中考数学试题专题矩形、菱形、正方形试题及答案
备战中考数学分点透练真题矩形、菱形、正方形(解析版)

第十九讲矩形、菱形、正方形命题点1 矩形的相关证明与计算1.(2020•怀化)在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD 的面积为()A.4B.6C.8D.10【答案】C【解答】解:∵四边形ABCD是矩形,对角线AC、BD相交于点O,∴AC=BD,且OA=OB=OC=OD,∴S△ADO=S△BCO=S△CDO=S△ABO=2,∴矩形ABCD的面积为4S△ABO=8,故选:C.2.(2021•遂宁)如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把△CDE 沿DE翻折,点C恰好落在AB边上的F处,则CE的长是()A.1B.C.D.【答案】D【解答】解:设CE=x,则BE=3﹣x.由折叠性质可知,EF=CE=x,DF=CD=AB=5.在Rt△DAF中,AD=3,DF=5.∴AF=4.∴BF=AB﹣AF=1.在Rt△BEF中,BE2+BF2=EF2.即(3﹣x)2+12=x2.解得x=.故选:D.3.(2021•黑龙江)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件,使平行四边形ABCD是矩形.【答案】∠ABC=90°(答案不唯一)【解答】解:添加一个条件为:∠ABC=90°,理由如下:∵四边形ABCD是平行四边形,∠ABC=90°,∴平行四边形ABCD是矩形,故答案为:∠ABC=90°(答案不唯一).4.(2021•贵港)如图,在矩形ABCD中,BD是对角线,AE⊥BD,垂足为E,连接CE,若tan∠ADB=,则tan∠DEC的值是.【答案】【解答】解:如图,过点C作CF⊥BD于点F,在△ABE与△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,BE=FD,∵AE⊥BD,tan∠ADB==,设AB=a,则AD=2a,∴BD=a,∵S△ABD=BD•AE=AB•AD,∴AE=CF=a,∴BE=FD=a,∴EF=BD﹣2BE=a﹣a=a,∴tan∠DEC==,故答案为:.5.(2021•十堰)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.【答案】20【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.6.(2021•嘉峪关)如图,在矩形ABCD中,E是BC边上一点,∠AED=90°,∠EAD=30°,F是AD边的中点,EF=4cm,则BE=cm.【答案】6【解答】解:∵∠AED=90°,F是AD边的中点,EF=4cm,∴AD=2EF=8cm,∵∠EAD=30°,∴AE=AD•cos30°=8×=4cm,又∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠BEA=∠EAD=30°,在Rt△ABE中,BE=AE•cos∠BEA=4×cos30°=4×=6(cm),故答案为:6.7.(2021•绍兴)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若AB=30cm,则BC长为cm(结果保留根号).【答案】【解答】解:过O点作OE⊥CD,OF⊥AD,垂足分别为E,F,由题意知∠FOD=2∠DOE,∵∠FOD+∠DOE=90°,∴∠DOE=30°,∠FOD=60°,在矩形ABCD中,∠C=90°,CD=AB=30cm,∴OE∥BC,∴∠DBC=∠DOE=30°,∴BC=CD=cm,故答案为.8.(2021•内江)如图,矩形ABCD中,AB=6,BC=8,对角线BD的垂直平分线EF交AD 于点E、交BC于点F,则线段EF的长为.【答案】【解答】解:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD==10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴=,∴=,解得,OF=,∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分线,∴BO=DO,EF⊥BD,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴EF=2OF=.故答案为:.9.(2021•枣庄)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:①OE⊥BD;②∠ADB =30°;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形,其中,判断正确的是.(填序号)【答案】①③④【解答】解:①∵四边形ABCD是矩形,∴EB=ED,∵BO=DO,∴OE⊥BD故①正确;②∵∠BOD=45°,BO=DO,∴∠ABD=(180°﹣45°)=67.5°,∴∠ADB=90°﹣27.5°=22.5°,故②错误;③∵四边形ABCD是矩形,∴∠OAD=∠BAD=90°,∴∠ABD+∠ADB=90°,∵OB=OD,BE=DE,∴OE⊥BD,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵∠BOD=45°,∠OAD=90°,∴∠ADO=45°,∴AO=AD,∴△AOF≌△ABD(ASA),∴OF=BD,∴AF=AB,连接BF,如图1,∴BF=AF,∵BE=DE,OE⊥BD,∴DF=BF,∴DF=AF,故③正确;④根据题意作出图形,如图2,∵G是OF的中点,∠OAF=90°,∴AG=OG,∴∠AOG=∠OAG,∵∠AOD=45°,OE平分∠AOD,∴∠AOG=∠OAG=22.5°,∴∠F AG=67.5°,∠ADB=∠AOF=22.5°,∵四边形ABCD是矩形,∴EA=ED,∴∠EAD=∠EDA=22.5°,∴∠EAG=90°,∵∠AGE=∠AOG+∠OAG=45°,∴∠AEG=45°,∴AE=AG,∴△AEG为等腰直角三角形,故④正确;∴判断正确的是①③④.故答案为:①③④.10.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.【答案】(1)略(2)4﹣8.【解答】(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD,∵BN⊥AM,∴∠BNA=90°,在△ABN和△MAD中,,∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD,∴BN=AD,∵AD=2,∴BN=2,又∵AN=4,在Rt△ABN中,AB===2,∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.11.(2021•金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.【答案】(1)4 (2)tanα==【解答】解:(1)∵∠BOC=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴∠BAD=90°,AC=BD,AO=OC,BO=DO,∴AO=BO,∴△AOB是等边三角形,∴AB=AO=BO,∵AB=2,∴BO=2,∴BD=2BO=4,∴矩形对角线的长为4;(2)由勾股定理得:AD===2,∵OA=OD,OE⊥AD于点E,∴AE=DE=AD=,∴tanα==.命题点2 菱形的相关证明与计算12.(2021•河南)关于菱形的性质,以下说法不正确的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形【答案】B【解答】解:A.菱形的四条边相等,正确,不符合题意,B.菱形的对角线互相垂直且平分,对角线不一定相等,不正确,符合题意,C.菱形的对角线互相垂直且平分,正确,不符合题意,D.菱形是轴对称图形,正确,不符合题意,故选:B.13.(2021•烟台)如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为()A.(2,2)B.(,2)C.(3,)D.(2,)【答案】D【解答】解:∵菱形ABCD,∠BCD=120°,∴∠ABC=60°,∵B(﹣1,0),∴OB=1,OA=,AB=2,∴A(0,),∴BC=AD=2,∴OC=BC﹣OB=2﹣1=1,∴C(1,0),D(2,),故选:D.14.(2021•陕西)如图,在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为()A.B.C.D.【答案】D【解答】解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,∵tan∠ABD=,∴,故选:D.15.(2021•绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD 方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形【答案】C【解答】解:∵∠B=60°,故菱形由两个等边三角形组合而成,当AP⊥BC时,此时△ABP为直角三角形;当点P到达点C处时,此时△ABP为等边三角形;当P为CD中点时,△ABP为直角三角形;当点P与点D重合时,此时△ABP为等腰三角形,故选:C.16.(2021•安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.3+B.2+2C.2+D.1+2【答案】A【解答】解:如图,连接BD,AC.∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD=2,∠BAO=∠DAO=60°,BD⊥AC,∴∠ABO=∠CBO=30°,∴OA=AB=1,OB=OA=,∵OE⊥AB,OF⊥BC,∴∠BEO=∠BFO=90°,在△BEO和△BFO中,,∴△BEO≌△BFO(AAS),∴OE=OF,BE=BF,∵∠EBF=60°,∴△BEF是等边三角形,∴EF=BE=×=,同法可证,△DGH,△OEH,△OFG都是等边三角形,∴EF=GH=,EH=FG=,∴四边形EFGH的周长=3+,故选:A.17.(2021•朝阳)如图,在菱形ABCD中,点E,F分别在AB,CD上,且BE=2AE,DF =2CF,点G,H分别是AC的三等分点,则的值为()A.B.C.D.【答案】A【解答】解:∵BE=2AE,DF=2FC,∴,∵G、H分别是AC的三等分点,∴,,∴,∴EG∥BC∴,同理可得HF∥AD,,∴,故选:A.18.(2021•南充)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE =BF=2,△DEF的周长为3,则AD的长为()A.B.2C.+1D.2﹣1【答案】C【解答】解:如图,连结BD,作DH⊥AB,垂足为H,∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∵∠A=60°,∴△ABD是等边三角形,∠ABC=180°﹣∠A=120°,∴AD=BD,∠ABD=∠A=∠ADB=60°,∴∠DBC=∠ABC﹣∠ABD=120°﹣60°=60°,∵AE=BF,∴△ADE≌△BDF(SAS),∴DE=DF,∠ADE=∠FDB,∴∠EDF=∠EDB+∠FDB=∠EDB+∠ADE=∠ADB=60°,∴△DEF是等边三角形,∵△DEF的周长是3,∴DE=,设AH=x,则HE=2﹣x,∵AD=BD,DH⊥AB,∴∠ADH=∠ADB=30°,∴AD=2x,DH=x,在Rt△DHE中,DH²+HE²=DE²,∴(x)²+(2﹣x)²=()²,解得:x=(负值舍去),∴AD=2x=1+,故选:C.19.(2021•北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).