在学习了整数和分数的基础上,进一步学习有理数的知识。

本节课主要让学生了解有理数的定义,掌握有理数的分类,以及了解有理数的大小比较。

教材通过引入生活中的实例,使学生感受有理数在实际生活中的应用,提高学生的学习兴趣。

二. 学情分析七年级的学生已经掌握了整数和分数的知识,具备了一定的数学基础。

但部分学生对于抽象的概念理解起来可能存在困难,因此需要教师在教学过程中耐心引导,帮助学生建立直观的认识。

此外,学生对于数学在实际生活中的应用有一定的兴趣,教师可以抓住这一点,激发学生的学习积极性。

三. 教学目标1.理解有理数的定义,掌握有理数的分类。

2.学会有理数的大小比较方法。

3.能够运用有理数解决实际生活中的问题。

4.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.有理数的定义和分类。

2.有理数的大小比较方法。

五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。

2.小组讨论法:引导学生分组讨论,共同探讨有理数的分类和大小比较方法。

3.实践操作法:让学生通过实际操作,加深对有理数知识的理解。

4.激励评价法:及时给予学生鼓励和评价,提高学生的学习积极性。

六. 教学准备1.教学课件:制作课件,展示有理数的定义、分类和大小比较方法。

2.教学素材:准备一些实际生活中的例子,用于引导学生学习有理数。

3.学具:准备一些卡片,上面写有不同类型的有理数,用于学生分组讨论。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用哪种数学知识来表示。

