第五单元《鸽巢问题》例3教学设计
第五单元数学广角《鸽巢问题》教学设计六年级下册数学人教版

第五单元数学广角《鸽巢问题》教学设计六年级下册数学人教版教学内容《鸽巢问题》是六年级下册数学人教版第五单元数学广角的教学内容。
本节课主要引导学生利用抽屉原理(鸽巢原理)解决生活中的实际问题,通过观察、分析、推理等方法,让学生理解并掌握抽屉原理,并能灵活运用抽屉原理解决相关的数学问题。
教学目标1. 知识与技能:理解并掌握抽屉原理,能灵活运用抽屉原理解决生活中的实际问题。
2. 过程与方法:通过观察、分析、推理等方法,培养学生的逻辑思维能力和解决问题的能力。
3. 情感、态度和价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
教学难点理解并掌握抽屉原理,能灵活运用抽屉原理解决实际问题。
教具学具准备1. 教具:多媒体教学设备、PPT课件、教鞭等。
2. 学具:练习本、笔、尺子等。
教学过程1. 导入:通过一个有趣的故事引入新课,激发学生的兴趣。
2. 新课:讲解抽屉原理,通过实例演示和讲解,让学生理解并掌握抽屉原理。
3. 活动一:分组讨论,让学生在实际问题中运用抽屉原理,培养学生的合作意识和解决问题的能力。
4. 活动二:让学生独立完成练习题,巩固所学知识。
6. 作业布置:布置课后作业,让学生在实际生活中运用抽屉原理解决问题。
板书设计1. 《鸽巢问题》2. 抽屉原理3. 实例演示4. 练习题5. 课后作业作业设计1. 完成课后练习题,巩固所学知识。
2. 观察生活中的实际问题,运用抽屉原理解决问题,并记录下来。
课后反思本节课通过故事导入、实例演示、分组讨论等活动,让学生在轻松愉快的氛围中学习抽屉原理,并能在实际问题中灵活运用。
在教学过程中,注重培养学生的合作意识和解决问题的能力,激发学生对数学的兴趣。
但在教学过程中,也存在一些不足之处,如课堂气氛调控不够到位,部分学生参与度不高;课堂练习时间分配不够合理,部分学生完成练习题的时间较长。
在今后的教学中,需要针对这些问题进行改进,提高教学效果。
教学难点理解并掌握抽屉原理,能灵活运用抽屉原理解决实际问题。
六年级数学下册第五单元数学广角鸽巢问题教案设计新人教版

第五单元数学广角——鸽巢问题
单元教学总述
本单元通过几个直观例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解“鸽巢原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”。
“鸽巢原理”实际上是一种解决某种特定结构的数学问题或生活问题的模型,理论本身并不复杂,但却是一类较为抽象的数学问题,教材选择学生常见的、熟悉的事物为学习素材,降低了学习难度。
“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到令人惊异的结果。
因此,“鸽巢原理”在数论、集合论、组合论中都得到了广泛的应用。
用“说理”的方式来理解“鸽巢原理”的过程是一种数学证明的雏形,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
1.初步了解“鸽巢原理”的两种形式。
2.理解“鸽巢原理”的含义,掌握用“鸽巢原理”解决问题的方法。
3.能运用逆向思维解决问题。
4.通过“鸽巢原理”的学习,增强学生的逻辑推理能力。
重点:了解“鸽巢原理”的两种形式,能把具体问题转化为“鸽巢问题”,能运用“鸽巢原理”解决简单的实际问题。
难点:找出解决“鸽巢问题”的窍门,反复推理,掌握用“鸽巢原理”解决问题的方法。
课时教学设计
鸽巢原理
解决问题
子里摸出2种不同颜
色的球,至少要摸出解决问题。
(6)个。
人教版六年级数学第五单元《鸽巢问题》教学设计