【答案】AE=AF【解答】解:这个条件可以是AE=AF,理由:∵四边形ABCD是矩形,∴AD∥BC,即AF∥CE,∵AF=EC,∴四边形AECF是平行四边形,∵AE=AF,∴四边形AECF是菱形,故答案为:AE=AF.20.(2021•山西)如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,AC=6,OE∥AB,交BC于点E,则OE的长为.【答案】【解答】解:∵菱形ABCD中,对角线AC,BD相交于点O,∴OA=OC=,OB=,AC⊥BD,∵OE∥AB,∴BE=CE,∴OE为△ABC的中位线,∴,在Rt△ABO中,由勾股定理得:,∴OE=21.(2021•盐城)如图,D、E、F分别是△ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF为平行四边形;(2)加上条件后,能使得四边形ADEF为菱形,请从①∠BAC=90°;②AE平分∠BAC;③AB=AC这三个条件中选择1个条件填空(写序号),并加以证明.【答案】(1)略(2)②【解答】解:(1)证明:已知D、E、F为AB、BC、AC的中点,∴DE为△ABC的中位线,根据三角形中位线定理,∴DE∥AC,且DE==AF.即DE∥AF,DE=AF,∴四边形ADEF为平行四边形.(2)证明:选②AE平分∠BAC,∵AE平分∠BAC,∴∠DAE=∠F AE,又∵ADEF为平行四边形,∴EF∥DA,∴∠DAE=∠AEF,∴∠F AE=∠AEF,∴AF=EF,∴平行四边形ADEF为菱形.选③AB=AC,∵EF∥AB且EF=,DE∥AC且DE=,又∵AB=AC,∴EF=DE,∴平行四边形ADEF为菱形.22.(2021•云南)如图,四边形ABCD是矩形,E、F分别是线段AD、BC上的点,点O是EF与BD的交点.若将△BED沿直线BD折叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB•AD=3,求EF•BD的值.【答案】(1)略(2)4【解答】解:(1)证明:将△BED沿BD折叠,使E,F重合,∴OE=OF,EF⊥BD,∵四边形ABCD是矩形,∴∠C=90°,AD∥BC,∴∠ODE=∠OBF,在△OBF和△ODE中,,∴△OBF≌△ODE(AAS),∴OB=OD,∵OE=OF,∴四边形BFDE是平行四边形,∵EF⊥BD,∴四边形BFDE是菱形.(2)如图,∵AB•AD=3,∴S△ABD=AB•AD=,∵ED=2AE,∴ED=AD,∴S△BDE:S△ABD=2:3,∴S△BDE=,∴菱形BEDF的面积=EF•BD=2S△BDE=2,∴EF•BD=4.命题点3 正方形的相关证明与计算23.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是()A.仅①B.仅③C.①②D.②③【答案】C【解答】解:①由a得到两组对边分别相等的四边形是平行四边形,添加c即一组邻边相等的平行四边形是菱形,再添加d即一个角是直角的菱形是正方形,故①正确;②由b得到一组对边平行且相等的四边形是平行四边形,添加d即有一个角是直角的平行四边形是矩形,再添加c即一组邻边相等的矩形是正方形,故②正确;③由a得到两组对边分别相等的四边形是平行四边形,添加b得到一组对边平行且相等的平行四边形仍是平行四边形,再添加c即一组邻边相等的平行四边形是菱形,不能得到四边形是正方形,故③不正确;故选:C.24.(2019•毕节市)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3C.D.5【答案】B【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.25.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为()A.1B.C.2D.2【答案】C【解答】解:∵四边形ABCD是正方形,∴∠MDO=∠NCO=45°,OD=OC,∠DOC=90°,∴∠DON+∠CON=90°,∵ON⊥OM,∴∠MON=90°,∴∠DON+∠DOM=90°,∴∠DOM=∠CON,在△DOM和△CON中,,∴△DOM≌△CON(ASA),∵四边形MOND的面积是1,四边形MOND的面积=△DOM的面积+△DON的面积,∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积,∴△DOC的面积是1,∴正方形ABCD的面积是4,∴AB2=4,∴AB=2,故选:C.26.(2021•湖北)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:①连接BE,交FG于点O,如图,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四边形EFBG为矩形.∴FG=BE,OB=OF=OE=OG.∵四边形ABCD为正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE,交FG于M,交FB于点H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点,∴根据垂线段最短,当DE⊥AC时,DE最小.∵AD=CD=4,∠ADC=90°,∴AC=.∴DE=AC=2.由①知:FG=DE,∴FG的最小值为2,∴④错误.综上,正确的结论为:①②③.故选:C.27.(2021•黔东南州)如图,在边长为2的正方形ABCD中,若将AB绕点A逆时针旋转60°,使点B落在点B′的位置,连接BB′,过点D作DE⊥BB′,交BB′的延长线于点E,则B′E的长为()A.B.C.D.【答案】A【解答】解:分别延长AD和BE交于点F,由题知,AB=2,∠ABF=60°,∴BF=AB÷cos60°=2÷=4,AF=BF•sin60°=4×=2,∠F=90°﹣∠ABF =30°,∴DF=AF﹣AD=2﹣2,∴EF=DF•cos∠F=(2)×=3﹣,由题知,△ABB'是等边三角形,∴B'E=BF﹣BB'﹣EF=4﹣2﹣(3﹣)=﹣1,故选:A.28.(2021•常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF 交于P.则下列结论成立的是()A.BE=AE B.PC=PDC.∠EAF+∠AFD=90°D.PE=EC【答案】C【解答】解:∵F、E分别是正方形ABCD的边AB与BC的中点,∴AF=BE,在△AFD和△BEA中,,∴△AFD≌△BEA(SAS),∴∠FDA=∠EAB,又∵∠FDA+∠AFD=90°,∴∠EAB+∠AFD=90°,即∠EAF+∠AFD=90°,故C正确,A、B、D无法证明其成立,故选:C.29.(2021春•新吴区月考)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为()A.(﹣2,3)B.(﹣3,5)C.(5,﹣2)D.(﹣1,5)【答案】D【解答】解:如图,过点E作ED⊥x轴于点D,过点G和点F分别作y轴和x轴的平行线,交y轴和x轴于点B和A,两线相交于点C,得矩形ACBO,∴AC=OB,AO=CB,∵点E的坐标为(2,3),∴ED=3,OD=2,∵四边形OEFG是正方形,∴∠EOG=∠FGO=90°,∴∠EOD+∠GOB=90°,∵∠GOB+∠OGB=90°,∴∠EOD=∠OGB,在△EOD和△OGB中,,∴△EOD≌△OGB(AAS),∴ED=OB=3,OD=BG=2,同理可证:△EOD≌△FGC(AAS),∴ED=CG=3,OD=CF=2,∴AO=CB=BG+CG=3+2=5,AF=AC﹣CF=OB﹣CF=3﹣2=1,∴F(﹣1,5).故选:D.30.(2020•陕西)如图,在矩形ABCD中,AB=4,BC=8,延长BA至E,使AE=AB,以AE为边向右侧作正方形AEFG,O为正方形AEFG的中心,若过点O的一条直线平分该组合图形的面积,并分别交EF、BC于点M、N,则线段MN的长为.【答案】4【解答】解:如图,连接AC,BD交于点H,过点O和点H的直线MN平分该组合图形的面积,交AD于S,取AE中点P,取AB中点Q,连接OP,HQ,过点O作OT⊥QH 于T,∵四边形ABCD是矩形,∴AH=HC,又∵Q是AB中点,∴QH=BC=4,QH∥BC,AQ=BQ=2,同理可求PO=AG=2,PO∥AG,EP=AP=2,∴PO∥AD∥BC∥EF∥QH,EP=AP=AQ=BQ,∴MO=OS=SH=NH,∠OPQ=∠PQH=90°,∵OT⊥QH,∴四边形POTQ是矩形,∴PO=QT=2,OT=PQ=4,∴TH=2,∴OH===2,∴MN=2OH=4,故答案为:4.31.(2021•湖州)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是.【答案】﹣1【解答】解:∵地毯面积被平均分成了3份,∴每一份的边长为=,∴CD=3×=,在Rt△ACD中,根据勾股定理可得AD==,又根据剪裁可知BD=CK=1,∴AB=AD﹣BD=﹣1.故答案为:﹣1.32.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为.【答案】【解答】解:设CF与DE交于点O,∵将△CDF沿CF折叠,点D落在点G处,∴GO=DO,CF⊥DG,∵四边形ABCD是正方形,∴AD=CD,∠A=∠ADC=90°=∠FOD,∴∠CFD+∠FCD=90°=∠CFD+∠ADE,∴∠ADE=∠FCD,在△ADE和△DCF中,,∴△ADE≌△DCF(ASA),∴AE=DF=5,∵AE=5,AD=12,∴DE===13,∵cos∠ADE=,∴,∴DO==GO,∴EG=13﹣2×=,故答案为:.33.(2021•天津)如图,正方形ABCD的边长为4,对角线AC,BD相交于点O,点E,F 分别在BC,CD的延长线上,且CE=2,DF=1,G为EF的中点,连接OE,交CD于点H,连接GH,则GH的长为.【答案】【解答】解:以O为原点,垂直AB的直线为x轴,建立直角坐标系,如图:∵正方形ABCD的边长为4,CE=2,DF=1,∴E(4,﹣2),F(2,3),∵G为EF的中点,∴G(3,),设直线OE解析式为y=kx,将E(4,﹣2)代入得:﹣2=4k,解得k=﹣,∴直线OE解析式为y=﹣x,令x=2得y=﹣1,∴H(2,﹣1),∴GH==,方法二:如下图,连接OF,过点O作OM⊥CD交CD于M,∵O为正方形对角线AC和BD的交点,∴OM=CM=DM=CE=2,易证△OHM≌△EHC,∴点H、点G分别为OE、FE的中点,∴GH为△OEF的中位线,∴GH=OF,在Rt△OMF中,由勾股定理可得OF===,∴GH=OF=,故答案为:.34.(2021•邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4,AE=2,求四边形BEDF的周长.【答案】(1)略(2)8【解答】(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)解:∵AB=AD=,∴BD===8,由正方形对角线相等且互相垂直平分可得:AC=BD=8,DO=BO=4,OA=OC=4,又AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF=4﹣2=2,故四边形BEDF为菱形.∵∠DOE=90°,∴DE===2.∴4DE=,故四边形BEDF的周长为8.。
中考数学二轮专题复习-矩形、菱形及正方形及答案详解