通过讨论,让学生感受有理数在实际生活中的应用,激发学生的学习兴趣。

2.呈现(10分钟)介绍有理数的定义,让学生了解有理数的概念。

接着,展示有理数的分类,包括整数、分数和零。

通过课件和实物展示,让学生对有理数有更直观的认识。

七年级数学上册 第一章 有理数 1.2 有理数 1.2.1 有理数教案(新版)新人教版-(新版)新人

七年级数学上册 第一章 有理数 1.2 有理数 1.2.1 有理数教案(新版)新人教版-(新版)新人

1.2.1 有理数一、教学目标(一) 学习目标1.理解并掌握有理数的概念,能识别生活中的有理数;2.会对有理数按一定标准进行分类;3.初步了解“集合”的含义.(二)学习重点有理数的概念及识别(三)学习难点会对有理数按一定标准进行分类二、教学设计(一)课前设计1.预习任务(1)所有的正整数组合在一起叫正整数集合,所有的负整数组合在一起叫负整数集合. (2)正整数、0、负整数统称整数,正分数、负分数统称分数.(3)整数和分数统称有理数.2.预习自测(1)下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数和负分数C.正有理数和负有理数组成全体有理数D.一个数不是正数就是负数【知识点】有理数【解题过程】解:整数除了正整数、负整数还包括0,故A错误;B正确;有理数按正负分除了正有理数、负有理数,还有0,故C错误;一个数除了是正数、负数还可以是0,故D错误.【思路点拨】整数包括正整数、0、负整数,故可判断A ;分数包括正分数和负分数,故可判断B ;有理数按正负分可分为正有理数、0、负有理数,故可判断C ;一个数可以是正数、负数还可以是0,故可判断D. 【答案】B(2)在0,5,-2,-3.5这四个数中,是负整数的是( ) A .0 B .5 C .-2 D .-3.5 【知识点】有理数【解题过程】解:在0,5,-2,-3.5这四个数中,是负整数的是-2. 【思路点拨】根据负整数即为负有理数中的整数即可判断求解. 【答案】C(3)分别写出一个符合下列条件的有理数:①是负数但不是整数;②是整数但不是负数;③是分数但不是正数; 【知识点】有理数【解题过程】①是负数但不是整数是负分数,如:21-;②是整数但不是负数是指非负整数,如:1;③是分数但不是正数指负分数,如:32-. 【思路点拨】是负数但不是整数的是负分数;是整数但不是负数的是自然数;是分数但不是正数的是负分数. 【答案】21-;1;32-.(答案不唯一) (4)指出下列各数中的正数、负数、整数、分数; -15,+6,-2,-0.9,1,53,0,413,0.63,-4.95 【知识点】有理数【解题过程】解:正数:+6,1,53,413,0.63; 负数:-15,-2,-0.9,-4.95; 整数: -15,+6,-2,1,0 ; 分数:-0.9,413,0.63,-4.95,53【思路点拨】根据有理数的分类即可求解.【答案】正数:+6,1,53,413,0.63; 负数:-15,-2,-0.9,-4.95; 整数: -15,+6,-2,1,0 ; 分数:-0.9,413,0.63,-4.95,53(二)课堂设计 1.知识回顾(1)正数:大于0的数;(2)负数:在正数前添加“-”号的数;(3)0既不是正数,也不是负数,是正数与负数的分界. 2.问题探究探究一 有理数的概念★ ●活动师问:通过前面的学习,我们知道数的X 围已经扩大了,请你举出三个不同类型的数? 学生积极举手回答;师将学生的回答有意识的归类; 师生共同归纳总结:正整数、0、负整数统称整数;正分数和负分数统称分数; 整数和分数统称有理数. 有理数还可按正负分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 注:(1)正整数和0可称非负整数,也称自然数,负整数和0可称非正整数;正数和0叫非负数,负数和0叫非正数.(2)奇数、偶数的概念也扩展到了负数,例如:-1.-3等是奇数,-2.-4等是偶数. (3)π是正数,但不是有理数,也不是分数.【设计意图】通过师生互动、小组合作等形式,共同总结提炼出相关的知识,让学生对有理数的认识更加充分,为后面的练习打下良好的基础.探究二会对有理数进行分类★●活动①例1.下列说法正确的是()A.有理数是指整数、分数、正有理数、0、负有理数 B.一个有理数不是正数就是负数C.一个有理数不是整数就是分数 D.0是整数,不是自然数【知识点】有理数【解题过程】根据有理数的分类可知,分两类为整数和分数,分三类为正有理数、0、负有理数,故A.B均错误,0是整数,也是自然数,还是有理数,故D错误,所以应选C【思路点拨】根据有理数的分类即可求解.【答案】C练习:下列说法正确的是()A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数【知识点】有理数【解题过程】解:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.【思路点拨】根据有理数的分类,利用排除法即可求解.【答案】D【设计意图】通过练习,让学生对有理数的分类中易混淆的地方能有更加清晰的认识.同时加深对有理数的理解,锻炼学生的分析归纳能力.探究三初步了解“集合”的含义★▲●活动①例2 将下列各数填入相应的集合中:-26,0,321-,0.34,3500, π,-51,54,15%. 正数集合{} 负数集合{} 整数集合{} 分数集合{} 自然数集合{} 负分数集合{} 有理数集合{} 【知识点】有理数 【数学思想】分类思想 【解题过程】解:正数集合{ 0.34,3500, π,54,15%} 负数集合{ -26,321- ,-51}整数集合{ -26,0,3500,-51 } 分数集合{ 321- ,0.34, 54,15%}自然数集合{ 0, 3500} 负分数集合{ 321-}有理数集合{-26,0,321-,0.34,3500,-51,54,15%}【思路点拨】根据有理数的分类即可求解. 【答案】正数集合{ 0.34,3500, π,54,15%} 负数集合{ -26,321- ,-51}整数集合{-26,0,3500,-51} 分数集合{ 321- ,0.34, 54,15%}自然数集合{ 0, 3500} 负分数集合{ 321-}有理数集合{ -26,0,321-,0.34,3500,-51,54,15%}练习:将下列各数填入相应的集合中: -11,4,8.6,53-,72,+12,4.6-,π-,0, 10%, 整数集合{} 分数集合{} 自然数集合{} 负分数集合{} 正有理数集合{} 非正数集合{}【知识点】有理数 【解题过程】解:整数集合{ -11,4, +12,0} 分数集合{ 8.6,53-,72,4.6-, 10%} 非负整数集合{ 4,+12 ,0} 负分数集合{ 53-,4.6- } 正有理数集合{ 4,8.6,72,+12, 10%} 非正数集合{ -11,53-, 6.4-,π-,0} 【思路点拨】根据有理数的分类即可求解. 【答案】整数集合{ -11,4, +12,0 } 分数集合{ 8.6,53-,72,4.6-, 10% } 非负整数集合{ 4,+12 ,0 } 负分数集合{ 53-,4.6- } 正有理数集合{ 4,8.6,72,+12, 10%} 非正数集合{ -11,53-,4.6-,π-,0} 【设计意图】通过练习,让学生对有理数的分类有非常充分且清晰的认识,并能熟练的对有理数进行分类. 3.课堂总结 知识梳理(1)正整数、0、负整数统称整数,正分数和负分数统称分数,整数和分数统称有理数,即所有整数都是有理数,所有的分数也都是有理数.(2)有理数分类的方法有两种:一是按整数和分数分类,二是按正负分类;(3)奇数、偶数的概念也扩展到了负数,例如:-1.-3等是奇数,-2.-4等是偶数. 重难点归纳(1)非负数与非负整数、非正数与非正整数的区别; (2)π是正数,但不是有理数,也不是分数.。

