福州市三牧中学数学有理数(提升篇)(Word版 含解析)

合集下载

福州市三牧中学七年级数学上册第一章《有理数》(培优)

福州市三牧中学七年级数学上册第一章《有理数》(培优)

1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误;③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 3.13-的倒数的绝对值( )A .-3B .13-C .3D .13C 解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.4.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确;故选A.【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.5.2--的相反数是()A.12-B.2-C.12D.2D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.6.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B选项正确;C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.7.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.8.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 10.下列正确的是( )A .5465-<- B .()()2121--<+- C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭A 解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 11.用计算器求243,第三个键应按( )A .4B .3C .y xD .=C 解析:C【解析】用计算器求243,按键顺序为2、4、y x 、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.12.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数C 解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.15.下列计算结果正确的是( )A .-3-7=-3+7=4B .4.5-6.8=6.8-4.5=2.3C .-2-13⎛⎫- ⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212D 解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A 选项:3710--=-,故错误;B 选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C 选项:1122()21333---=-+=-,故错误; D 选项运算正确.故选:D .【点睛】 本题考查有理数的加减运算,按照对应法则仔细计算即可.1.23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.2.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义 解析:19-【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个【分析】分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.5.数轴上A、B两点所表示的有理数的和是 ________.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.6.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.7.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316第7次:160.50.50.50.51⨯⨯⨯⨯=,等于第5次.所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.8.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a3•a4=(a•a•a)•(a•a•a•a)=__;(2)归纳、概括:a m•a n=__;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.9.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.10.若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3a b ,a的形式,则4a b-的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.11.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 1.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?解析:(1)见解析;(2)4.5km ;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.2.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.3.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.4.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.。

七年级上册福州市三牧中学数学期末试卷(提升篇)(Word版 含解析)

七年级上册福州市三牧中学数学期末试卷(提升篇)(Word版 含解析)

七年级上册福州市三牧中学数学期末试卷(提升篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC 和BC的中点.(1)若点C恰好是AB中点,则DE=________cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.【答案】(1)7(2)解:∵AC=4cm ∴BC=AB-AC=10cm 又∵D为AC中点,E为BC中点∴CD=2cm,CE=5cm ∴DE=CD+CE=7cm.(3)解:∵AC=acm ∴BC=AB-AC=(14-a)cm 又∵D为AC中点,E为BC中点∴CD=cm,CE= cm ∴DE=CD+CE= +∴无论a取何值(不超过14)DE的长不变。

(4)解:设∠AOC=α,∠BOC=120-α ∵OD平分∠AOC,OE平分∠BOC ∴∠COD= ,∠COE= ∴∠DOE=∠COD+∠COE= + = =60°∴∠DOE=60°与OC位置无关.【解析】【解答】解:(1)∵AB=12cm,点D、E分别是AC和BC的中点,C点为AB的中点,∴AC=BC=7cm,∴CD=CE=3.5cm,∴DE=7cm,.【分析】(1)根据中点的定义AC=BC=AB,DC=AC,CE=CB,然后根据DE=DC+CE即可算出答案;(2)首先根据BC=AB-AC 算出BC,根据中点的定义DC=AC,CE=CB,然后根据DE=DC+CE即可算出答案;(3)首先根据BC=AB-AC 表示出BC,根据中点的定义DC=AC,CE=CB,然后根据DE=DC+CE=AC+CB=(AC+CB)=AB即可算出答案;(4)根据角平分线的定义∠COD =∠AOC ,∠COE =∠BOC ,然后根据∠DOE=∠COD+∠COE =∠COD+∠COE=(∠COD+∠COE)=∠AOB即可得出答案。

人教版七年级上册数学 有理数(提升篇)(Word版 含解析)

人教版七年级上册数学 有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.4.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。

福州市三牧中学数学整式的乘法与因式分解(提升篇)(Word版 含解析)

福州市三牧中学数学整式的乘法与因式分解(提升篇)(Word版 含解析)