中考数学二轮专题复习-矩形、菱形及正方形一、单选题1.下列四边形中,对角线互相垂直平分的是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形2.下列测量方案中,能确定四边形门框为矩形的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量对角线交点到四个顶点的距离是否都相等3.如图,菱形的对角线、相交于点,过点作于点,连接,若,,则菱形的面积为()A.B.C.D.4.如图,有甲、乙、丙三个矩形,其中相似的是()A.甲与丙B.甲与乙C.乙与丙D.三个矩形都不相似5.如图,在菱形ABCD中,DE⊥AB,cosA=,AE=3,则tan∠DBE的值是()A.B.2C.D.6.如图,在菱形ABCD中,对角线AC与BD交于点O,E是边AB的中点,连结OE.若菱形ABCD的面积为24,AC=8,则OE的长为()A.B.3C.D.57.如图,在正方形ABCD中,E是边BC上一点,且BE:CE=1:3,DE交AC于点F,若DE=10,则CF等于()A.B.C.D.8.如图,矩形中,对角线交于点O,,则矩形的面积是()A.2B.C.D.89.如图,将长、宽分别为6cm,cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.cm2 B.(36)cm2C.cm2D.cm210.如图所示,反比例函数的图象经过矩形OABC的边AB的中点,则矩形OABC的面积为()A.2B.4C.5D.811.如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD ,垂足分别为点E,F,连结EF,则△AEF 的面积是()A.B.C.D.12.如图,四边形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5dm,DF=4dm,那么EF的长为()A.6.5dm B.6dm C.5.5dm D.4dm13.将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若,则的值为()A.B.C.D.14.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为()A.6B.8C.10D.915.如图,在矩形ABCD中,对角线、BD交于C,,垂足为E,,那么的面积是()A.B.C.D.16.如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CI⊥HJ于点I,交AB于K,在图形的外部作矩形MNPQ,使点D,E,G和H,J都落在矩形的边上.已知矩形BJIK的面积为1,正方形ACDE的面积为4,则为()A.B.C.D.17.如图,正方形的边长为a,点E在边上运动(不与点A,B重合),,点F在射线上,且与相交于点G,连接.则下列结论:①,② 的周长为 ,③;④当 时,G 是线段 的中点,其中正确的结论是( )A .①②③B .①④C .①③④D .①②③④ 18.如图,菱形ABCD 的边长为4,E 、F 分别是AB 、AD 上的点,AC 与EF 相交于点G ,若, ,则FG 的长为( )A .B .2C .3D .419.如图,在△ABC 中,∠ACB =90°,以△ABC 的各边为边分别作正方形BAHI ,正方形BCFG 与正方形CADE ,延长BG ,FG 分别交AD ,DE 于点K ,J ,连结DH ,IJ.图中两块阴影部分面积分别记为S 1,S 2.若S 1:S 2=1:4,S 四边形边BAHE =18,则四边形MBNJ 的面积为( )A.5B.6C.8D.920.如图,在Rt△ABC中,∠CBA=60°,斜边AB=10,分别以△ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5=()A.50B.50C.100D.100二、填空题21.在四边形ABCD中,对角线AC,BD交于点O,OA=OC=OB=OD,添加一个条件使四边形ABCD是正方形,那么所添加的条件可以是(写出一个即可)22.如图,分别以Rt△ABC三边构造三个正方形,面积分别为S1,S2,S3,若S1=15,S3=39,则S2=.23.如图,在平面直角坐标系中,点A1(1,0)、A2(3,0)、A3(6,0)、A4(10,0)、……,以A1A2为对角线作第一个正方形A1C1A2B1,以A2A3为对角线作第二个正方形A2C2A3B2,以A3A4,为对角线作第三个正方形A3C3A4B3,……,顶点B1,B2,B3……都在第一象限,按照此规律依次下去,则点Bn的坐标为.24.如图,菱形ABCD的对角线,BD相交于点,,,以AB为直径作一个半圆,则图中阴影部分的面积为.25.如图,在矩形ABCD中,AB=8,AD=10,AD,AB,BC分别与⊙O相切于E,F,G三点,过D作⊙O的切线交BC于点M,切点为N,则DM的长为.26.建党100周年主题活动中,702班浔浔设计了如图1的“红色徽章”其设计原理是:如图2,在边长为的正方形四周分别放置四个边长为的小正方形,构造了一个大正方形,并画出阴影部分图形,形成了“红色徽章”的图标.现将阴影部分图形面积记作,每一个边长为的小正方形面积记作,若,则的值是.27.如图,正方形ABCD的边长为4,P是边CD上的一动点,EF⊥BP交BP于G,且EF平分正方形ABCD的面积,则线段GC的最小值是.28.正方形ABCD的边长为4,点E是BC边上的一动点,连结AE,过点B作BF⊥AE于点F,以BF为边作正方形FBHG,当点E从B运动到C时,求CF的最短距离为;线段HG扫过的面积为29.如图,在矩形ABCD中,AB=4,BC=3,将△BCD沿射线BD平移长度a(a>0)得到△B'C'D',连接AB',AD',则当△AB'D'是直角三角形时,a的长为.30.如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD边上的动点,PQ=16,以PQ 为直径的⊙O与BD交于点M,N,则MN的最大值为.三、计算题31.如图,在中,,D为的中点,,,连接交于点O.(1)证明:四边形为菱形;(2)若,,求菱形的高.32.如图,已知在矩形ABCD中,AB=6,BC=2,点E,F分别在边CD,AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形;(2)若□AFCE是菱形,求菱形AFCE的边长.四、解答题33.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD=BC,求证:四边形EFGH是菱形.34.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A′B′C′D′,此时点B′恰好落在边AD上.连接B′B,若∠AB′B=75°,求旋转角及AB长.35.如图,△ABC中,点D是边AC的中点,过D作直线PQ∥BC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.36.在几何探究问题中,经常需要通过作辅助线(如,连接两点,过某点作垂线,作延长线,作平行线等等)把分散的条件相对集中,以达到解决问题的目的.(1)(探究发现)如图1,点E,F分别在正方形ABCD的边BC,CD上,,连接EF.通过探究,可发现BE,EF,DF之间的数量关系为(直接写出结果).(2)(验证猜想)同学们讨论得出下列三种证明思路(如图1):思路一:过点A作,交CD的延长线于点G.思路二:过点A作,并截取,连接DG.思路三:延长CD至点G,使,连接AG.请选择你喜欢的一种思路证明(探究发现)中的结论.(3)(迁移应用)如图2,点E,F分别在正方形ABCD的边BC,CD上,且,,设,试用含的代数式表示DF的长.37.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5 时,求t的取值范围(直接写出结果即可).38.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边中,是边上一点(不含端点),是的外角的平分线上一点,且.求证:.点拨:如图②,作,与的延长线相交于点,得等边,连接.易证:,可得;又,则,可得;由,进一步可得又因为,所以,即:.问题:如图③,在正方形中,是边上一点(不含端点),是正方形的外角的平分线上一点,且.求证:.五、综合题39.将绕点A按逆时针方向旋转度,并使各边长变为原来的n倍,得,如图①,我们将这种变换记为.(1)如图①,对作变换得,则;直线与直线所夹的锐角为度;(2)如图②,中,,对作变换得,使点B、C、在同一直线上,且四边形为矩形,求和n的值;(3)如图③,中,,对作变换得,使点B、C、在同一直线上,且四边形为平行四边形,求和n的值. 40.如图(1)如图1,正方形ABCD与调研直角△AEF有公共顶点A,∠EAF=90°,连接BE、DF,将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,则=;β=;(2)如图2,矩形ABCD与Rt△AEF有公共顶点A,∠EAF=90°,且AD=2AB,AF=2AE,连接BE、DF,将Rt△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,请求出的值及β的度数,并结合图2进行说明;(3)若平行四边形ABCD与△AEF有公共项点A,且∠BAD=∠EAF=α(0°<α<180°),AD=kAB,AF=kAE(k≠0),将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的锐角的度数为β,则:①=;②请直接写出α和β之间的关系式.答案解析部分【解析】【解答】解:∵平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线互相平分且相等,正方形对角线互相垂直平分且相等,∴A、B、C不符合题意,D符合题意.故答案为:D.【分析】根据平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线互相平分且相等,正方形对角线互相垂直平分且相等,即可得出答案.【解析】【解答】解:A、∵对角线互相平分的四边形是平行四边形,而对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意.故答案为:D.【分析】利用对角线互相平分且相等的四边形是矩形,可作出判断.【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=2,∴BD=4,∵OA=3,∴AC=6,∴菱形ABCD的面积.故答案为:A.【分析】根据菱形的性质和直角三角形斜边上的中线定理求出对角线的长即可求出菱形的面积。
2024中考数学全国真题分类卷 第十八讲 矩形、菱形、正方形 (含答案)