七年级数学上册 1.2《有理数》教案(新版)新人教版

1.2《有理数》教学内容课本第7页至第8页.教学目标1.知识与技能(1)理解整数、分数、有理数、数集等概念.(2)掌握有理数的分类.2.过程与方法经历对有理数的分类,培养学生分析问题的能力.3.情感态度与价值观培养学生有条理的思考,初步体会分类的思想方法.重、难点与关键1.重点:会把所给的有理数填入表示它所在的数集的圈里.2.难点:掌握有理数的分类方法.3.关键:理解分类原则,分类时要做到不重复不遗漏.教具准备投影仪.教学过程一、复习提高1.“一个数,如果不是正数,那么一定是负数”这句话对不对?为什么?2.引入负数以后,我们学过的数有哪些?它们可以分成哪些种类?•你是按照什么划分的?二、新授“一个数,如果不是正数,那么一定是负数”,这句话不对,因为也可能是零.从这里可知我们所学的数可以分为正数、负数、零三类.另外如果按整数、分数来分类,我们学过的数有:正整数:如1,2,3,…;零:0;负整数:如-1,-2,-3,…;正分数:如12,23,157,0.1,5.32,…;负分数:如-0.5,-52,-23,-17,-150.25,….问:0.1,5.32,-0.5,-150.25等为什么被列为分数?•我们学过的小数都是分数吗?答:分数原意是可写成两个整数的比的数,例如,23是2与3的比,0.1•可以看作1与10的比,即110,-150.25化为分数为-15014,5.32化为分数为532100,我们已学过的小数都是分数(除以外),循环小数也能化为分数.所有正整数组成正整数集合,所有负整数组成负整数集合,所有分数组成分数集合……正整数、0、负整数统称为整数,正分数和负分数统称为分数.整数和分数统称为有理数.试一试:你能对以上各种数作出一张分类表吗?(按整数和分数分类)有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数正分数分数负分数以上分类,若学生有困难,教师可加以引导:因为整数和分数统称有理数,所以有理数可分为整数和分数两大类,那么整数又包括哪些数呢?分数呢?以上是按整数和分数来划分的,也可以按性质(正数、负数)分,请你试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数有理数的两种分类,标准不同,所以结果也不同,需注意的是无论按什么标准进行分类,分类时都要做到不重复不遗漏.说明:第二种分类不做要求,教师根据学生实际情况选用.三、补充例题把下列各数填入表示它所在的数集的圈里.-17,227,3.1415,0.107,-35,-2313,63%,-0.2.正数集合负数集合整数集合分数集合点拨:正数集合是由所有的正数组成的,这里的227,3.1415,107,63%只是所有正数的一部分,所以数集圈里要写上“…”,另外注意数“0”不是正数,是整数.•循环小数-0.2既属于分数集合,也属于负数集合.四、巩固练习1.填空:(1)有理数中,是整数而不是正数的是____;是负数而不是分数的是______.(2)零是_____,还是______,但不是_____,也不是_____.2.把下列各数放在相应的集合中.……10.-0.72,-2,0,-98,25,83,6.3%,3.14.整数集合正数集合把既是整数又是正数,即正整数10,25填入这两个圈的重叠部分,•这两个圈的重叠部分表示正整数集.五、课堂小组(提问式)1.有理数按正、负数,应怎样分类?2.有理数按整数、分数,应怎样分类?3.分类的原则是什么?六、作业布置1.课本第14页习题1.2第1题.2.选用课时作业设计.课时作业设计一、填空题.1.正整数、______和_____统称整数;_______和_____统称分数;整数和分数统称_______.2.既不是正数也不是负数的数是______,是正数而不是整数的数是______.二、判断题.(对的打“∨”,错的打“×”)3.任何有理数都有倒数.()4.所有整数都是正数.()5.所有的分数都是有理数.()6.零既不是正数也不是负数,但它是整数.()三、选择题.7.下列说法错误的是().A.-0.5是分数 B.0不是正数也不是负数,但是自然数 C.-3.27是负分数 D.非负数就是正数8.正整数集合与负整数集合合并在一起构成的集合是(). A.整数集合 B.有理数集合C.自然数集合 D.以上说法都不对四、把下列各数放在相应的集合中.9.-100,-0.082,-3012,3.14,-3,0,-27,-73,811,1,..3.15整数集合{ …};分数集合{ …};正数集合{ …};负数集合{ …};正整数集合{ …};负整数集合{ …};正分数集合{ …};负分数集合{ …};非正数集合{ …}.答案:一、1.负整数零正分数负分数有理数 2.0 正分数二、3.× 4.× 5.∨ 6.∨三、7.D 8.D。