一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.(1)你能求出(a ﹣1)(a 99+a 98+a 97+…+a 2+a +1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值. (a ﹣1)(a +1)= ;(a ﹣1)(a 2+a +1)= ;(a ﹣1)(a 3+a 2+a +1)= ;…由此我们可以得到:(a ﹣1)(a 99+a 98+…+a +1)= .(2)利用(1)的结论,完成下面的计算:2199+2198+2197+…+22+2+1.【答案】(1)21a -,31a -,41a -,1001a -(2)20021-【解析】【分析】根据简单的多项式运算推出同类复杂多项式运算结果的一般规律,然后根据找出的规律进行解决较难的运算问题.【详解】解:(1)21a - 31a - 41a - 1001a -(2)1991981972222221+++⋅⋅⋅++=()21- ⨯(1991981972222221+++⋅⋅⋅++)=20021-.【点睛】考查了学生的基础运算能力和对同一类运算问题计算结果的一般规律性洞察力.2.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到()()22322a ab b a b a b ++=++.请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x ,y 的式子表示) ; (3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”).【答案】(1)22(2)(2)225a b a b a b ab ++=++;(2)22()()4x y x y xy +=-+;(3)大 小【解析】【分析】(1)图2面积有两种求法,可以由长为2a+b ,宽为a+2b 的矩形面积求出,也可以由两个边长为a 与边长为b 的两正方形,及4个长为a ,宽为b 的矩形面积之和求出,表示即可; (2)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式224()()xy x y x y =+--,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知,22(2)(2)225a b a b a b ab ++=++(2)22()()4x y x y xy +=-+(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.3.(1)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.【答案】(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -;3223()()a b a a b ab b -+++=44a b -;故答案为22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=n n a b -,故答案为n n a b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型.4.阅读下列解题过程,再解答后面的题目.例题:已知224250x y y x ++-+=,求x y +的值. 解:由已知得22(21)(44)0x x y y -++++=即22(1)(2)0x y -++=∵2(1)0x -≥,2(2)0y +≥ ∴有1020x y -=⎧⎨+=⎩,解得12x y =⎧⎨=-⎩∴1x y +=-.题目:已知22464100x y x y +-++=,求xy 的值. 【答案】-32【解析】【分析】 先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x 、y 的值,再代入求出xy 的值.【详解】解:将22464100x y x y +-++=,化简得22694410x x y y -++++=,即()()223210x y -++=.∵()230x -≥,()2210y +≥,且它们的和为0,∴3x = ,12y, ∴12233xy ⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题考查的是完全平方公式的应用,解题的关键是将左边的式子写成两个完全平方的和的形式.5.阅读材料小明遇到这样一个问题:求计算()()()22334x x x+++所得多项式的一次项系数.小明想通过计算()()()22334x x x+++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x+中的一次项系数1乘以23x+中的常数项3,再用2x+中的常数项2乘以23x+中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数.延续上面的方法,求计算()()()22334x x x+++所得多项式的一次项系数,可以先用2x+的一次项系数1,23x+的常数项3,34+x的常数项4,相乘得到12;再用23x+的一次项系数2,2x+的常数项2,34+x的常数项4,相乘得到16;然后用34+x的一次项系数3,2x+的常数项223x+的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x+-+所得多项式的一次项系数为_____________.(3)若231x x-+是422x ax bx+++的一个因式,求a、b的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【解析】【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x4+ax2+bx+2中4次项系数为1、常数项为2可设另一个因式为x2+mx+2,根据三次项系数为0、二次项系数为a、一次项系数为b列出方程组求出a、b的值,可得答案.【详解】解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为:19;(2)()()()13225x x x+-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1,故答案为:1;(3)由x4+ax2+bx+2中4次项系数为1、常数项为2可设另一个因式为x2+mx+2,则(x2-3x+1)(x2+mx+2)=x4+ax2+bx+2,13101211(3)321mm am b⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为:a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.6.你会对多项式(x 2+5x+2)(x 2+5x+3)﹣12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.对于(x 2+5x+2)(x 2+5x+3)﹣12.解法一:设x 2+5x =y ,则原式=(y+2)(y+3)﹣12=y 2+5y ﹣6=(y+6)(y ﹣1)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).解法二:设x 2+5x+2=y ,则原式=y(y+1)﹣12=y 2+y ﹣12=(y+4)(y ﹣3)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).解法三:设x 2+2=m ,5x =n ,则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n ﹣3)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).