2024中考数学全国真题分类卷第十八讲矩形、菱形、正方形命题点1矩形的相关证明与计算1.(2023陕西)在下列条件中,能够判定▱ABCD 为矩形的是()A.AB =AC B.AC ⊥BD C.AB =AD D.AC =BD2.(2023邵阳)已知矩形的一边长为6cm ,一条对角线的长为10cm ,则矩形的面积为________cm 2.3.(2023十堰)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF ,AG 分别架在墙体的点B ,C 处,且AB =AC ,侧面四边形BDEC 为矩形.若测得∠FBD =55°,则∠A =________°.第3题图4.(2023吉林省卷)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AD 的中点,点F 在对角线AC 上,且AF =14AC ,连接EF .若AC =10,则EF =________.第4题图5.(2022绍兴)图①是一种矩形时钟,图②是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上,若AB =30cm ,则BC 长为________cm(结果保留根号).第5题图6.(2023黔东南州)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE ∥AC ,CE ∥B D.若AC =10,则四边形OCED 的周长是________.第6题图7.(2023青海省卷)如图,矩形ABCD 的对角线相交于点O ,过点O 的直线交AD ,BC 于点E ,F ,若AB =3,BC =4,则图中阴影部分的面积为________.第7题图8.(2023甘肃省卷)如图,在矩形ABCD 中,AB =6cm ,BC =9cm ,点E ,F 分别在边AB ,BC 上,AE =2cm ,BD ,EF 交于点G ,若G 是EF 的中点,则BG 的长为________cm.第8题图9.(2023宜昌)如图,在矩形ABCD 中,E 是边AD 上一点,F ,G 分别是BE ,CE 的中点,连接AF ,DG ,FG ,若AF =3,DG =4,FG =5,矩形ABCD 的面积为________.第9题图10.(2022贵港)如图,在矩形ABCD 中,BD 是对角线,AE ⊥BD ,垂足为E .连接CE ,若tan ∠ADB =12,则tan ∠DEC 的值是________.第10题图11.(2023苏州)如图,将矩形ABCD 沿对角线AC 折叠,点B 的对应点为点E ,AE 与CD 交于点F.(1)求证:△DAF≌△ECF;(2)若∠FCE=40°,求∠CAB的度数.第11题图12.(2022金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB =2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连接BE.记∠ABE=α,求tanα的值.第12题图13.(2023云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.第13题图源自北师九上P19第3题14.(挑战题)(2023自贡)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB由AB旋转得到,所以EB =A B.我们还可以得到FC=________,EF=________;(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求EF与BC 之间的距离.第14题图命题点2菱形的相关证明与计算15.(2023河池)如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误..的是()第15题图A.AB=ADB.AC⊥BDC.AC=BDD.∠DAC=∠BAC16.(2023河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点,若OE=3,则菱形ABCD的周长为()第16题图A.6B.12C.24D.4817.(2023自贡)如图,菱形ABCD对角线交点与坐标原点O重合,点A(-2,5),则点C的坐标是()第17题图A.(5,-2)B.(2,-5)C.(2,5)D.(-2,-5)18.(2022绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC→CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是()第18题图A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形19.(2023仙桃)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =()第19题图A.13 B.12 C.33 D.3220.(2023株洲)如图所示,在菱形ABCD 中,对角线AC 与BD 相交于点O ,过点C 作CE ∥BD 交AB 的延长线于点E ,下列结论不一定...正确的是()第20题图A.OB =12CEB.△ACE 是直角三角形C.BC =12AE D.BE =CE 21.(2023海南)如图,菱形ABCD 中,点E 是边CD 的中点,EF 垂直AB 交AB 的延长线于点F ,若BF ∶CE =1∶2,EF =7,则菱形ABCD 的边长是()第21题图A.3B.4C.5D.47522.(新趋势)·条件开放性问题(2023齐齐哈尔)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是________________.(只需写出一个条件即可)第22题图23.(2023乐山)已知菱形ABCD的两条对角线AC,BD的长分别是8cm和6cm,则菱形的面积为________cm2.24.(2023温州)如图,在菱形ABCD中,AB=1,∠BAD=60°.在其内部作形状、大小都相同的菱形AENH和菱形CGMF,使点E,F,G,H分别在边AB,BC,CD,DA上,点M,N 在对角线AC上.若AE=3BE,则MN的长为________.第24题图25.(2023陕西)如图,在菱形ABCD中,AB=4,BD=7.若M,N分别是边AD,BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E,F,则ME+NF的值为________.第25题图26.(2023天津)如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE 的中点,AF与DE相交于点G,则GF的长等于________.第26题图27.(新趋势)·注重学习过程(2023嘉兴)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=O D.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分B D.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个..条件,并证明.第27题图28.(2023北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.第28题图29.(2023连云港)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥D C.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P,M,N分别在线段BE,BC,CE上运动,求PM+PN的最小值.第29题图30.(2023娄底)如图①,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值;(2)如图②,当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.第30题图31.(2023宜昌)已知菱形ABCD中,E是边AB的中点,F是边AD上一点.(1)如图①,连接CE,CF.CE⊥AB,CF⊥A D.①求证:CE=CF;②若AE=2,求CE的长;(2)如图②,连接CE,EF.若AE=3,EF=2AF=4,求CE的长.第31题图命题点3正方形的相关证明与计算32.(2023玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线AC,BD一定是()A.互相平分B.互相垂直C.互相平分且相等D.互相垂直且相等33.(2023重庆A卷)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB 上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°第33题图34.(2023滨州)正方形ABCD的对角线相交于点O(如图①),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB,BC相交于点E,F(如图②),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是()第34题图A.线段B.圆弧C.折线D.波浪线35.(2022仙桃)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG.下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3,其中正确结论的个数有()A.1个B.2个C.3个D.4个第35题图36.(2023绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()第36题图A.1B.2C.3D.437.(新趋势)·数学文化(2023江西)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为________.第37题图38.(2020天水)如图所示,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为________.第38题图39.(2023无锡)如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE,BC于点H,G,则BG=________.第39题图40.(2023海南)如图,正方形ABCD中,点E,F分别在边BC,CD上,AE=AF,∠EAF=30°,则∠AEB=________°;若△AEF的面积等于1,则AB的值是________.第40题图41.(2023泰安)如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE 折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为________.第41题图42.(2023山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为________.第42题图43.(2023安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=________°;(2)若DE=1,DF=22,则MN=________.第43题图44.(2023邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD 上,且BE=DF,OE=O A.求证:四边形AECF是正方形.第44题图45.(2023遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:△ADE ≌△CDG ;(2)若AE =BE =2,求BF 的长.第45题图46.(挑战题)(2023台州)图①中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图②,在正方形ABCD 各边上分别取点B 1,C 1,D 1,A 1,使AB 1=BC 1=CD 1=DA 1=45AB ,依次连接它们,得到四边形A 1B 1C 1D 1;再在四边形A 1B 1C 1D 1各边上分别取点B 2,C 2,D 2,A 2,使A 1B 2=B 1C 2=C 1D 2=D 1A 2=45A 1B 1,依次连接它们,得到四边形A 2B 2C 2D 2;…如此继续下去,得到四条螺旋折线.第46题图(1)求证:四边形A 1B 1C 1D 1是正方形;(2)求A 1B 1AB的值;(3)请研究螺旋折线BB 1B 2B 3…中相邻线段之间的关系,写出一个正确结论并加以证明.