第五单元 鸽巢问题(2)

合集下载

《鸽巢问题》优秀教学设计

《鸽巢问题》优秀教学设计

《鸽巢问题》优秀教学设计《鸽巢问题》优秀教学设计作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,借助教学设计可以让教学工作更加有效地进行。

那么优秀的教学设计是什么样的呢?以下是小编帮大家整理的《鸽巢问题》优秀教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《鸽巢问题》优秀教学设计1教学内容审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。

设计理念《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。

“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。

怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。

通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。

学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。

所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求。

我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

教材分析《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。

在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。

这类问题依据的理论,我们称之为“鸽巢问题”。

通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。

人教版六年级下册数学第五单元《数学广角》鸽巢问题

人教版六年级下册数学第五单元《数学广角》鸽巢问题
有有55个苹果要放入个苹果要放入44个抽屉中那么总有一抽屉中那么总有一个抽屉里面至少会放个抽屉里面至少会放22个苹100991如果把6个苹果放入4个抽屉中至少有几个苹果被放到同一个抽2如果把8个苹果放入5个抽屉中至少有几个苹果被放到同一个抽1如果把9个苹果放入4个抽屉中总有一个抽屉里至少放了个苹果
人教版六年级下册数学第五单元《数学广角 》
2)如果把158个苹果放进 3个抽屉里,不管怎么放, 总有一个抽屉里至少有几 个苹果?
精品课件
抽屉原理(二)
把 a 个 物 体 放 进 n 个 抽 屉,若a÷n=b……c
(c≠0 ,c<n )
则一定有一个抽屉至少 放了______ 个物体。 精品课件
比一比:两个抽屉原理有 何区别?
“原理1”和“原理2”的区别 是:原理1苹果多,抽屉少,数 量比较接近;原理2虽然也是 苹果多,抽屉少,但是数量相 差较大,苹果个数比抽屉个数 的几倍还多几。
2、从任意5双手套中任取6只,其中至少有2只 恰为一双手套 ,对吗?
3、从数1,2,。。。,10中任取6个数,其中 至少有2个数为奇偶性相同。
4、体育用品仓库里有许多足球、排球和篮球, 某班 50名同学来仓库拿球,规定每个人至少拿 1个球,至多拿2个球,问至少有几名同学所 拿的球种类是一致的?
精品课件
例:把一些铅笔放进3个文具盒中,保证其中 一个文具盒至少有4枝铅笔,原来至少有多少
枝铅笔?至少:只有一个文具盒有 4 枝,
其余都是(4-1)枝
3 +1
3
3
3
3×(4-1)+1=10(枝)
求总数=抽屉×(至少-1)+1
要分的份精数品课件 其中一个多1
鸽巢问题 (二)

抽屉原理教学设计

抽屉原理教学设计

《鸽巢原理》教学设计(二)贺兰回小陈梅一、教学设计1.教材分析《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。

这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。

2.学情分析“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。

教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。

六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。

3.教学理念激趣是新课导入的抓手,喜欢和好奇心比什么都重要,游戏,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。

通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。

特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

4、教学目标:1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

5.教学重难点教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,谁是抽屉,谁是待分的物体,并对一些简单实际问题加以“模型化”。

6、教具学具:课件、扑克牌。

7、教学过程:一、课前游戏引入。

同学们,在我们上课之前,先变个小魔术:这里有一副扑克,请5位同学上来,谁愿来与老师一起玩?一副扑克54张,我抽掉大小王,还剩52张,我请这5名同学每人抽一张,我就知道结果。

人教版六年级数学下册《鸽巢问题》数学广角PPT精品课件

人教版六年级数学下册《鸽巢问题》数学广角PPT精品课件

盒子里有同样大小的红球和蓝球各4个,要想摸 出的球一定有2个同色的,至少要摸出几个球?
至少要摸出3个球
只要摸出的球数比它们的颜色种数多1, 就能保证至少有两个球同色。
一天晚上,小红正要从自已放袜子的抽屉里 取袜子,突然灯熄了。她知道自己的抽屉里放有 白色与黄色的袜子各6只。小红至少要摸出多少只 袜子,才能保证拿出一双相同颜色的袜子?
9÷4=2……1 2+1=3
第五单元 数学广角--鸽巢问题 第3课
鸽巢问题
第3课时
人教版六年级下册数学课件

01 新课导入 02 新课讲解

03 课堂小结
CONTENTS
04 拓展延伸
第一部分 PART 01
新课导入
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.
复习导入
5个人坐4把椅子,总有一把椅子上至少坐 2人,为什么?
把5个人分到“4个鸽巢”(代表4把 椅 子 ) 中 , 5÷4 = 1……1 , 所 以 一 定 有 “一个鸽巢”里至少有1+1=2(人),即 总有一把椅子上至少坐2人。
第二部分 PART 02
新课讲解
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.