鸽巢问题教学目标:1.知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
⒉.过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、学习方法,渗透数形结合的思想。
3.情感、态度与价值观:(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。
(2)理解知识的产生过程,受到历史唯物主义的教育。
( 3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。
教学重点:应用“鸽巢原理”解决实际问题。
引导学会把具体问题转化成“鸽巢问题教学难点:理解“鸽巢原理”,找出“鸽巢问题”解决的窍门进行反复推理。
教学过程:一、导入师:同学们,你们知道玛雅预言吗?生:不知道。
师:玛雅人预言在2012年,我们将遭遇世界末日,我们生活的地球将遭到毁灭,这个预言实现了吗?生:没有师:是的,这个预言没有实现,我们好好的、愉快的生活到了2023年。
师:今天呢,我也有一些预言,我的预言一定会实现,你们信不信呢?生:信(不信)师:有些同学信,有些同学还是有怀疑的的,下面我们一起来验证一下,我的预言是否准确。
师:请同学们拿出你们的草稿本,在你们的草稿本上写上三位同学的名字,写好的同学可以用举手的方式告诉我你完成了。
学生写名字师:大部分同学已经完成了,如果我的预言师准确的,请同学们用掌声告诉我,好吗?生:好。
师:我预测,你们写的三个名字中,肯定有两位同学的性别是相同的。
生鼓掌师:看来我的预言是正确的,知道老师为什么对你们写出的名字能做出如此准确的判断吗?这其中蕴含着一个非常有趣的数学原理,这节课我们就一起借助笔与笔筒来研究这个数学原理。
二、新授1. 教学例1课件出示例1师:请同学们看到例题,说一说例题的要求。
学生说根据提示说要求师:如果让你去摆,你会怎么摆?会有几种摆法呢?在摆之前请大家认真阅读这几点活动要求,活动的过程中认真思考(出示活动要求)将你的摆法记录在表格一中。
鸽巢问题(例3)教学设计

师总结:根据上面的题中只要分放的物体个数比鸽巢数多,就能保证一定有一个鸽巢至少有2个物体,可以推断出“要保证有一个鸽巢有2个球,分放的球的个数至少比鸽巢数多1”。因为要从两种颜色的球种保证摸出2个同色的,至少要摸出3个球。
情感、态度和价值观:通过“鸽巢原理”的灵活应用感受数学的魅力。
教学重点与难点
重点:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。
难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
教法与学法
归纳总结、合作探究
教学准备及手段
多媒体课件
教 学 流 程
动态修改部分
一、复习。
说一说:把10支笔放进4个盒子里,总有一个盒子里至少有几支笔?
三、巩固练习
70页“做一做”1、2.
四、课堂小结
1.这节课你有什么收获?
2.你对这节课学习的内容还有什么想法吗?请同学们课下交流一下。
作业
设计
第169页1、2、3
板书
设计
鸽问题
分放的球的个数至少比鸽巢数多1
心得
反思
理解鸽巢原理并对一些简单实际问题加以模型化归纳总结合作探究多媒体课件动态修改部分一复习
第三课时
教学课题
鸽巢问题(例3)
教学课时
1课时
主备教师
吴国霞
使用教师
王金兴
教学目标
知识与技能:初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
过程与方法:经历“鸽巢原理”的探究过程,通过操作发展学生的类推能力,形成比较抽象的数学思维。
二、应用原理解决实际问题
鸽巢问题3教案

鸽巢问题3教案教案标题:鸽巢问题3教案教案目标:1. 理解并应用鸽巢问题的基本概念和原理。
2. 发展学生的逻辑思维和问题解决能力。
3. 培养学生的团队合作和沟通能力。
教案步骤:引入活动:1. 引起学生对鸽巢问题的兴趣,可以通过展示一些鸽巢问题的图片或视频,让学生思考其中的规律和问题。
2. 提出一个简单的鸽巢问题,让学生尝试解决,并引导他们思考解决问题的方法和策略。
探索阶段:1. 分组讨论:将学生分成小组,每个小组选择一个鸽巢问题进行研究。
鼓励学生自主探索,使用不同的方法和策略解决问题。
2. 指导学生:在小组讨论过程中,教师提供必要的指导和帮助,引导学生发现问题的规律和解决问题的思路。
3. 小组展示:每个小组向全班展示他们的解决方法和策略,让其他小组成员提出问题和建议。
拓展活动:1. 提出更复杂的鸽巢问题,让学生进一步应用之前学到的方法和策略解决问题。
2. 引导学生思考鸽巢问题与其他数学问题的联系,例如排列组合、概率等。
3. 鼓励学生尝试设计自己的鸽巢问题,并与同学分享。
总结评价:1. 总结鸽巢问题的基本概念和解决方法,强调问题解决的重要性和思维的灵活性。
2. 对学生的表现进行评价,包括解决问题的能力、合作与沟通的能力等。
教学资源:1. 鸽巢问题的相关图片和视频。
2. 小组讨论和展示的材料。
3. 复杂鸽巢问题的练习题和解答。
教学方法:1. 合作学习:通过小组讨论和展示,激发学生的学习兴趣和主动性。
2. 探究式学习:引导学生自主探索和发现问题的解决方法。
3. 提问引导:通过提问引导学生思考和讨论,激发学生的思维和创造力。
教学评价:1. 观察学生在小组讨论和展示中的表现,包括思维的灵活性、问题解决的能力等。
2. 收集学生的作业和练习题,评价他们对鸽巢问题的理解和应用能力。
3. 通过课堂讨论和提问,检查学生对鸽巢问题的掌握程度。
这个教案旨在通过引导学生进行鸽巢问题的探索和解决,培养他们的逻辑思维和问题解决能力。
《鸽巢问题》教学设计教案