按照上面介绍的方法对下列多项式分解因式:(1)(x 2+x ﹣4)(x 2+x+3)+10;(2)(x+1)(x+2)(x+3)(x+6)+x 2;(3)(x+y ﹣2xy)(x+y ﹣2)+(xy ﹣1)2.【答案】(1) (x+2)(x-1) (2 x x ++1)(2)(266x x ++)2(3) (x+y-xy-1)2【解析】【分析】(1)令m=2x x +,原式=()()4m 310m -++因式分解即可;(2)()()()()21236x x x x x +++++=(276x x ++)(256x x ++)+2x ,令n=256x x ++,再将原式=(n+2)n+x 2进行因式分解即可;(3)令a=x+y,b=xy ,代入原式即可因式分解.【详解】(1)令m=2x x +,原式=()()4m 310m -++=m 2-m-2=(m-2)(m+1)= (2x x +-2)(2x x ++1)=(x+2)(x-1) (2x x ++1)(2)()()()()21236x x x x x +++++=(276x x ++)(256x x ++)+2x , 令n=256x x ++,原式=(n+2)n+x 2=n 2+2n+x 2=(n+x)2=(266x x ++)2(3) 令a=x+y,b=xy ,原式=()()()2221a b a b --+-=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2【点睛】此题主要考查复杂的因式分解,解题的关键是读懂材料学会材料中因式分解的方法.7.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数即是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,321=+,∴321是“和数”,2232-1=,∴321是“谐数”,∴321是“和谐数”.(1)最小的和谐数是 ,最大的和谐数是 ;(2)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(3)已知103817m b c =++(0714b c ≤≤≤≤,,且,b c 均为整数)是一个“和数”,请求出所有m .【答案】(1)110;954;(2)见解析;(3)880m =或853或826.【解析】【分析】(1)根据“和数”与“谐数”的概念求解可得;(2)设“谐数”的百位数字为x 、十位数字为y ,个位数字为z ,根据“谐数”的概念得x=y 2-z 2=(y+z )(y-z ),由x+y+z=(y+z )(y-z )+y+z=(y+z )(y-z+1)及y+z 、y-z+1必然一奇一偶可得答案;(3)先判断出2≤b+2≤9、10≤3c+7≤19,据此可得m=10b+3c+817=8×100+(b+2)×10+(3c-3),根据“和数”的概念知8=b+2+3c-3,即b+3c=9,从而进一步求解可得.【详解】(1)最小的和谐数是110,最大的和谐数是954.(2)设:“谐数”的百位数字为x ,十位数字为y ,个位数字为z(19,09,09x y z ≤≤≤≤≤≤且 y z >且 ,,x y z 均为正数),由题意知,()()22x y z y z y z =-=+-,∴()()()()1x y z y z y z y z y z y z ++=+-++=+-+,z∵y z +与y z -奇偶性相同,∴y z +与1y z -+必一奇一偶,∴()()1y z y z +-+必是偶数,∴任意“谐数”的各个数位上的数字之和一定是偶数;(3)∵07b ≤≤,∴229b ≤+≤,∵14c ≤≤,∴3312c ≤≤,∴103719c ≤+≤,∴817103m b c =++,()()810011037b c =⨯++⨯++()()81002103710b c =⨯++⨯++-()()810021033b c =⨯++⨯+-,∵m 为和数,∴8233b c =++-,即39b c +=,∴61b c =⎧⎨=⎩或32b c =⎧⎨=⎩或03b c =⎧⎨=⎩, ∴880m =或853或826.【点睛】本题考查因式分解的应用,解题的关键是理解题意、熟练掌握“和数”与“谐数”的概念及整式的运算、不等式的性质.8.对于任意两个数a 、b 的大小比较,有下面的方法:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.请根据以上材料完成下面的题目:(1)已知:228A x y y =+,8B xy =,且A B >,试判断y 的符号;(2)已知:a 、b 、c 为三角形的三边,比较222a c b +-和2ac 的大小.【答案】(1)y >0;(2)222a c b +-<2ac【解析】【分析】(1)根据题意得到22880x y y xy +->,因式分解得到22(2)0y x ->,进而得到y 的符号即可;(2)将222a c b +-和2ac 作差,结合已知及三角形的两边之和大于第三边可求.【详解】解:(1)因为A >B ,所以A-B >0,即22880x y y xy +->,∴222(44)2(2)0y x x y x +-=->,因为2(2)0x -≥,∴y >0(2)因为a 2−b 2+c 2−2a c =a 2+c 2−2ac−b 2=(a−c )2−b 2=(a−c−b )(a−c +b ), ∵a +b >c ,a <b +c ,所以(a−c−b )(a−c +b )<0,所以a 2−b 2+c 2−2ac 的符号为负.∴222a c b +-<2ac【点睛】本题考查了作差法比较两个式子的大小以及因式分解,解题的关键是理解题中的“求差法”比较两个数的大小,并熟练掌握因式分解的方法.9.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2﹣1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____.(3)化简:(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).【答案】232﹣1 32312-; 【解析】【分析】(1)原式变形后,利用题中的规律计算即可得到结果;(2)原式变形后,利用题中的规律计算即可得到结果;(3)分m=n 与m≠n 两种情况,化简得到结果即可.【详解】(1)原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=232-1;(2)原式=12(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=32312-;(3)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).当m≠n时,原式=1m n-(m-n)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16)=3232m nm n--;当m=n时,原式=2m•2m2…2m16=32m31.【点睛】此题考查了平方差公式,弄清题中的规律是解本题的关键.10.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.【答案】(1)可以形成的数字密码是:212814、211428;(2)m的值是56,n的值是17.【解析】【分析】(1)先将多项式进行因式分解,然后再根据数字密码方法形成数字密码即可;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),当x=27时可以得到其中一个密码为242834,得到方程解出p、q、r,然后回代入原多项式即可求得m、n【详解】(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴3517m nn-=⎧⎨-=-⎩得,5617mn=⎧⎨=⎩即m的值是56,n的值是17.【点睛】本题属于阅读理解题型,考查知识点以因式分解为主,本题第一问关键在于理解题目中给到的数字密码的运算规则,第二问的关键在于能够将原多项式设成(x+p)(x+q)(x+r),解出p、q、r。