【最新人教版初中数学精选】广东省东莞市大岭山中学七年级数学上册 1.2 有理数教案 (新版)新人教版.doc

有理数教学目的和要求:1.理解有理数的意义。

2.会根据要求把给出的有理数分类。

3.了解“0”在有理数分类中的作用。

4.培养学生分类讨论的数学思想及对立统一的辩证唯物主义的观点。

教学重点和难点:重点:了解有理数包括哪些数。

难点:要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

教学工具和方法:工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。

教学过程:一、复习引入:1.填空:①正常水位为0m ,水位高于正常水位0.2m 记作 ,低于正常水位0.3m 记作 。

②乒乓球比标准重量重0.039g 记作 ,比标准重量轻0.019g 记作 ,标准重量记作 。

2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m 记作4m ,向西运动8m 记作 ;如果―7m 表示物体向西运动7m ,那么6m 表明物体怎样运动?答案:1.+0.2;–0.3;+0.039;–0.019;2.–8m ;向东运动6m 。

二、讲授新课:1.数的扩充:(有理数的定义:)数1,2,3,4,…叫做正整数;―1,―2,―3,―4,…叫做负整数;正整数、负整数和零统称为整数;数32,41,854,+5.6,…叫做正分数;―97,―76,―3.5,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。

2.思考并回答下列问题:①“0”是整数吗?是正数吗?是有理数吗?②“―2”是整数吗?是正数吗?是有理数吗? ③自然数就是整数吗?是正数吗?是有理数吗?要求学生区分“正”与“整”;小数可化为分数。

3.有理数的分类不同的分类标准可以将有理数进行不同的分类:①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表: (按定义分类:){负分数正分数分数负整数正整数整数有理数0⎩⎨⎧⎩⎨⎧ ②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:(按性质分:){{负分数负整数负有理数正分数正整数正有理数有理数0⎩⎨⎧注:①“0”也是自然数。