参考答案与解析1.D2.48【解析】∵矩形的一边长为6cm ,一条对角线的长为10cm ,由勾股定理可得矩形的另一边长为8cm ,∴矩形的面积为6×8=48(cm 2).3.1104.52【解析】∵四边形ABCD 是矩形,∴AC =BD =2AO =2OD =10,∴OD =12AC =5,∵AF =14AC ,∴AF =12OA ,∵E 是AD 的中点,∴EF 是△AOD 的中位线,∴EF =12OD =52.5.303【解析】∵钟表数字2和数字3之间的夹角为360°12=30°且钟表数字2的刻度在矩形ABCD 的对角线BD 上,AB =30cm ,∴∠DBC =∠ADB =30°,∴BC =AD =AB tan ∠ADB=AB tan 30°=3033=303(cm).6.20【解析】∵四边形ABCD 是矩形,∴AC =BD =10,OA =OC ,OB =OD ,∴OC =OD =12BD =5,∵DE ∥AC ,CE ∥BD ,∴四边形CODE 是平行四边形,∵OC =OD =5,∴四边形CODE 是菱形,∴四边形CODE 的周长为4OC =4×5=20.7.6【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC ,AO =OC ,∴∠EAO =∠FCO ,在△AEO 和△CFO EAO =∠FCO =OC AOE =∠COF,∴△AEO ≌△CFO (ASA),∴S △AEO =S △CFO ,∴阴影部分的面积等于矩形ABCD 的面积的一半,∵矩形面积为AB ·BC =3×4=12,∴阴影部分的面积为12×12=6.8.13【解析】∵四边形ABCD 是矩形,∴AB =CD =6cm ,∠ABC =∠C =90°,AB ∥CD ,∴∠ABD =∠BDC ,∵AE =2cm ,∴BE =AB -AE =6-2=4cm ,∵G 是EF 的中点,∴EG =BG =12EF ,∴∠BEG =∠ABD ,∠BEG =∠BDC ,∴△EBF ∽△DCB ,∴EB DC =BF CB,∴46=BF 9,∴BF =6,∴EF =BE 2+BF 2=42+62=213(cm),∴BG =12EF =13cm.9.48【解析】∵四边形ABCD 是矩形,∴∠BAD =∠CDA =90°.∵F ,G 为BE ,CE 中点,∴在Rt △ABE 中,AF =BF =EF =12BE ,在Rt △CDE 中,DG =CG =EG =12CE ,∴BE =6,CE =8,∵EF =3,EG =4,FG =5,EF 2+EG 2=FG 2,∴△EFG 为直角三角形,∠FEG =90°,∴S 矩形ABCD =2S △BEC =2×12BE ·CE =48.10.23【解析】如解图,过点C 作CF ⊥BD 于点F ,∵四边形ABCD 为矩形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF ,在△ABE 与△CDF 中AEB =∠CFDABE =∠CDF=CD,∴△ABE ≌△CDF (AAS),∴AE =CF ,BE =DF .∵AE ⊥BD ,tan ∠ADB =AB AD =12,∴设AB =a ,则AD =2a ,∴BD =5a ,∵S △ABD =12BD ·AE =12AB ·AD ,∴AE =CF =255a ,∴BE =DF =AB 2-AE 2=a 2-(255a )2=55a ,∴EF =BD -2BE =5a -2×55a =355a ,∵CF ⊥BD ,∴tan ∠DEC =CF EF =23.第10题解图11.(1)证明:将矩形ABCD 沿对角线AC 折叠,则AD =BC =EC ,∠D =∠B =∠E =90°,在△DAF 和△ECF 中,DFA =∠EFCD =∠E =EC,∴△DAF ≌△ECF (AAS);(2)解:∵△DAF ≌△ECF ,∴∠DAF =∠ECF =40°.∵四边形ABCD 是矩形,∴∠DAB =90°.∴∠EAB =∠DAB -∠DAF =90°-40°=50°.∵由折叠的性质得∠EAC =∠CAB ,∴∠CAB=25°.12.解:(1)∵四边形ABCD是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OC=OB=OD.∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=2,∴AC=BD=2OB=4;(2)∵在矩形ABCD中,∠BAD=90°,∴AD=BD2-AB2=16-4=23.由(1)得,OA=OD.又∵OE⊥AD,∴AE=12AD=3,在Rt△ABE中,tanα=AEAB=32.13.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴AB∥DF,∴∠DFE=∠ABE.∵E为线段AD的中点,∴DE=AE.在△DFE和△ABE DFE=∠ABE DEF=∠AEB=AE,∴△DFE≌△ABE(AAS),∴DF=AB.又∵AB∥DF,∴四边形ABDF是平行四边形.∵∠BDF=90°,∴平行四边形ABDF是矩形;(2)解:∵四边形ABDF是矩形,∴∠ABD=90°,AF=BD,AB=DF.∵AD=5,DF=3,∴在Rt △ADF 中,AF =AD 2-DF 2=52-32=4,∴AF =BD =4,AB =DF =3.∵四边形ABCD 是平行四边形,∴CD =AB =3.∵∠BDF =90°,∴∠BDC =90°.∴S =S 矩形ABDF +S △BCD =DF ·BD +12CD ·BD =3×4+12×3×4=12+6=18.14.(1)解:DC ,AD ;(2)证明:∵EF =AD ,AD =BC ,∴EF =BC ,同理可得FC =EB ,∴四边形EFCB 为平行四边形,∴EF ∥BC ,∵四边形ABCD 为矩形,∴AD ∥BC ,∴EF ∥AD ;(3)解:如解图,过点E 作EG ⊥BC 交BC 延长线于点G ,EG 即为EF 与BC 之间的距离,由题意可得,HC =40cm ,BC =30cm ,BE =DC =80cm ,第14题解图在Rt △HBC 中,HB =HC 2+BC 2=402+302=50cm ,∵HC ∥EG ,∴△BCH ∽△BGE ,∴HC EG =BH BE ,即40EG =5080,解得EG =64cm ,∴EF 与BC 之间的距离为64cm.15.C16.C17.B 【解析】菱形为中心对称图形,对角线的交点即为对称中心,∵A 点坐标为(-2,5),∴相应的C 点坐标为(2,-5).18.C 【解析】由∠B =60°知,菱形由两个等边三角形组合而成,当AP ⊥BC 时,此时△ABP 为直角三角形;当点P 到达点C 处时,此时△ABP 为等边三角形;当点P 在CD 上且位于CD 的中垂线时,则△ABP 为直角三角形;当点P 与点D 重合时,此时△ABP 为等腰三角形.19.C 【解析】如解图,由题意可得,∠BDC =60°,BD =CD =AC ,∴△BCD 是等边三角形,∴BC =BD ,∠BCD =60°,∴AC =BC ,∠ACB =120°,∴∠BAC =∠ABC =12×(180°-120°)=30°,∴tan ∠ABC =tan 30°=33.第19题解图20.D【解析】∵四边形ABCD 是菱形,∵AO =CO =12AC ,AC ⊥BD ,∵CE ∥BD ,∴△AOB ∽△ACE ,∠AOB =∠ACE =90°,∴AO AC =OB CE =AB AE =12,∴△ACE 是直角三角形,OB =12CE ,∴BC =12AE ,故选D.21.B 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,DC =BC ,∠A =∠C ,设BF =x ,则CE =2x ,∵点E 是CD 的中点,∴CD =AB =AD =4x ,如解图,过点D 作DH ⊥AB 于点H ,∵EF ⊥AB ,∴四边形DEFH 为矩形,∴EF =DH =7,HF =DE =2x ,∴AH =3x ,在Rt △ADH 中,AD 2=AH 2+DH 2,即(4x )2=(3x )2+(7)2,解得x =1(负值已舍去),∴AD =4x =4.第21题解图22.AB =CD (答案不唯一)【解析】由题中条件AC ⊥BD 可知,只需四边形ABCD 为平行四边形即可,又AB ∥CD ,故添加AB =CD (答案不唯一).23.24【解析】S =12×8×6=24(cm 2).24.32【解析】如解图,连接BD ,交AC 于O ,连接EF ,∵四边形ABCD 为菱形,∴AB=BC ,∵菱形AENH 和菱形CGMF 大小相同,∴AE =CF ,∴EF ∥AC ,由题意知,四边形AEFM ,EFCN 均为平行四边形,∴EF =AM =CN ,∵EF ∥AC ,∴△BFE ∽△BCA ,∴EFAC=BE BA ,∵AE =3BE ,AB =1,∴AB =4BE ,∴EF AC =BE BA =14,∴AM =CN =14AC ,∴MN =12AC=OA ,∵∠BAD =60°,AB =AD =1,AO 垂直平分BD ,∴OD =12,∴OA =AD 2-OD 2=12-(12)2=32,∴MN =32.第24题解图25.152【解析】如解图①,连接AC 交BD 于点O ,∵四边形ABCD 为菱形,∴AC ⊥BD ,OD =12BD =72,CD =4,∴OC =OA =42-(72)2=152,设AM =BN =a ,则DM =4-a ,∵ME ⊥BD ,NF ⊥BD ,∴△DME ∽△DAO ,△BNF ∽△BCO ,∴ME OA =DMDA =4-a 4,NF OC =BN BC =a 4,∴ME OA +NF OC =4-a 4+a 4=1,∴ME +NF =OA =152.第25题解图①【一题多解】如解图②,连接AC 交BD 于点O ,过点M 作MG ⊥AC 于点G ,∵四边形ABCD 为菱形,∴AC ⊥BD ,OD =12BD =72,CD =4,∴OC =OA =42-(72)2=152,∵AC ⊥BD ,ME ⊥BD ,∴∠AMG =∠ADO =∠CBO ,ME =GO ,又∵AM =BN ,NF ⊥BD ,∴△AMG ≌△NBF ,∴NF =AG ,∴ME +NF =GO +AG =AO =152.第25题解图②26.194【解析】如解图,过点F 作FM ⊥DE 于点M ,∵四边形ABCD 为菱形,∴AB =AD =CD =2.∵E 为AB 的中点,∠DAB =60°,∴AE =1,∠AED =90°,由勾股定理,得DE =AD 2-AE 2=3.∵四边形ABCD 为菱形,∴AB ∥CD ,∴∠ADC =120°,∠CDE =90°.∵FM⊥DE,F为CE的中点,∴M为DE的中点,即FM∥CD,FM=12CD=1,ME=DM=12DE=32,∴FM∥AB,FM=AE,∴∠EAG=∠MFG,∵∠AGE=∠FGM,∴△AEG≌△FMG(AAS),∴EG=MG=12ME=34,又∵FM∥CD,∴∠FMG=∠CDE=90°,在Rt△FMG中,由勾股定理,得FG=MG2+FM2=(34)2+12=194.第26题解图27.解:赞成小洁的说法,补充:AB=CB.证明:由小惠证法得:AB=AD,CB=CD,又∵AB=CB,∴AB=AD=CB=CD,∴四边形ABCD是菱形.28.证明:(1)∵四边形ABCD为平行四边形,∴BO=DO,AO=CO.又∵AE=CF,∴AO-AE=CO-CF,即OE=OF,∴四边形EBFD为平行四边形;(2)∵∠BAC=∠DAC,DO=BO,∴AO⊥BD.由(1)得四边形EBFD为平行四边形,∴四边形EBFD是菱形.29.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵DE=AD,∴DE=BC.又∵点E在AD的延长线上,∴DE∥BC,∴四边形DBCE为平行四边形.又∵BE ⊥DC ,∴四边形DBCE 为菱形;(2)解:如解图,由菱形对称性得,点N 关于BE 的对称点N ′在DE 上,第29题解图∴PM +PN =PM +PN ′.当P ,M ,N ′三点共线时,PM +PN =PM +PN ′=MN ′.过点D 作DH ⊥BC ,垂足为H ,∵DE ∥BC ,∴MN ′的最小值即为平行线间的距离DH 的长.∵△DBC 是边长为2的等边三角形,∴在Rt △DBH 中,∠DBH =60°,DB =2,∴DH =DB ·sin ∠DBH =2×32=3,∴PM +PN 的最小值为3.30.解:(1)①∵四边形BCDE 和四边形BCFG 都是菱形,∴BE =BC =CF ,CF ∥GE ,∴∠OCF =∠OBE ,∵∠COF =∠BOE ,∴△COF ≌△BOE (AAS),∴OC =OB ,OF =OE ,∴无论θ为何值,EF 与BC 相互平分;②θ=60°;【解法提示】∵OC =OB ,∴OB =12BC =12BE ,∵EF ⊥BC .∴∠BOE =90°,∴∠OEB =30°,∴∠OBE =60°,∵GF ∥BC ,∴∠G =∠OBE =60°,即当θ=60°时,EF ⊥BC .