2024届福建省福州市三牧中学中考数学全真模拟试卷含解析

2024届福建省福州市三牧中学中考数学全真模拟试卷含解析

2024届福建省福州市三牧中学中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是()A.2 B.C.D.2.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是()A.216000米B.0.00216米C.0.000216米D.0.0000216米3.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD .现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.134.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为()A.B.C.D.5.在下列条件中,能够判定一个四边形是平行四边形的是( )A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线6.直线y=3x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.下列图形中,既是中心对称图形又是轴对称图形的是( )A.B.C.D.8.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°9.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是( )A.点A B.点B C.点C D.点D10.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A .(﹣91255,)B .(﹣12955,)C .(﹣161255,)D .(﹣121655,) 二、填空题(共7小题,每小题3分,满分21分)11.要使式子2x -有意义,则x 的取值范围是__________.12.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.13.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG =(3﹣2,﹣2),OH =(3+2,12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).14.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于________.15.关于x 的一元二次方程2210ax x -+=有实数根,则a 的取值范围是 __________.16.图,A ,B 是反比例函数y=k x图象上的两点,过点A 作AC ⊥y 轴,垂足为C ,AC 交OB 于点D .若D 为OB 的中点,△AOD 的面积为3,则k 的值为________.17.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.三、解答题(共7小题,满分69分)18.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.19.(5分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.20.(8分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p=14t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?21.(10分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.(Ⅰ)收集、整理数据请将表格补充完整:(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.22.(10分)问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,2,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.23.(12分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.24.(14分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】当⊙C与AD相切时,△ABE面积最大,连接CD,则∠CDA=90°,∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD==2,∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴即,∴OE=,∴BE=OB+OE=2+∴S△ABE=BE?OA=×(2+)×2=2+故答案为C.2、B【解题分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】2.16×10﹣3米=0.00216米.故选B.【题目点拨】考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、D【解题分析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【题目详解】解:如图,连接OC、OD、BD,∵点C、D是半圆O的三等分点,∴==AC CD DB,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD 是等边三角形,∴OC=OD=CD ,∵2CD =,∴2OC OD CD ===,∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD ,∴=BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD , 飞镖落在阴影区域的概率21233ππ=÷=, 故选:D .【题目点拨】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.4、A【解题分析】过O 作OC ⊥AB 于C ,过N 作ND ⊥OA 于D ,设N 的坐标是(x ,x+3),得出DN=x+3,OD=-x ,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC ,代入求出OC ,根据sin45°=,求出ON ,在Rt △NDO 中,由勾股定理得出(x+3)2+(-x )2=()2,求出N 的坐标,得出ND 、OD ,代入tan ∠AON=求出即可.【题目详解】过O 作OC ⊥AB 于C ,过N 作ND ⊥OA 于D ,∵N在直线y=x+3上,∴设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=,∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=,∴ON=,在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,∵N在第二象限,∴x只能是-,x+3=,即ND=,OD=,tan∠AON=.故选A.【题目点拨】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.5、C【解题分析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.6、D【解题分析】利用两点法可画出函数图象,则可求得答案.【题目详解】在y=3x+1中,令y=0可得x=-13,令x=0可得y=1,∴直线与x轴交于点(-13,0),与y轴交于点(0,1),其函数图象如图所示,∴函数图象不过第四象限,故选:D.【题目点拨】本题主要考查一次函数的性质,正确画出函数图象是解题的关键.7、C【解题分析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.8、D【解题分析】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【题目点拨】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.9、B【解题分析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.10、A【解题分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【题目详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C 1NO=∠A 1MO=90°, ∠1=∠2=∠1, 则△A 1OM ∽△OC 1N , ∵OA=5,OC=1, ∴OA 1=5,A 1M=1, ∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1, 则(1x )2+(4x )2=9, 解得:x=±35(负数舍去), 则NO=95,NC 1=125,故点C 的对应点C 1的坐标为:(-95,125). 故选A . 【题目点拨】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键.二、填空题(共7小题,每小题3分,满分21分) 11、x 2 【解题分析】根据二次根式被开方数必须是非负数的条件可得关于x 的不等式,解不等式即可得. 【题目详解】 由题意得: 2-x≥0, 解得:x≤2, 故答案为x≤2. 12、16000 【解题分析】用毕业生总人数乘以“综合素质”等级为A 的学生所占的比即可求得结果. 