七年级数学上册 1.2 有理数 1.2.2 数轴教案 (新版)新人教版

课题:1.2.2 数轴教学目标:了解数轴的概念,会用数轴上的点表示有理数,体会数形结合思想.重点:会画数轴,并利用数轴表示有理数.难点:体会数轴上面的点所表示数的性质教学流程:一、情境引入问题1:一条笔直的马路,可以表示成哪种几何图形?答案:一条直线二、探究1问题2:在一条东西向的马路上,有一个汽车站牌,汽车站牌往东3m和7.5m处分别有一棵柳树和一棵杨树, 汽车站牌往西3m和4.8m处分别有一棵槐树和一根电线杆, 试画图表示这一情境.答案:追问:想一想,汽车站牌起到什么作用呢?问题3:怎样用数简明地表示这些树、电线杆与汽车站牌的相对位置关系(方向、距离)?强调:负数、0、正数可以表示出这条直线上的点追问:现在,你能说出图中数字表示的实际意义吗?思考:右图中的温度计可以看作表示正数、0、负数的直线. 它和下图有什么共同点,有什么不同点?练习1:你还能举出一些在现实生活中用直线表示数的实际例子吗?答案:收音机、天平等三、探究2定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴.强调:这条直线可以水平画,也可以竖直画.要求:(1)在直线上任取一点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度.数轴三要素:原点;正方向;单位长度动手操作:准备好工具,一起画一条数轴吧!问题4:你能把下面各数在数轴上表示出来吗?它们在原点的哪侧?距原点有几个单位长度?3--2,0,3,, 6.52答案:归纳:一般地, 设a是一个正数, 则数轴上表示数a的点在原点的右边, 与原点的距离有a个单位长度; 表示数-a的点在原点的左边, 与原点的距离是a个单位长度.练习2:1. 如图,写出数轴上点A,B,C,D,E表示的数.解:点A表示0,点B表示-2,点C表示1,点D表示2.5,点E表示-3.2. 画出数轴并表示下列有理数:1.5,-2,2,-2.5,92,34,0.解:四、应用提高如图所示, 一滴墨水洒在一个数轴上, 由图中标出的数值, 判断墨迹盖住的整数共有多少个?解:-187.5到-51.6之间包含的整数点个数为187-51=13623.3到238.8之间包含的整数点个数为238-23=215所以,一共有136+215=351(个)答:墨迹盖住的整数共有351个.五、体验收获今天我们学习了哪些知识?1.数轴的“三要素”各指什么?它们各起什么作用?2.如何画一条数轴?3.数轴对我们有什么帮助?六、达标测评1.填空:(1)规定了______、_______和_________的______叫做数轴.答案:原点;正方向;单位长度;直线(2)在数轴上,如果表示数a的点在原点的左边,那么a是一个_____数;如果表示数b的点在原点的右边,那么b是一个_____数.答案:负;正(3)数轴上,在原点的右边,离原点越远的点所表示的数;在原点的左边,离原点越远的点所表示的数.答案:越大;越小2.判断:(1)数轴上的点只能表示整数.()(2)两个不同的有理数,可以用数轴上同一个点表示. ()(3)-5可以用数轴上原点左边并且距原点5个单位长度的点来表示. ()(4)在数轴上,距离原点3个单位长度的点表示的数是3. ()答案:×;×;√;×3.先画出数轴,再在数轴上表示:-5,+2,0,213,-3,3.5解:七、布置作业教材14页习题1.2第2、3题.。

人教版七年级数学上册1.2有理数(教案)

(6)有理数的混合运算:掌握运算顺序,学会使用括号。
-例如:计算3+2×(-1)和(3+2)×(-1)。
2.教学难点
(1)有理数的性质:学生难以理解相反数和绝对值的性质,尤其是负数的绝对值。
-解决方法:通过数轴和具体例题,形象地解释相反数和绝对值的概念。
(2)有理数的加减法:学生对异号相加和减法的规则容易混淆。
2.在新课讲授过程中,我发现理论介绍部分学生容易感到枯燥乏味,因此在今后的教学中,我应尽量采用生动的例子和形象的解释来帮助学生理解抽象的概念。
3.对于重点难点的解析,我注意到部分学生仍然存在理解困难。在今后的教学中,我应更加注重分层教学,针对不同学生的理解程度进行有针对性的指导,以提高教学效果。
4.实践活动环节,分组讨论和实验操作有助于学生巩固所学知识,但在实际操作中,我发现部分学生参与度不高。为了提高学生的积极性,我将在下一次教学中尝试增加互动性和趣味性,鼓励更多学生参与到讨论和操作中来。
(5)有理数的混合运算:学生在面对复杂的运算时,容易忽略运算顺序和括号的作用。
-解决方法:指导学生按照运算顺序进行计算,并强调括号的重要性。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过负数的情况?”(例如:温度下降5摄氏度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数的奥秘。
1.教学重点
(1)有理数的概念及分类:理解正有理数、0、负有理数的定义,掌握整数和分数的分类。
-例如:解释3/4和-5为有理数,并说明其分类。
(2)有理数的性质:理解相反数、绝对值的概念及其性质。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数
教学目的和要求:
1.理解有理数的意义。

2.会根据要求把给出的有理数分类。

3.了解“0”在有理数分类中的作用。

4.培养学生分类讨论的数学思想及对立统一的辩证唯物主义的观点。

教学重点和难点:
重点:了解有理数包括哪些数。

难点:要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

教学工具和方法:
工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。

教学过程:
一、复习引入:
1.填空:
①正常水位为0m ,水位高于正常水位0.2m 记作 ,低于正常水位0.3m 记作 。

②乒乓球比标准重量重0.039g 记作 ,比标准重量轻0.019g 记作 ,标准重量记作 。

2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m 记作4m ,向西运动8m 记作 ;如果―7m 表示物体向西运动7m ,那么6m 表明物体怎样运动?
答案:1.+0.2;–0.3;+0.039;–0.019;2.–8m ;向东运动6m 。