六年级数学鸽巢问题教案

六年级数学鸽巢问题教案

六年级数学鸽巢问题教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!六年级数学鸽巢问题教案六年级数学鸽巢问题教案(通用10篇)作为一无名无私奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

《鸽巢问题》教学设计(通用)

《鸽巢问题》教学设计(通用)

《鸽巢问题》教学设计(通用)《鸽巢问题》教学设计(通用)一、教学内容本节课的教学内容选自人教版小学数学四年级下册第五单元《鸽巢问题》一课。

本节课主要通过探究鸽巢问题,让学生理解并掌握利用穷举法解决实际问题的方法,培养学生分析问题、解决问题的能力。

二、教学目标1. 让学生掌握鸽巢问题的基本概念和解决方法。

2. 培养学生运用数学知识解决实际问题的能力。

三、教学难点与重点重点:理解并掌握鸽巢问题的解决方法。

难点:如何引导学生运用穷举法解决实际问题。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:练习题、卡片、文具。

五、教学过程1. 情景引入:教师通过展示一个关于鸽巢的实际问题,引发学生的思考,激发学生的学习兴趣。

2. 探究鸽巢问题:(1)教师引导学生观察、分析问题,引导学生发现问题的规律。

(2)教师引导学生运用穷举法解决问题,并讲解解题思路。

(3)学生独立完成练习题,教师巡回指导。

(2)学生分享自己的解题心得。

4. 应用拓展:(1)教师出示不同难度的练习题,学生独立解决。

(2)教师选取部分学生的答案,进行讲解和评价。

5. 课堂小结:六、板书设计鸽巢问题解决方法:1. 观察、分析问题2. 运用穷举法解决问题七、作业设计(1)如果有5只鸽子,8个鸽巢,请问有多少只鸽子没有巢?答案:有3只鸽子没有巢。

(2)如果有6只鸽子,9个鸽巢,请问有多少只鸽子没有巢?答案:有3只鸽子没有巢。

2. 请结合生活中的实际问题,运用所学知识解决问题。

八、课后反思及拓展延伸本节课通过探究鸽巢问题,学生掌握了利用穷举法解决实际问题的方法。

在教学过程中,教师注重引导学生主动观察、分析问题,培养学生的动手操作能力和思维能力。

同时,通过课堂练习和应用拓展,学生能够将所学知识运用到实际生活中,提高解决问题的能力。

课后,教师可以引导学生进一步探究类似的问题,如“鸡舍问题”、“停车场问题”等,培养学生对数学的兴趣和探究精神。

同时,教师还可以关注学生在解决问题过程中的困难,及时给予指导和帮助,提高学生的数学素养。

人教版小学数学六年级下册第五单元《数学广角—鸽巢问题》大单元集体备课整体设计

单元整体教学设计
年 级
六年级
单元名称
人教版六年级下册第五单元
《数学广角——鸽巢问题》
一、单元教学设计说明
教材分析
教材编排的“抽屉原理”涉及三种基本的形式:第一种,只要物体的数量比抽屉多,那么一定有一个抽屉放进了至少两个物体。第二种,即是“把多于kn(k是正整数)个元素放入n个集合,总有一个集合里至少有(k+1)元素”。若k为1,就是第一种情况,可见第一种情形实际是第二种情形的特例。第三种情况是把无限多个物体(如红球、蓝球各4个)放进有限多个抽屉(两种颜色),那么一定有一个抽屉放进了无限多个物体(至少2个同色的球)。
在小学阶段,虽然不需要学生对涉及到抽屉原理的相关现象给出严格的形式化的证明,但是仍可在学生学习过程中用直观的方式进行就事论事的探讨。在学习中,可以鼓励学生借助学具实物操作或者画草图的方式进行说理。通过这样的方式,有助于提高学生的逻辑思维能力。
(二)有意识地培养学生模型思想
抽屉原理的变式很多,应用更加具有灵活性。但是能否将这个具体问题和抽屉问题联系起来,能否找到问题中的具体情境和抽屉问题的一般化模型之间的内在关系是影响能否解决该问题的范畴。建议在活动思考过程中,引导渗透如何寻找隐藏在背后的抽屉问题的一般模型。
(三)要恰当把握教学要求
抽屉原理的应用广泛并且灵活多变,因此,用抽屉原理来解决实际问题时,有时要找到实际问题与抽屉问题之间的联系并不容易。因此学习时,不必过于追求学生说理的严密性,只能结合具体问题把大致意思说出来就可以了,更允许学生借助实物操作等直观方式进行猜想验证。
三、单元整体教学思路
单元结构图及课时安排
课标要求
《义务教育数学课程标准(2022年版)》在“课程目标”的“第三学段”中提出:“尝试在真实的情境中发现和提出问题,探索运用基本的数量关系,以及几何直观、逻辑推理和其他学科的知识、方法分析和解决问题,形成模型意识和初步的应用意识、创新意识。”“对数学具有好奇心和求知欲,主动参与数学学习活动。在解决问题的过程中,体验成功的乐趣,相信自己能够学好数学,感受数学的价值,体验并欣赏数学美”。