【题目详解】∵A ,B ,C ,D ,E 五个等级在统计图中的高之比为2:3:3:1:1, ∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×223311++++=16000,故答案为16000. 【题目点拨】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 13、①③④ 【解题分析】分析:根据两个向量垂直的判定方法一一判断即可; 详解:①∵2×(−1)+1×2=0, ∴OC 与OD 垂直;②∵33cos301tan45sin6022⨯+⋅=+= ∴OE 与OF 不垂直.③∵()1202+-⨯=, ∴OG 与OH 垂直. ④∵()02210π⨯+⨯-=, ∴OM 与ON 垂直. 故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义. 14、70° 【解题分析】试题分析:由平角的定义可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因为a∥b ,所以∠4=∠1=70°. 故答案为70°. 考点:角的计算;平行线的性质.15、a≤1且a≠0 【解题分析】∵关于x 的一元二次方程2210ax x -+=有实数根,∴()20240a a ≠⎧⎪⎨=--≥⎪⎩ ,解得:a 1≤, ∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ; (2)这道一元二次方程有实数根,因此()2240a =--≥ ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略. 16、1. 【解题分析】先设点D 坐标为(a ,b ),得出点B 的坐标为(2a ,2b ),A 的坐标为(4a ,b ),再根据△AOD 的面积为3,列出关系式求得k 的值.解:设点D 坐标为(a ,b ), ∵点D 为OB 的中点, ∴点B 的坐标为(2a ,2b ), ∴k=4ab ,又∵AC ⊥y 轴,A 在反比例函数图象上, ∴A 的坐标为(4a ,b ), ∴AD=4a ﹣a=3a , ∵△AOD 的面积为3, ∴×3a×b=3, ∴ab=2, ∴k=4ab=4×2=1. 故答案为 1“点睛”本题主要考查了反比例函数系数k 的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD 的面积为1列出关系式是解题的关键.17、3【解题分析】连接OA,作OM⊥AB于点M,∵正六边形ABCDEF的外接圆半径为2cm ∴正六边形的半径为2 cm,即OA=2cm 在正六边形ABCDEF中,∠AOM=30°,∴正六边形的边心距是OM= cos30°×OA=3232⨯=(cm)故答案为3.三、解答题(共7小题,满分69分)18、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.【解题分析】(1)根据图形平移的性质画出平移后的△DEC即可;(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【题目详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD 是矩形, ∴OA=OB , ∴DE=CE ,∴四边形OCED 是菱形. 【题目点拨】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.19、(1)b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)();(2)详见解析.【解题分析】(1)分别设两段函数图象的解析式,代入图象上点的坐标求解即可;(2)先求出农场从A 、B 公司购买铵肥的费用,再求出农场从A 、B 公司购买铵肥的运输费用,两者之和即为总费用,可以求出总费用关于x 的解析式是一次函数,根据m 的取值范围不同分两类讨论,可得出结论. 【题目详解】(1)有图象可得,函数图象分为两部分,设第一段函数图象为y =k 1x ,代入点(4,12),即12=k 1×4,可得k 1=3,设第二段函数图象为y =k 2x +c ,代入点(4,12)、(8,32)可列出二元一次方程组224k +c=128k +c=32⎧⎨⎩,解得:k 2=5,c =-8,所以函数解析式为:b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)();(2)农场从A 公司购买铵肥的费用为750x 元,因为B 公司有铵肥7吨,1≤x ≤3,故农场从B 公司购买铵肥的重量(8-x )肯定大于5吨,农场从B 公司购买铵肥的费用为700(8-x )元,所以购买铵肥的总费用=750x +700(8-x )=50x +5600(0≤x ≤3);农场从A 公司购买铵肥的运输费用为3xm 元,且满足1≤x ≤3,农场从B 公司购买铵肥的运输费用为[5(8-x )-8]×2m 元,所以购买铵肥的总运输费用为3xm +[5(8-x )-8]×2m =-7mx +64m 元,因此农场购买铵肥的总费用y =50x +5600-7mx +64m =(50-7m )x +5600+64m (1≤x ≤3),分一下两种情况进行讨论; ①当50-7m ≥0即m ≤507时,y 随x 的增加而增加,则x =1使得y 取得最小值即总费用最低,此时农场铵肥的购买方案为:从A 公司购买1吨,从B 公司购买7吨, ②当50-7m <0即m >507时,y 随x 的增加而减少,则x =3使得y 取得最小值即总费用最低,此时农场铵肥的购买方案为:从A 公司购买3吨,从B 公司购买5吨. 【题目点拨】本题主要考查了方案比较以及函数解析式的求解,解本题的要点在于根据题意列出相关方程式.20、 (1)y=﹣2t+200(1≤t≤80,t 为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.【解题分析】(1)根据函数图象,设解析式为y=kt+b ,将(1,198)、(80,40)代入,利用待定系数法求解可得;(2)设日销售利润为w ,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时t 的值,结合函数图象即可得出答案; 【题目详解】(1)设解析式为y=kt+b ,将(1,198)、(80,40)代入,得:1988040k b k b +=⎧⎨+=⎩ ,解得:2200k b =-⎧⎨=⎩,∴y=﹣2t+200(1≤t≤80,t 为整数); (2)设日销售利润为w ,则w=(p ﹣6)y , 当1≤t≤80时,w=(14t+16﹣6)(﹣2t+200)=﹣12(t ﹣30)2+2450, ∴当t=30时,w 最大=2450;∴第30天的日销售利润最大,最大利润为2450元. (3)由(2)得:当1≤t≤80时,w=﹣12(t ﹣30)2+2450, 令w=2400,即﹣12(t ﹣30)2+2450=2400,解得:t 1=20、t 2=40, ∴t 的取值范围是20≤t≤40, ∴共有21天符合条件. 【题目点拨】本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.21、(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%. 【解题分析】(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3% .【题目详解】(Ⅰ)年份2014 2015 2016 2017 2018动车组发送旅客量a 亿人次0.87 1.14 1.46 1.80 2.17铁路发送旅客总量b 亿人次 2.52 2.76 3.07 3.42 3.82动车组发送旅客量占比× 100 34.5 % 41.3 % 47.6 % 52.6 % 56.8 %(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,故答案为折线图;(Ⅲ)预估2019 年春运期间动车组发送旅客量占比约为60%,预估理由是之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【题目点拨】本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.22、(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解题分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【题目详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【题目点拨】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.23、证明见解析. 【解题分析】【分析】求出BF=CE ,根据SAS 推出△ABF ≌△DCE ,得对应角相等,由等腰三角形的判定可得结论. 【题目详解】∵BE=CF ,∴BE+EF=CF+EF , ∴BF=CE ,在△ABF 和△DCE 中AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DCE (SAS ), ∴∠GEF=∠GFE , ∴EG=FG .【题目点拨】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.24、今年的总收入为220万元,总支出为1万元. 【解题分析】试题分析:设去年总收入为x 万元,总支出为y 万元,根据利润=收入-支出即可得出关于x 、y 的二元一次方程组,解之即可得出结论. 试题解析:设去年的总收入为x 万元,总支出为y 万元.根据题意,得()()50110%120%100x y x y -=⎧⎨+--=⎩, 解这个方程组,得200150x y =⎧⎨=⎩, ∴(1+10%)x =220,(1-20%)y =1.答:今年的总收入为220万元,总支出为1万元.。