二、讲授新课:
1.数的扩充:(有理数的定义:)
数1,2,3,4,…叫做正整数;―1,―2,―3,―4,…叫做负整数;正整数、负整数和零统称为整数;数32,41,854,+5.6,…叫做正分数;―97,―7
6,―3.5,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。

2.思考并回答下列问题:
①“0”是整数吗?是正数吗?是有理数吗?
②“―2”是整数吗?是正数吗?是有理数吗? ③自然数就是整数吗?是正数吗?是有理数吗?
要求学生区分“正”与“整”;小数可化为分数。

3.有理数的分类
不同的分类标准可以将有理数进行不同的分类:
①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表: (按定义分类:)
{负分数正分数
分数负整数正整数整数有理数0⎩⎨⎧⎩⎨⎧ ②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:
(按性质分:)
{{负分数负整数
负有理数正分数正整数正有理数有理数0
⎩⎨⎧
注:①“0”也是自然数。

②“0”的特殊性。

4.把一些数放在一起,就组成一个数的集合,简称数集(set of number )。

所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。

5.例题; 例1:把下列各数填入表示它所在的数集的圈里:
―18,722,3.1416,0,2001,5
3
-,―0.142857,95℅.
正数集 负数集
整数集 有理数集
解:
7
22

正数集 负数集
―18,0,
整数集 有理数集
例2:把下列各数填入相应集合的括号内:
29,―5.5,2002,76
,―1,90%,3.14,0,―23
1,―0.01,―2,1 (1)整数集合:{29,2002,―1,0,―2,1 …}
(2)分数集合:{ ―5.5,76,90%,3.14, ―23
1,―0.01,…}
(3)正数集合:{29,2002,76,90%,3.14,1,…}
(4)负数集合:{―5.5,―1,―231,―0.01,―2,…}
(5)正整数集合:{29,2002,1,…}
(6)负整数集合:{―1,―2,…}
(7)正分数集合:{76,90%,3.14,…}
(8)负分数集合:{―5.5,―231,―0.01,…}
(9)正有理数集合:{29,2002,76,90%,3.14,1,…}
(10)负有理数集合:{―5.5,―1,―231,―0.01,―2,…}
注:要正确判断一个数属于哪一类,首先要弄清分类的标准。

要特别注意“0”不是正数,但是整数。

在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的。

五分钟测试:
(1)下列说法正确的是( )
①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数;⑥零是非负数。

A :①②③⑥ B :①②⑥ C :①②③ D :②③⑥
(2)下列说法正确的是( )
A :在有理数中,零的意义表示没有
B :正有理数和负有理数组成全体有理数
C :0.5既不是整数,也不是分数,因而它不是有理数
D :零是最小的非负整数,它既不是正数,又不是负数
(3)―100不是( )
A :有理数
B :自然数
C :整数
D :负有理数
(4)判断:
(1)0是正数 ( ) (2)0是负数 ( )
(3)0是自然数 ( ) (4)0是非负数 ( ) (5)0是非正数 ( ) (6)0是整数 ( )
(7)0是有理数 ( ) (8)在有理数中,0仅表示没有。

( )
(9)0除以任何数,其商为0 ( ) (10)正数和负数统称有理数。

( )
(11)―3.5是负分数 ( ) (12)负整数和负分数统称负数 ( )
(13)0.3既不是整数也不是分数,因此它不是有理数()
(14)正有理数和负有理数组成全体有理数。

()
答案:1.A;2.D;3.B;4.×;×;√;√;√;√;√;×;×;×;√;×;×;×。

三、课堂小结:
教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
(让同学自由发言,并共同归纳:
1 本节课主要学习有理数的概念,会将有理数按照一定的标准进行分类;
2 主要用到的思想方法是分类方法;
3 注意问题:分类时要做到不重复不遗漏,只要标准统一即可。


由学生小结有理数的定义和两种分类方法。

四、课堂作业:
课本:P4:1~4
板书设计:
教学后记:。

相关文档
最新文档