(2)tan ∠ABC =2,理由如下:由(1)知BC =BE =2OB ,当θ=90°时,则四边形BCDE 和四边形BCFG 都是正方形,∴∠OBE =90°,∴tan∠BOE=BEOB=2,∵BC为动点A所在圆弧对应圆的直径,∴∠BAC=90°,∵EF垂直平分AC,∴EF∥AB,∴∠ABC=∠BOE,∴tan∠ABC=tan∠BOE=2.∴当θ=90°时,tan∠ABC=2,使得EF垂直平分AC.31.(1)①证明:∵CE⊥AB,CF⊥AD,∴∠BEC=∠DFC=90°.∵四边形ABCD是菱形,∴∠B=∠D,BC=DC,∴△BEC≌△DFC(AAS),∴CE=CF;②解:∵E是边AB的中点,AE=2,∴BE=AE=2.∵四边形ABCD是菱形,∴BC=BA=4.∵CE⊥AB,∴在Rt△BEC中,CE=BC2-BE2=23;(2)解:如解图①,延长FE交CB的延长线于点M,∵四边形ABCD为菱形,∴AD∥BC,AB=BC,∴∠AFE=∠M,∠A=∠EBM.∵E是边AB的中点,∴AE=BE,∴△AEF≌△BEM(AAS),∴EM=EF,BM=AF.∵AE=3,EF=2AF=4,∴EM=4,BM=2,BE=3,∴BC =AB =2AE =6,∴CM =8,∴BM EM =24=12,EM CM =48=12,∴BM EM =EM CM ,∵∠BME =∠EMC ,∴△MEB ∽△MCE ,∴BE EC =BM EM =12,∵BE =3,∴CE =6.注:延长CE 交DA 的延长线于点N ,方法类似.第31题解图①【一题多解】如解图②,延长FE 交CB 的延长线于点M ,过点E 作EN ⊥BC 于点N .∵四边形ABCD 为菱形,∴AD ∥BC ,AB =BC ,∴∠AFE =∠M ,∠A =∠EBM ,∵E 是边AB 的中点,∴AE =BE ,∴△AEF ≌△BEM (AAS),∴EM =EF ,BM =AF .∵AE =3,EF =2AF =4,∴EM =4,BM =2,BE =3,∴BC =AB =2AE =6,∴CM =8.∵在Rt △MEN 和Rt △BEN 中,EM 2-MN 2=EN 2,BE 2-BN 2=EN 2,∴EM 2-MN 2=BE 2-BN 2,∴42-(2+BN )2=32-BN 2,解得BN =34,则CN =6-34=214,∴EN 2=BE 2-BN 2=32-(34)2=13516,∴在Rt △ENC 中,CE 2=EN 2+CN 2=13516+44116=36,∴CE =6(负值已舍去).第31题解图②32.D 【解析】如解图,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12AC ,FG =12BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第32题解图33.C【解析】∵四边形ABCD 是正方形,∴∠B =∠BAD =90°,∠BAC =45°,AB =AD ,又∵BE =AF ,∴△ABE ≌△DAF ,∴∠ADF =∠BAE .∵AE 平分∠BAC ,∴∠ADF =∠BAE =12∠BAC =22.5°,∴∠CDF =∠ADC -∠ADF =90°-22.5°=67.5°.34.A【解析】如解图,以点B 为坐标原点,建立平面直角坐标系xBy ,设正方形ABCD的边长为1,∵四边形ABCD 是正方形,∴∠OAE =∠OBF =45°,OA =OB .∵∠AOB =∠EOF =90°,∴∠AOB -∠EOB =∠EOF -∠EOB ,即∠AOE =∠BOF ,∴△AOE ≌△BOF (ASA),∴AE =BF .设AE =BF =a ,则F (a ,0),E (0,1-a ).∵点G 是EF 的中点,∴G (12a ,12-12a ),∴点G 在直线y =-x +12上运动,又∵点E ,F 分别在线段AB ,BC 上,∴点G 的运动轨迹是线段.第34题解图35.C【解析】①如解图,过点E分别作EM⊥CD于点M,EN⊥AD于点N,由题意得,EN=EF=BG,EM=EG=ND,在Rt△DEN和Rt△GFE中,EN=EF∠END=∠FEG ND=EG,∴Rt△DEN≌Rt△GFE(SAS),∴DE=FG,故结论①正确;②如解图,延长DE交FG于点P,由Rt△DEN≌Rt△GFE可得∠NDE=∠EGF,∵∠PEG=∠DEN,∴∠DPG=∠DNE=90°,∴DE⊥FG,故结论②正确;③在Rt△DEN和Rt△FGB中,DE=FG NE=BG,∴Rt△DEN≌Rt△FGB(HL),∴∠BFG=∠ADE,故结论③正确;④当点E为对角线AC,BD的交点时,FG取得最小值,最小值为22,故结论④错误.综上所述,正确的结论为①②③,共3个.第35题解图36.C【解析】∵对角线互相平分的四边形为平行四边形,∴当MN的连线过BD的中点O 时,∵BE=DF,∴BD的中点也是EF的中点,同时平分MN,∴存在无数个平行四边形MENF,说法①正确;当MN过点O时,四边形MENF为平行四边形,当EF=MN时,四边形MENF为矩形,∴存在无数个矩形MENF,当MN过点O且垂直于BD时,四边形MENF 恒定为菱形,∴存在无数个菱形MENF,∴说法②③正确;当MN过点O且垂直于BD时,若MN=EF,则四边形MENF为正方形,∵此时MN的长度恒定,∴EF的长度恒定,此时只存在一个正方形MENF,说法④错误.37.5【解析】由题图可知①②是两个全等的等腰直角三角形,∵拼成的正方形的对角线长为2,∴①②两个等腰直角三角形的直角边的长度为1,∴结合题图可知拼成的长方形的长为2,宽为1,∴其对角线的长为22+12=5.38.(-1,5)【解析】如解图,过点F 作FQ ⊥x 轴于点Q ,过点E 分别作EM ⊥x 轴于点M ,作EN ⊥FQ 于点N ,∴四边形NQME 是矩形,∴NQ =EM =3,∠NEM =90°.∵∠FEN +∠NEO =90°,∠NEO +∠OEM =90°,∴∠FEN =∠OEM .∵EF =EO ,∠FNE =∠EMO ,∴△EFN ≌△EOM ,∴EN =EM =3,FN =OM =2,∴FQ =FN +NQ =5,QO =EN -OM =1.∵F 在第二象限,∴F (-1,5).第38题解图39.1【解析】如解图,连接AG ,EG ,∵正方形ABCD 的边长为8,∴AB =BC =CD =8,∠B =∠C =90°,∵E 是CD 的中点,∴CE =4.设BG =x ,则CG =8-x ,在Rt △ABG 中,AG 2=AB 2+BG 2,即AG 2=82+x 2,在Rt △CEG 中,EG 2=CE 2+CG 2,即EG 2=42+(8-x )2.∵HG 垂直平分AE ,∴AG =EG ,∴AG 2=EG 2,∴82+x 2=42+(8-x )2,解得x =1,即BG =1.第39题解图40.60,3【解析】∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,∵AE =AF ,∴Rt △ABE ≌Rt △ADF (HL),∴∠BAE =∠DAF =12×(90°-30°)=30°,∴∠AEB =∠AFD =60°,∴BE =12AE ,如解图,过点E 作EG ⊥AF 于点G ,∵∠BAE =∠GAE ,∴BE =GE .∵S △AEF =12AF ·EG =12×2BE ·BE =1,∴BE =1(负值已舍去),∴AB =3BE =3.第40题解图41.2【解析】如解图,连接AP ,∵四边形ABCD 为正方形,∴AB =AD =BC =CD =6,∠B =∠C =∠D =90°,∵点E 是BC 的中点,∴BE =CE =12BC =3,根据折叠的性质,得AF =AB =6,EF =BE =3,∠AFE =∠B =90°,∴AF =AD ,在Rt △APF 和Rt △APD 中,=AD=AP,∴Rt △APF ≌Rt △APD (HL),∴DP =FP .设DP =FP =x ,则EP =x +3,CP =6-x ,在Rt △PEC 中,根据勾股定理得CE 2+CP 2=EP 2,即32+(6-x )2=(x +3)2,解得x =2,∴DP =2.第41题解图42.434【解析】∵AN ⊥EF ,四边形ABCD 为正方形,∴∠AMF =∠ADF =90°,∴∠DAN+∠AGM =∠FGD +∠GFD =90°,∵∠AGM =∠FGD ,∴∠DAN =∠GFD ,设DN =x ,∵BE =DF =5,CN =8,∴AD =BC =CD =DN +CN =x +8,EC =BC -BE =x +8-5=x +3,CF =CD +DF =x +8+5=x +13,在Rt △FEC 中,tan ∠GFD =EC CF =x +3x +13,在Rt △ADN中,tan ∠DAN =DNAD =x x +8,∵∠DAN =∠GFD ,∴tan ∠GFD =tan ∠DAN ,即x +3x +13=xx +8,解得x =12,在Rt △AND 中,∠ADN =90°,AD =x +8=12+8=20,DN =x =12,则AN =AD 2+DN 2=434.【一题多解】如解图,过点G 作GH ⊥BC 于点H ,∵四边形ABCD 为正方形,∴AD =DC =BC =GH ,∠ADC =∠AGH =∠GHE =90°,∴∠AGM +∠EGH =90°,∵AN ⊥EF ,∴∠NAD +∠AGM =90°,∴∠EGH =∠NAD ,在△GHE 和△ADN中,GHE =∠ADN ,=AD ,EGH =∠NAD ,∴△GHE ≌△ADN (ASA),∴HE =DN .设DN =x ,则HE =x ,AD =BC=CD =x +8,CH =GD =BC -BE -EH =3,CF =CD +DF =x +13,CE =x +3,∵tan F =GD DF =EC CF ,∴35=x +3x +13,解得x =12,∴DN =12,AD =20,∴在Rt △ADN 中,AN =202+122=434.第42题解图43.(1)45;(2)2615【解析】(1)∵△BEF 为等腰直角三角形,∴BE =FE ,∠BEF =90°,∵FG ⊥AG ,∴∠G =90°,∵四边形ABCD 为正方形,∴∠A =90°,∴∠A =∠G ,∵∠AEB +∠GEF =∠GEF +∠GFE =90°,∴∠AEB =∠GFE ,∴△AEB ≌△GFE (AAS),∴AE =GF ,AB =EG ,又∵AD =AB ,∴EG =AD ,∴DG =AE ,∴DG =GF ,∴∠FDG =45°;(2)如解图①,过点F 作FO ⊥CD 于点O ,则四边形DGFO 为正方形,又∵DE =1,DF =22,∴FO =2,AD =AE +DE =GF +DE =3,∴DC =AD =BC =AB =EG =3,OD =OF =2,∴OC =DC -DO =1,∵FO ∥AG ,∴△EDM ∽△FOM ,∴DM OM =DE OF =12,∴DM =23,∴OM =43,∵FO ∥BC ,∴△OFN ∽△CBN ,∴ON CN =OF CB =23,∴ON OC =ON ON +CN =25,∴ON =25,∴MN =OM +ON =43+25=2615.第43题解图①第43题解图②【一题多解】解法一:如解图②,延长BC 交GF 的延长线于点H ,∵DE =1,DF =22,∠FDG =45°,∴DG =FG =2,∴AE =DG =2,∴AD =AE +DE =3,∵四边形ABCD 是正方形,∴AD =DC =3,∵DC ∥GH ,∠CDG =∠DGH =∠DCH =90°,∴四边形DCHG 为矩形,∴CH =DG =2,FH =GH -GF =DC -GF =1,∴△EDM ∽△EGF ,△BCN ∽△BHF ,∴ED EG =DM GF ,BC BH =NC FH ,即13=DM 2,35=NC 1,∴DM =23,NC =35,∴MN =DC -DM -NC =3-23-35=2615.