2023-2024学年福建省福州市鼓楼区三牧中学九年级(上)期中数学试卷(含解析)

2023-2024学年福建省福州市鼓楼区三牧中学九年级(上)期中数学试卷(含解析)

2023-2024学年福建省福州市鼓楼区三牧中学九年级(上)期中数学试卷一.选择题。

(共10小题,每小题4分,共40分)1.(4分)下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是( )A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线2.(4分)若一个圆内接正多边形的中心角是60°,则这个多边形是( )A.正九边形B.正八边形C.正七边形D.正六边形3.(4分)抛物线y=x2﹣4x+3与y轴的交点坐标为( )A.(3,0)B.(0,3)C.(1,0)D.(0,1)4.(4分)如图,△ABC内接于⊙O,∠A=40°,则∠BOC的度数为( )A.20°B.40°C.60°D.80°5.(4分)若1是关于x的一元二次方程ax2﹣a2x=0的一个根,则a的值为( )A.﹣1B.0C.1D.0或16.(4分)如图,在△ABC中,∠ACB=90°,∠A=60°,AB=6.将△ABC绕点C沿逆时针方向旋转至△A′B′C的位置,此时,点A′恰好在AB上,则点B与点B′的距离是( )A .6B .C .D .7.(4分)将二次函数y =(x +3)2﹣10的图象先向右平移2个单位长度,再向上平移8个单位长度,得到的抛物线的解析式是( )A .y =(x +5)2﹣2B .y =(x ﹣1)2+2C .y =(x +1)2﹣2D .y =(x ﹣5)2+28.(4分)如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°9.(4分)如图,点I 为△ABC 的内心,AB =5,AC =4,BC =3,将∠ACB 平移使其顶点与I 重合,则图中阴影部分的面积为( )A .1B .C .D .10.(4分)如图,在△ABO 中,∠AOB =90°,∠BAO =30°,BO =6,⊙O 的面积为12π,点M ,N 分别在⊙O 、线段AB 上运动,则MN 长度的最小值等于( )A.B.C.D.二.填空题。

福州市三牧中学数学分式填空选择(提升篇)(Word版 含解析)