第五单元《数学广角——鸽巢问题》教案

b.抽屉原理的应用:掌握抽屉原理在解决鸽巢问题中的应用,能将实际问题转化为数学模型,并运用抽屉原理求解。
-举例:将鸽巢问题转化为将6只鸽子放入5个鸽巢的问题,运用抽屉原理得出至少有一个鸽巢有两只或以上鸽子的结论。
2.教学难点
a.抽屉原理的理解:学生可能对抽屉原理的理解存在困难,不知道如何将实际问题与抽屉原理联系起来。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了鸽巢问题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对鸽巢问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-突破方法:采用分步讲解,逐步引导学生理解逻辑推理过程,通过小组讨论和分享,让学生在互动中提高逻辑思维能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是第五单元《数学广角——鸽巢问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物品分配不均的情况?”(如分配水果、玩具等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索鸽巢问题的奥秘。
第五单元《数学广角——鸽巢问题》教案
一、教学内容
第五单元《数学广角——鸽巢问题》教案
1.教材章节:人教版五年级下册数学第11课
2.内容:
a.理解鸽巢问题的概念和原理;
b.掌握运用抽屉原理解决实际问题的方法;
c.能够运用鸽巢问题解决一些简单的实际问题;
d.培养学生的逻辑思维能力和问题解决能力。

第五单元 数学广角——鸽巢问题 -2022-2023学年六年级数学下册帮课堂(人教版)

第五单元数学广角——鸽巢问题 -2022-2023学年六年级数学下册帮课堂(人教版)一、教学目标1. 了解鸽巢问题,了解鸽巢原理,明白数目相等的物体放入数目有限的盒子时一定会出现某个盒子至少放了两个物体的现象。

2. 培养学生的观察能力和数学思维能力,提高学生的问题解决能力。

二、教学重点和难点1. 知道鸽巢原理的基本概念,理解不同情况下原理的具体应用。

2. 学会将鸽巢原理运用于问题解决中。

难点:不同情况下鸽巢原理的应用区别,如何把问题转化成相应的鸽巢问题。

三、教学流程1. 导入学生对“鸽巢问题”这个词感到陌生,教师可通过以下问题来导入:1) 五个球放到三个盒子里,是否一定存在至少一个盒子里装了两个球?2) 100个人去参加4个足球赛,那么一定有两个人去了同一个足球赛吗?3) 将10支铅笔放入8个铅笔袋中,至少会有一个袋子有两支笔吗?通过学生探究问题,引发学生兴趣,进而引入本堂课的主题。

让学生进一步理解数学中的问题。

2. 感性认识鸽巢原理1) 题目复盘请学生回忆上一个环节中的问题,然后再次阐述:如果我们有三个盒子和五个球,只需要把这五个球放进这三个盒子里,那么至少会有一个盒子里面放了两个及以上的球吗?请大家研究一下。

2) 探究过程(1)让学生把球的数量和盒子数量,放在黑板上。

(2)学生试着放球进盒子里,不一定放满。

(3)学生用唠叨的方式描述他们的做法,如何分配。

(4)学生描述出来的方案交流。

3)鸽巢法则查看投放方法,可以轻松看出至少有一个篮子中拥有两只球,无论如何分配。

同样地,如果我们有 m 个物体和 n 个盒子,那么一定会出现某个盒子至少放了两个物体。

4)问题求解如果有十人生日都在一年的不同的十个月(不包括闰月),会不会存在有两个人的生日在同一个月?答案是肯定的,因为这十位人中只有这么多可供选择的月份,但已经有十个月被占据了,所以至少有一个月中有两个生日。

以此类推,题目中的鸽子就是物体的个数,而盒子就是类别的个数。

人教版数学六年级下册第五单元《鸽巢原理》-含解析-(知识精讲+典型例题+同步练习+进门考)