解法二:由(1)得AE =GF ,AB =GE ,∵DE =1,DF =22,∠FDG =45°,∴AE =GF =2,∴AB =AD =GE =3,如解图③,以点D 为坐标原点,建立平面直角坐标系,∴B (-3,-3),F (2,-2),E (-1,0),设直线BF 的解析式为y 1=k 1x +b 1(k 1≠0),将B (-3,-3)和F (2,-2)3k 1+b 1=-3k 1+b 1=-21=151=-125,∴直线BF 的解析式为y 1=15x -125,令x =0,得y =-125,∴点N 的坐标为(0,-125),设直线EF 的解析式为y 2=k 2x +b 2(k 2≠0),将E (-1,0)和F (2,-2)k 2+b 2=0k 2+b 2=-22=-232=-23,∴直线EF 的解析式为y 2=-23x -23,令x =0,得y =-23,∴点M 的坐标为(0,-23),∴MN =(-23)-(-125)=2615.第43题解图③44.证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO ,∵BE =DF ,∴BO -BE =DO -DF ,即OE =OF ,∴四边形AECF 是菱形.∵OA =OE ,∴OA =OC =OE =OF ,∴AC =EF ,∴四边形AECF 是正方形.45.(1)证明:∵正方形ABCD 和菱形EFGH ,∴AD =CD ,∠A =∠C =90°,DE =DG ,在Rt △ADE 与Rt △CDG 中,=CD=DG ,∴Rt △ADE ≌Rt △CDG (HL);(2)解:如解图,连接EG 交DF 于点O ,第45题解图∵AE =BE =2,由(1)得Rt △ADE ≌Rt △CDG ,∴CG =AE =2,BG =CB -CG =2,∵∠ABC =90°,∴在Rt △EBG 中,EG =EB 2+BG 2=22,∴EO =2,在Rt △ADE 中,AD =4,AE =2,∴EF =DE =AE 2+AD 2=25,在Rt △OEF 中,OF =EF 2-OE 2=20-2=32,∴DF =2OF =62,∵DB =2AB =42,∴BF =DF -DB =22.46.(1)证明:在正方形ABCD 中,AB =BC =AD ,∠A =∠B =90°,∵AB 1=BC 1=DA 1=45AB ,∴AA 1=BB 1=15AB ,∴△AB 1A 1≌△BC 1B 1,∴A 1B 1=B 1C 1,∠AB 1A 1=∠BC 1B 1,又∵∠BC 1B 1+∠BB 1C 1=90°,∴∠BB 1C 1+∠AB 1A 1=90°,∴∠A 1B 1C 1=90°.同理可证:B 1C 1=C 1D 1=D 1A 1=A 1B 1,∴四边形A 1B 1C 1D 1是正方形;(2)解:∵AB 1=BC 1=CD 1=DA 1=45AB ,设AB =5a ,则AB 1=4a ,∴B 1B =AA 1=a ,∴A 1B 1=17a ,∴A 1B 1AB =17a 5a =175;(3)解:结论1:螺旋折线BB 1B 2B 3…中相邻线段的比均为51717或175.证明:∵AB 1=45AB ,∴BB 1=15AB .同理,B 1B 2=15A 1B 1,∴B 1B B 1B 2=AB A 1B 1=51717.同理可得B 1B 2B 2B 3=51717,∴螺旋折线BB 1B 2B 3…中相邻线段的比均为51717或175.结论2:螺旋折线BB 1B 2B 3…中相邻线段夹角的度数不变.证明:∵B 1B BC 1=B 2B 1B 1C 2=14,∠A 1B 1C 1=∠ABC =90°,∴△BB 1C 1∽△B 1B 2C 2,∴∠BB 1C 1=∠B 1B 2C 2.∵∠C 1B 1B 2=∠C 2B 2B 3=90°,∴∠BB 1C 1+∠C 1B 1B 2=∠B 1B 2C 2+∠C 2B 2B 3,即∠BB 1B 2=∠B 1B 2B 3.同理可证∠B 1B 2B 3=∠B 2B 3B 4=…,∴螺旋折线BB 1B 2B 3…中相邻线段夹角的度数不变.。
中考数学真题分类汇编套专题三十四·矩形菱形正方形

一、选择题1.2010江苏苏州如图,在菱形ABCD 中,DE ⊥AB,3cos 5A =,BE=2,则tan ∠DBE 的值是 A .12B .2C .52D .55答案B2.2010湖南怀化如图2,在菱形ABCD 中, 对角线AC=4,∠BAD=120°, 则菱形ABCD 的周长为A .20B .18C .16D .15 答案C3.2010安徽芜湖下列命题中是真命题的是A .对角线互相垂直且相等的四边形是正方形B .有两边和一角对应相等的两个三角形全等C .两条对角线相等的平行四边形是矩形D .两边相等的平行四边形是菱形 答案C4.2010甘肃兰州如图所示,菱形ABCD 的周长为20cm ,DE ⊥AB,垂足为E,sin A=53,则下列结论正确的个数有①cm DE 3= ②cm BE 1= ③菱形的面积为215cm ④cm BD 102= A . 1个 B . 2个 C . 3个 D . 4个答案C5.2010江苏南通 如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 的长是A .20B .15C .10D .5答案D6.2010江苏盐城如图所示,在菱形ABCD 中,两条对角线AC =6,BD =8,则此菱形 的边长为 A .5B .6C .8D .10答案A7.2010 浙江省温州下列命题中,属于假命题的是▲A .三角形三个内角的和等于l80°B .两直线平行,同位角相等C .矩形的对角线相等D .相等的角是对顶角. 答案D8.2010 浙江省温州如图,AC ;BD 是矩形ABCD 的对角线,过点D 作DE //AC 交BC 的延长线于E,则图中-与AABC 全等的 三角形共有.▲A .1个B .2个C .3个D .4个答案D9.2010 浙江义乌下列说法不正确...的是 ▲ A .一组邻边相等的矩形是正方形 B .对角线相等的菱形是正方形 C .对角线互相垂直的矩形是正方形 D .有一个角是直角的平行四边形是正方形答案D10.2010 重庆已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线交ED 于点P .若1AE AP ==, 5PB =.下列结论:①△APD ≌△AEB ;②点B 到直线AE 2; ③EB ED ⊥;④16APD APB S S ∆∆+=46ABCD S =+正方形ABCD第6题BACD第8题其中正确结论的序号是A .①③④B .①②⑤C .③④⑤D .①③⑤ 答案D11.2010山东聊城如图,点P 是矩形ABCD 的边AD 的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P到矩形的两条对角线AC 和BD 的距离之和是A .125B .65C .245D .不确定答案A12.2010 福建晋江如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是 .A. 669B. 670 D. 672答案B13.2010 山东济南 如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2010厘米后停下,则这只蚂蚁停在 点.答案C14.2010 江苏连云港如图,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD 为菱形的是CAFDB G第7题图10题图A PEDCBA .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD 答案B15.2010福建宁德如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个 直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是 . A .2+10 B .2+210 C .12 D .18 答案B16.2010江西如图,已知矩形纸片ABCD,点E 是AB 的中点,点G 是BC 上的一点,∠BEG>60°,现沿直线EG 将纸片折叠,使点B 落在纸片上的点H 处,连接AH,则与∠BEG 相等的角的个数为 A .4 B .3 C .2 D .1答案B17.2010 山东滨州 如图,把一个长方形纸片对折两次,然后剪下一个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为° ° °° 答案C18.2010山东潍坊如图,已知矩形ABCD ,一条直线将该矩形ABCD 分割成两个多边形含三角形,若这两个多边形的内角和分别为M 和N ,则M +N 不可能是 .BAG CDHE第8题图B C D第7题① ② 3 4答案D19.2010北京若菱形两条对角线的长分别为6和8,则这个菱形的周长为A.20 B.16 C.12 D. 10答案A20.2010 浙江省温州下列命题中,属于假命题的是▲A.三角形三个内角的和等于l80° B.两直线平行,同位角相等C.矩形的对角线相等 D.相等的角是对顶角.答案D21.2010 浙江义乌下列说法不正确...的是▲A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形答案D22.2010陕西西安若一个菱形的边长为2,则这个菱形两条对角线长的平方和为A.16 B.8 C.4 D.1答案A23.2010江西省南昌如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,︒BEG,现沿直线EG将纸片折叠,使点B落在约片上的点H处,∠60>∠相等的角的个数为连接AH,则与BEGB. 3C.2第10题答案B24.2010湖北襄樊下列命题中,真命题有1邻补角的平分线互相垂直2对角线互相垂直平分的四边形是正方形3四边形的外角和等于360°4矩形的两条对角线相等A.1个B.2个C.3个D.4个答案C25.2010湖北襄樊菱形的周长为8cm,高为1cm,则菱形两邻角度数比为A.3:1 B.4:1 C.5:1 D.6:1答案C26.2010 四川泸州如图1,四边形ABCD是正方形,E是边CD上一点,若△AFB经过逆时针旋转角θ后与△AED重合,则θ的取值可能为A.90°B.60°C.45°D.30°答案A27.2010 山东淄博如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD ′等于A144° B126°C108° D72° 答案B28.2010 天津下列命题中正确的是A 对角线相等的四边形是菱形B 对角线互相垂直的四边形是菱形C 对角线相等的平行四边形是菱形D 对角线互相垂直的平行四边形是菱形 答案D29.2010 湖南湘潭下列说法中,你认为正确的是A .四边形具有稳定性B .等边三角形是中心对称图形C .任意多边形的外角和是360oD .矩形的对角线一定互相垂直答案C30.2010 福建泉州南安已知四边形ABCD 中,90A B C ===∠∠∠,如果添加 一个条件,即可推出该四边形是正方形,那么这个条件可以是 . A .90D =∠ B .AB CD = C .AD BC = D .BC CD = 答案D31.2010 四川自贡边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB ′C ′D ′,两图叠成一个“蝶形风筝”如图所示阴影部分,则这个风筝的面积是 ;A .2-33B .332 C .2-43D .2答案A32.2010 山东荷泽如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,记与点A重合点为A ',则△A 'B G 的面积与该矩形的面积比为BCD ′NF 第10题A .121 B .91C .81D .61答案C33.2010 山东荷泽 如图,菱形ABCD 中,∠B =60°,AB =2㎝,E 、F 分别是BC 、CD 的中点,连结AE 、EF 、AF ,则△AEF 的周长为A .32㎝B .33㎝C .34㎝D .3㎝答案B34.2010青海西宁 矩形ABCD 中,E 、F 、M 为AB 、BC 、CD 边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM 的长为 A .5 B .25 C .6 D .26答案B35.2010广西南宁正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK ∆ 的面积为:A10 B12 C14 D16答案D36.2010广东茂名如图,边长为1的正方形ABCD 绕点A 逆时针旋转45度后得到正方形'''D C AB ,边''C B 与DC 交于点O,则四边形OD AB '的周长..