《鸽巢问题》教学设计教案第一章:教学目标1.1 知识与技能:理解鸽巢问题的概念和意义。
学会使用鸽巢原理解决实际问题。
能够运用鸽巢原理进行简单的证明和推理。
1.2 过程与方法:通过观察和实验,培养学生的探究能力。
通过合作交流,培养学生的团队协作能力。
通过问题解决,培养学生的创新思维能力。
1.3 情感态度价值观:培养学生对数学问题的兴趣和好奇心。
培养学生勇于尝试、克服困难的自信心。
培养学生积极思考、主动探索的科学态度。
第二章:教学内容2.1 教学重点:鸽巢问题的概念和意义。
鸽巢原理的应用和解题方法。
2.2 教学难点:理解和证明鸽巢原理。
解决实际问题时的策略选择。
第三章:教学准备3.1 教具准备:鸽巢问题教学PPT。
鸽巢问题实例图片或实物。
练习题和答案。
3.2 教学环境:教室环境布置,确保学生可以清晰地看到PPT和教具。
确保学生有足够的座位和书写工具。
第四章:教学过程4.1 导入:通过一个简单的鸽巢问题实例引入新课,激发学生的兴趣。
引导学生思考和讨论,猜测鸽巢原理。
4.2 探究:引导学生观察和实验,通过实际操作验证鸽巢原理。
引导学生分析和归纳,总结鸽巢原理的数学表达。
4.3 应用:给出不同难度的鸽巢问题实例,引导学生独立解决。
引导学生讨论解题策略和方法,分享解题经验。
4.4 巩固:提供一些相关的练习题,让学生独立完成,巩固所学知识。
对学生的答案进行点评和指导,纠正错误和解答疑问。
第五章:教学评价5.1 评价方式:学生课堂参与度:观察学生在课堂上的积极程度和参与情况。
学生作业完成情况:评估学生对练习题的掌握程度和答案的正确性。
学生问题解决能力:评价学生在解决实际问题时运用鸽巢原理的能力。
5.2 评价标准:课堂参与度:积极发言、主动参与讨论。
作业完成情况:答案正确、解题方法清晰。
问题解决能力:能够灵活运用鸽巢原理、解决实际问题。
第六章:教学拓展6.1 拓展内容:介绍鸽巢原理在其他数学领域中的应用,如组合数学、图论等。
2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇

人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
《鸽巢问题》教学设计(通用8篇)