人教版数学六年级下册第第五单元《鸽巢原理》知识点1:鸽巢原理知识讲解抢凳子游戏,5个人抢4个椅子要求每个人都坐到椅子上思考:“至少有两个人”用数学语言描述是:≥2如何理解“一定有一个凳子至少有两个人”?最少有一个凳子上有大于或等于2个人就可以考虑最大符合条件的范围,有一个凳子上的人数≥2就可以,所以只需要看(A)的凳子A.人数最多B.人数最少让我们来看一下,每一种情况吧!提问:哪种情况下的最大值是最小的?定义:上述现象在数学里叫做抽屉原理(又叫鸽巢原理)在多个抽屉里放入一些物品,物品个数大于抽屉个数时,一定有一个抽屉至少有2个物品总结:通过分析我们知道,遇到“一定有......至小......”时用到平均思想,尽可能平均分配来求解相关问题思考:如果把7个苹果放进三个抽屉里一定有一个抽屉里至少有3个苹果尽可能平均分:多余的一个苹果随便放进一个抽屉,所以一定有一个抽屉里至少有2+1=3(个)苹果.总结:把m个苹果放进n个抽屉(m大于n),有两种可能: (1)如果m÷n没有余数,那么一定有一个抽屉至少有“m÷n”个苹果:(2)如果m÷n有余数,那么一定有一个抽屉至少有“m÷n的商再加1”个苹果.思考:一个班有30人,那么这个班一定能找到至少多少人同一个月的生日.题目中一共有多少个“抽屉”?每一个月可以看成一个抽屉,年有12个月,所以有12个抽屉; 根据题意列出式子 30÷12=2(人).....6(人)根据式子结果补充题目中的描述.一定有至少2+1=3(人)同一个月的生日.总结:解决抽屉原理问题时,找准抽屉个数是关键思考:把一些苹果分给8个人,要保证有一个人至少拿了3个苹果,那么至少需要多少个苹果?步骤:题中有几个“抽屉” 8个;每一个抽屉先放几个? (3-1)个;列式计算结果 8x(3-1)+1=17(个)总结:抽屉原理逆运算时,要保证有一个人至少拿了a个用总人数x(a-1)+1.小练习把11个人分成三个小组,请你说明:一定有一个小组至少有4个人.答案:根据抽屉原理,11+3=3(人)....2(人),无论怎么分一定有一个小组至少有3+1=4(人)笔记部分:抽屉原理把m个苹果放进n个抽屉(m大于n),有两种可能:(1)如果 m÷n没有余数,那么一定有一个抽屉至少有“m÷n”个苹果;(2)如果m÷n有余数,那么一定有一个抽屉至少有“ m÷n的商再加1”个苹果.例题1简答(1)把4个相同的小球,放进3个相同的抽屉里有几种放法?(2)把5个相同的小球,放进3个相同的抽屉里有几种放法?答案 (1)4种; (2)5种练习1填空(1)如果把96个桃子放入8个抽屉中,那么一定有抽屉至少放了()个桃子(2)如果把97片培根放在8个盘子中,那么一定有盘子至少放了()片培根(3)如果把98只羊放在8个笼子里,那么一定有笼子至少放()只羊.答案 (1)12; (2)13;(3)13例题2简答(1)任意13个人中至少有几个人的生日在同一月份?(2)任意25个人中至少有几个人的生日在同一月份?答案 (1)2人;(2)3人练习2(1)中国奥运代表团的32名运动员到超市买饮料,已知超市有可乐、雪碧、芬达3种饮料,每人买一种饮料,那么至少多少人买的饮料相同?(2)随意找121位老师,他们中至少多少人属相相同?答案 (1)11人;(2)11人例题3:某小学六个年级共有2017名学生,那么至少有多少名学生在同一个年级?(答案337名)练习3:某小学六个年级共有231名学生,那么至少有多少名学生在同一年级?(答案 39名)知识点2:最不利原则知识讲解思考:将52张扑克牌全部合上,任意摸两张一定是两个红桃吗?如果,摸出的牌中一定有两张是同一花色(两个红桃或者两个黑桃或者两个梅花或者两个方块),至少要摸几张牌?思考:保证至少有两张同一花色,摸3张牌可以吗?4张?5张?分析:这种分析方法是抽屉原理的逆向思维,又叫“最不利原则”考虑最差的情况,要摸出相同花色,先把所有不同花色摸一遍,需要摸4_张牌,再摸1张牌就有两张相同花色.思考:一个袋子里有4个白球,5个红球,6个黑球,至少要摸出几个球才能保证有相同颜色的球?最不利的情况是怎样?摸到的都是颜色不同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档