福州市三牧中学数学分式填空选择(提升篇)(Word版 含解析)
2.若解分式方程 产生增根,则m=_____.
【答案】-5
【解析】
【分析】
【详解】
试题分析:根据分式方程增根的产生的条件,可知x+4=0,解得x=-4,然后把分式方程化为整式方程x-1=m,解得m=-5
故答案为-5.
3.阅读材料:方程 的解为 ,方程 的解为 ,方程 的解为 ,根据你发现的方程的规律,写出解是 的对应方程为____________________.
方案二所用时间为 ,则 , ,
∴ ,
∵ , ,
∴ ,
∴ ,即: ,
∴方案二所用的时间少.
【点睛】
本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.
12.已知下面一列等式:
; ; ; ;…
(1)请你按这些等式左边的结构特征写出它的一般性等式:
(2)验证一下你写出的等式是否成立;
(A)甲队单独完成这项工程,刚好如期完成;
(B)乙队单独完成这项工程要比规定工期多用4天;
(C)若甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工.
为了节省工程款,同时又能如期完工,你认为应选择哪一种方案?并说明理由.
【答案】为了节省工程款,同时又能如期完工,应选C方案.
【解析】
试题分析:设完成工程规定工期为x天,根据等量关系:甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工,列方程,求解即可得到甲、乙工程队单独完成所需的天数,然后求出每种方案所需的工程款,比较即可得出结论.
(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.
【详解】
(1)设乙工程队每天道路的长度为 米,则甲工程队每天道路的长度为 米,

福建省福州三牧中学2024届中考三模数学试题含解析

福建省福州三牧中学2024届中考三模数学试题含解析

福建省福州三牧中学2024届中考三模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列计算正确的是( ) A .a 2+a 2=a 4B .a 5•a 2=a 7C .(a 2)3=a 5D .2a 2﹣a 2=22.如图,已知点A (0,1),B (0,﹣1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则∠BAC 等于( )A .90°B .120°C .60°D .30°3.在平面直角坐标系中,有两条抛物线关于x 轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=2x +6x+m ,则m 的值是 ( ) A .-4或-14B .-4或14C .4或-14D .4或144.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-5.下列计算正确的是( ) A .﹣2x ﹣2y 3•2x 3y =﹣4x ﹣6y 3 B .(﹣2a 2)3=﹣6a 6 C .(2a +1)(2a ﹣1)=2a 2﹣1D .35x 3y 2÷5x 2y =7xy6.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ; ②a ﹣b+c <0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.47.下列多边形中,内角和是一个三角形内角和的4倍的是()A.四边形B.五边形C.六边形D.八边形8.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC 的长为()A.16 B.14 C.12 D.69.不等式组的解集在数轴上表示正确的是()A.B.C. D.10.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()A.30 B.27 C.14 D.3211.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为()A.2.536×104人B.2.536×105人C.2.536×106人D.2.536×107人12.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若8x -有意义,则x 的取值范围是 . 14.已知点A (a ,y 1)、B (b ,y 2)在反比例函数y=3x的图象上,如果a <b <0,那么y 1与y 2的大小关系是:y 1__y 2;15.如图,Rt △ABC 中,∠ACB=90°,∠A=15°,AB 的垂直平分线与AC 交于点D ,与AB 交于点E ,连接BD .若AD=14,则BC 的长为_____.16.已知实数x ,y 满足2(x 5)y 70-+-=,则以x ,y 的值为两边长的等腰三角形的周长是______.17.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m 、n 的式子表示AB 的长为______.18.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖______块;第n 个图案有白色地面砖______块.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树180棵,由于同学们的积极参与,实际参加的人数比原计划增加了50%,结果每人比原计划少栽了2棵,问实际有多少人参加了这次植树活动? 20.(6分)如图,已知直线AB 与轴交于点C ,与双曲线交于A (3,)、B (-5,)两点.AD ⊥轴于点D ,BE ∥轴且与轴交于点E.求点B 的坐标及直线AB 的解析式;判断四边形CBED 的形状,并说明理由.21.(6分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.22.(8分)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.23.(8分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.24.(10分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?25.(10分)如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE 为菱形.26.(12分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.27.(12分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点 D 重合时,x 的值为0),PB+PE=y.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:x 0 1 2 3 4 5 6y 5.2 4.2 4.6 5.9 7.6 9.5说明:补全表格时,相关数值保留一位小数.(参考数据:2≈1.414,3≈1.732,5≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y 的最小值(保留一位小数),此时点P 在图 1 中的什么位置.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【解题分析】根据整式的加减乘除乘方运算法则逐一运算即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间
,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经
过 y 秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差
时间
,列出方程求解即可.
2.阅读填空,并完成问题:“绝对值”一节学习后,数学老师对同学们的学习进行了拓展. 数学老师向同学们提出了这样的问题:“在数轴上,一个数的绝对值就是表示这个数的点到 原点的距离.那么,如果用 P(a)表示数轴上的点 P 表示有理数 a,Q(b)表示数轴上的点 Q 表示有理数 b,那么点 P 与点 Q 的距离是多少?” (1)聪明的小明经过思考回答说:这个问题应该有两种情况.一种是点 P 和点 Q 在原点的 两侧,此时点 P 与点 Q 的距离是 a 和 b 的绝对值的和,即∣ a∣ +∣ b∣ .例如:点 A(- 3)与点 B(5)的距离为∣ -3∣ +∣ -5∣ =________; 另一种是点 P 和点 Q 在原点的同侧,此时点 P 与点 Q 的距离的 a 和 b 中,较大的绝对值减 去较小的绝对值,即∣ a∣ -∣ b∣ 或∣ b∣ -∣ a∣ .例如:点 A(-3)与点 B(-5)的距 离为∣ -5∣ -∣ -3∣ =________; 你认为小明的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿
(3)解:点 P 在 A→B 上运动,且相遇时,4t=4+t,t= ,
当 0≤1≤ 时,PQ=4-3t
×( - ) +…+
,计算即可求出结果。
4.观察下面的式子:
,
,
,
(1)你发现规律了吗?下一个式子应该是________;
(2)利用你发现的规律,计算:
【答案】 (1)
(2)解:
=
=
=
=.
【解析】【解答】(1)根据规律,下一个式子是: 【分析】(1)规律:两个自然数(0 除外)的乘积的倒数等于这两个自然数倒数的差,据 此写出结论即可; (2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.
求出数轴上点 M( )与 N( )之间和点 C(-2)与 D(-7)之间的距离. ________ (2)小颖在听了小明的方法后,提出了不同的方法,小颖说:我们可以不考虑点 P 和点 Q 所在的位置,无论点 P 与点 Q 的位置如何,它们之间的距离就是数 a 与 b 的差的绝对值, 即∣ a-b∣ .例如:点 A(-3)与点 B(5)的距离就是∣ -3-5∣ =________;点 A(- 3)与点 B(-5)的距离就是∣ (-3)-(-5)∣ = ________;你认为小颖的说法有道理 吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点 M
= ×( - ); …
(1)按以上规律列出第 5 个等式: =________=________;
(2)用含 n 的代数式表示第 n 个等式: =________=________(n 为正整数);
(3)求
的值.
【答案】 (1)