《鸽巢问题》教学设计(通用8篇)《鸽巢问题》教学设计(通用8篇)作为一名无私奉献的老师,时常需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
我们应该怎么写教学设计呢?下面是小编整理的《鸽巢问题》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《鸽巢问题》教学设计篇1教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学过程:一、创设情境、入新课1、师:同学们,导你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。
今天我们就一起来研究它。
二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。
请看大屏幕。
(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。
(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。
(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法?探究之前,老师有几个要求。
(一生读要求)(3)汇报展示方法,证明结论。
(展示两张作品,其中一张是重复摆的。
)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五单元数学广角
第二课时《鸽巢问题》例3 教学设计
教学内容:
人教版教材六年级数学上册70页例3及练习十三。
教学目标:
1. 通过观察、猜测、实验、推理等活动,寻找隐藏在实际问题背后的“抽屉问题”的一般模型。
体会如何对一些简单的实际问题“模型化”,用“抽屉原理”加以解决。
2.在经历将具体问题“数学化”的过程中,发展数学思维能力和解决问题的能力,感受数学的魅力。
同时积累数学活动的经验与方法,在灵活应用中,进一步理解“抽屉原理”。
教学重点、难点:
1.教学重点:利用“抽屉原理”解决实际问题。
2.教学难点:怎样把具体问题转化为“抽屉问题”。
教学准备:
一个袋子、4个红球和4个蓝球为一份,准备这样的教、学具若干份。
小抽屉、6个红球和6个篮球。
教学过程:
一、游戏导入新课
1.组织学生玩“抽幸运学生”的游戏,从全班学生的姓名中抽起3名幸运观众,猜测一定有2人是同一性别的,打开验证。
2.这里面其实隐藏着一个非常重要的数学原理。
(板书:抽屉原理
3)
二、推波逐浪,探究新知
1.请3名幸运学生上台抽取幸运礼物,有2人是同一颜色的。
2.看看抽屉里到底装了多少个球打开抽屉,让两种球一样多,现在要把抽屉像孙悟空一样的会变。
(出示课件)
3. 把剩下的4个红球和4个蓝球装到盒子里,晃动几下
师:同学们,猜一猜:摸一个球可能会是什么颜色的
4.如果老师想让这位同学摸出的球,一定有2个同色的,最少要摸出几个球(课件出示)例题,。
例:盒子里有同样大小的红球和蓝球各4个。
要想摸出的球一定有2个同色的,一次最少要摸出几个球
(学生可能有不同的回答)
5.师:那么就让我们摸2个球试试看吧(开火车摸)
(1)摸出几种情况(3种)(课件出示)
(2)摸2个球能满足题目要求吗为什么
(3)哪就摸3个球、4个球、5个球看一看,那一个能满足题目要求。
6.摸之前老师要给同学们一些提示。
(出示课件)
(1)生默读提示。
(2)师要求4个组摸3个球;3个组摸4个球;3个组摸5个球,组与组之间要比赛,最先完成的组有奖励
7.小组合作摸球,(课件出示记录表)。
(1)小组活动
(2)汇报展示。
(用投影仪)
师:刚才同学们通过讨论和动手操作得出了怎样的结果
请每个小组派代表展示讨论结果。
其他小组有不同想法可以补充汇报。
(3)老师把每个组摸到的情况统计如下。
(出示课件)
(4)观察你有什么发现(生自由说)
板书:颜色保证同色一次最少摸
2种 2个 3个
师小结:要想摸出的球一定有2个同色的,最少要摸出3个球。
8.探究推理。
(1)师:同学们,抽屉隐身了,但我们可以把什么看作抽屉有几个抽屉
有红、蓝两种颜色的球,就可以把两种“颜色”看成两个“抽屉”,同色”就意味着“同一个抽屉”。
这样就把“摸球问题”转化成“抽屉问题”。
(2)用抽屉原理怎样描述(生说后)(课件出示)假设两种颜色的球各拿了一个,也就是在两个抽屉里各拿了一个球,不管从哪个抽屉里再拿一个球,都有2个球是同色的。
板书:假设法
3=2x1+1
9.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。
至少取多少个球,可以保证取到2个颜色相同的球
(1)学生思考,然后回答。
(2)引导用假设法说。
板书:5 =4x1+1
(3)用颜色种数来说。
板书:4种 2个 5个
(4)如果是5种颜色6种颜色呢发现什么规律
(5)小结:“要保证摸出2个同色的球,摸出的球的数量至少要比颜色种数多1。
三、巩固应用,内化提高
1.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。
至少取多少个球,可以保证取到3个颜色相同的球
2.综合应用
(1)能禹小学六(2)班有41人,生说:六(2)班中至少有4人是在同一个月出生的,该生说的对吗为什么
(2)能禹小学大约有370名学生,生说:全校里一定有2人的生日是在同一天。
该生说的对吗为什么
四、课堂总结:
通过本节课的学习你有什么收获
五、板书设计:
数学广角(三)
颜色保证同色一次最少摸 2种 2个 3个 4种 2个 5个 5种 2个 6个
假设法:
3=2x1+1
5=4*1+1
6=5*1+1。