(2)

(3)解:a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+ ×( - ) +…+
和。原点同侧两点之间的距离即绝对值大的减去绝对值小的。
(2)根据数轴上两点之间距离的意义,小颖说的也有意义。列出等式代数求值即可。
3.观察下列等式:
第 1 个等式: =
= ×(1- );
第 2 个等 式: =
= ×( - );
第 3 个等式: = 请回答下列问题:
= ×( - );第 4 个等式: =
一、初一数学有理数解答题压轴题精选(难)
1.列方程解应用题 如图,在数轴上的点 A 表示 ,点 B 表示 5,若有两只电子蜗牛甲、乙分别从 A、B 两 点同时出发,保持匀速运动,甲的平均速度为 2 单位长度 秒,乙的平均速度为 1 单位长 度 秒 请问:
(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________. (2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?
【答案】 (1)3;2 (2)解:设两只蜗牛都向正方向而行,经过 y 秒后蜗牛甲能追上蜗牛乙,依题意有

解得

答:两只蜗牛都向正方向而行,经过 9 秒后蜗牛甲能追上蜗牛乙 【解析】【解答】解:(1)设两只蜗牛相向而行,经过 x 秒相遇,依题意有

解得


答:两只蜗牛相向而行,经过 3 秒相遇,此时对应点上的数是 2. 【分析】(1)可设两只蜗牛相向而行,经过 x 秒相遇,根据等量关系:两只蜗牛的速度和
5.如图,点 A、B、C 在数轴上表示的数分别是-3、1、5。动点 P、Q 同时出发,动点 P 从 点 A 出发,以每秒 4 个单位的速度沿 A→B→A 匀速运动回到点 A 停止运动.动点 Q 从点 C 出发,以每秒 1 个单位的速度沿 C→B 向终点 B 匀速运动.设点 P 的运动时间为 t(s)。
(1)当点 P 到达点 B 时,点 Q 表示的数为________。 (2)当 t=1 时,求点 P、Q 之间的距离。 (3)当点 P 在 A→B 上运动时,用含 t 的代数式表示点 P、Q 之间的距离。 (4)当点 P、Q 到点 C 的距离相等时,直接写出 t 的值。 【答案】 (1)3 (2)解:当 t=1 时,AP=4,CQ=1,PQ=1 所以点 P、Q 之间的距离是 1
( )与 N( )之间和点 C(-1.5)与 D(-3.5)之间的距离.________
【答案】 (1)解:8;2;有道理;点 M 与点 N 之间的距离为 点 C 与点 D 之间的距离为
(2)解:8;2;有道理;点 M 与点 N 之间的距离为
点 C 与点
的之间的距离为
【解析】【分析】(1)数轴上的点,原点两侧两点之间的距离即点到原点绝对值的相加之
=.
【解析】【解答】解:(1)第 5 个等式:a5=

故答案为
.
( 2 )a的规律,就可列出第 5 个等式,计算可求解。
(2)根据以上规律,就可用含 n 的代数式表示出第 n 个代数式。
(3)根据以上的规律,可得出 a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+
相关文档
最新文档