是 A .22 B .3 C .2 D .21+8题图ABC DEFA BCDGA '答案A37.2010广西柳州如图4,在正方形ABCD 的外侧作等边△ADE ,则∠AEB 的度数为 A .10° B .° C .15° D .20°答案C38.2010广西柳州如图6,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A对应点为A ',且C B '=3,则AM 的长是A .B .2C .D .答案B39.2010湖北宜昌如图,菱形ABCD 中,AB=15,120ADC ∠=°,则B 、D 两点之间的距离为 ; 40.2010广西河池如图5是用4个全等的直角三角形与1个小正方形镶嵌而成的 正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边x y >,下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=. 其中说法正确的是A .①② B. ①②③ C. ①②④ D. ①②③④A BCDMNA 'B '图6第10题图OC 'B 'D D答案B41.2010广东肇庆菱形的周长为4,一个内角为60°,则较短的对角线长为A .2B .错误!C .1D .错误! 答案C42.2010吉林如图,在矩形ABCD 中,AB=12cm,BC=6cm,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A’,D’处,则整个阴影部分图形的周长..为 A .18cmB .36cmC .40cmD .72cm答案BB.15323答案A二、填空题1.2010江苏盐城小明尝试着将矩形纸片ABCD 如图①,AD >CD 沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE 如图②;再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M 处,折痕为DG 如图③.如果第二次折叠后,M 点正好在∠NDG 的平分线上,那么矩形ABCD 长与宽的比值为 ▲ .答案错误!2.2010山东威海从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚.现有一平行四边形纸片ABCD ﹙如图③﹚,已知∠A =45°,AB =6,AD =4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为 .yx图5A第13题A BCDABDF① ②B C G MN ③答案2611+.3.2010浙江嘉兴如图,已知菱形ABCD 的一个内角︒=∠80BAD ,对角线AC 、BD 相交于点O ,点E 在AB 上,且BO BE =,则EOA ∠= ▲ 度.答案254.2010年上海已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1如图4所示 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________.E DCBAFF答案CF=1或55.2010山东青岛把一张矩形纸片矩形ABCD 按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm,BC =5 cm,则重叠部分△DEF 的面积是 cm 2.答案6.2010 福建德化已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为 ㎝2.答案247.2010湖南邵阳如图九在等腰梯形ABCD 中,AB ∥DC ,AD=BC=CD ,点E 为AB 上一点,连结CE ,请添加一个你认为合适的条件 ,使四边形AECD 为菱形.图4第15题D图 ② 图 ①a A图 ③BC第18题图A BCFE 'A 第13题图 'B DAE DCB图九答案AE =CD 或AD ∥CE 或CE=BC 或∠CEB =∠B 的任意一个都可8.2010山东临沂 正方形ABCD 的边长为a ,点E 、F 分别是对角线BD 上的两点,过点E 、F 分别作AD 、AB 的平行线,如图所示,则图中阴影部分的面积之和等于 .答案212a9.2010四川宜宾如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE =∠BAP ;⑤PD = 错误!EC .其中正确结论的序号是 .答案①、②、④、⑤.10.2010 江苏连云港矩形纸片ABCD 中,AB =3,AD =4,将纸片折叠,使点B 落在边CD 上的B ’处,折痕为AE .在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为________. 答案11.2010 黄冈如图矩形纸片ABCD,AB =5cm,BC =10cm,CD 上有一点E,ED =2cm,AD 上有一点P,PD =3cm,过P 作PF ⊥AD 交BC 于F,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是____________cm.第18题 A BCB ’ D E P A BCD EF MN Q P第18题图答案3412.2010 河北把三张大小相同的正方形卡片A,B,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2填“>”、“<”或“=”.答案=13.2010 山东省德州在四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,如果四边形EFGH 为菱形,那么四边形ABCD 是 只要写出一种即可.答案答案不唯一:只要是对角线相等的四边形均符合要求.如:正方形、矩形、等腰梯形等. 14.2010 广东珠海如图,P 是菱形ABCD 对角线BD 上一点,PE ⊥AB 于点E,PE =4cm, 则点P 到BC 的距离是_____cm.答案415.2010 四川巴中如图5所示,已知□ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB ⊥BC 中,能说明□ABCD 是矩形的有填写番号;答案①④ 16.2010江苏淮安已知菱形ABCD 中,对角线AC=8cm,BD=6cm,在菱形内部包括边界任取一点P,使△A CP 的面积大于6cm 2的概率为 .21DCBA图5图10-1 ACBCBA图10-2答案1417.2010 湖南株洲如图,四边形ABCD 是菱形,对角线AC 和BD 相交于点O ,4AC cm =,8BD cm =,则这个菱形的面积是 2cm .答案1618.2010广东中山如图1,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111D C B A ;把正方形1111D C B A 边长按原法延长一倍得到正方形2222D C B A 如图2;以此下去,则正方形n n n n D C B A 的面积为 .答案62519.2010江苏苏州如图,四边形ABCD 是正方形,延长AB 到E, 使AE=AC,则∠BCE 的度数是 ▲ °. 答案20.2010湖北恩施自治州如图,在矩形ABCD 中,AD =4,DC =3,将△ADC 按逆时针方向绕点A 旋转到△AEF 点A 、B 、E 在同一直线上,连结CF ,则CF = .答案5221.2010山东泰安如图,将矩形纸片ABCD 沿EF 折叠,使D 点与BC 边的中点D /重合,若BC=8,CD=6,则CF= .O DCBA第14题图答案35 22.2010云南楚雄如图,在□ABCD 中,对角线AC 与BD 相交于点O ,在不添加任何辅助线和字母的情况下,请添加一个条件,使得□ABCD 变为矩形,需要添加的条件是 .写出一个即可答案AC =BD 或∠ABC =90°等.23.2010湖北随州如图矩形纸片ABCD,AB =5cm,BC =10cm,CD 上有一点E,ED =2cm,AD 上有一点P,PD =3cm,过P 作PF ⊥AD 交BC 于F,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是____________cm.答案3424.2010黑龙江哈尔滨如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF,若20=∠ABE ,那么C EF '∠的度数为 度;答案12525.2010广东东莞如图⑴,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍后得到正方形A 2B 2C 2D 2如图⑵;以此下去…,则正方形A 4B 4C 4D 4的面积为 .ADO答案62526.2010 四川绵阳已知菱形ABCD 的两条对角线相交于点O ,若AB = 6,∠BDC = 30,则菱形的面积为 . 答案18327.2010 广东汕头如图1,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2如图2;以此下去···,则正方形A 4B 4C 4D 4的面积为__________答案62528.2010 山东淄博在一块长为8、宽为32的矩形中,恰好截出三块形状相同、大小不等的直角三角形,且三角形的顶点都在矩形的边上.其中面积最小的直角三角形的较短直角边的长是 .答案229.2010 天津如图,已知正方形ABCD 的边长为3,E 为CD 边上一点,1DE =.以点A 为中心,把△ADE 顺时针旋转90︒,得△ABE ',连接EE ',则EE '的长等于 .第13题图1 1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第13题图2ABC D A 1B 1C 1D 1第10题图1CDA 1B 1C 1D 1 A BA 2B 2C 2D 2第10题图2答案2530.2010 甘肃如图,在ABC △中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ∥,DF BA ∥.下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=,那么四边形AEDF 是矩形; ③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有 .只填写序号答案①②③④31.2010 福建泉州南安如图,大正方形网格是由25个边长为1的小正方形组成, 把图中阴影部分剪下来,用剪下来的阴影部分拼成一个正方形, 那么新正方形的边长是 .答案532.2010广西梧州如图3,边长为6的正方形ABCD 绕点B 按顺时针方向旋转30°后得到正方形EB G F ,E F 交CD 于点H ,则F H 的长为______结果保留根号;图3ABCDFE HG第16题图 A FCDBE 第18题图第14题AE ' C答案6-2333.2010广西河池如图2,矩形ABCD 中,AB =8cm,BC =4cm,E 是DC 的 中点,BF =41BC ,则四边形DBFE 的面积为 2cm .答案1034.2010贵州铜仁已知菱形的两条对角线的长分别为5和6,则它的面积是________. 答案1535.2010云南曲靖如图,活动衣帽架由三个菱形组成,利用四边形的不稳定性,调整菱形的内角α,使衣帽架拉伸或收缩,当菱形的边长为18cm,α=1200时,A 、B 两点的距离为 cm.答案5436.2010黑龙江绥化如图所示,E 、F 是矩形ABCD 对角线AC 上的两点,试添加一个条件: ,使得△ADF ≌△CBE .答案AF=CE 或AE=CF 或DF ∥BE 或∠ABE=∠CDF 等37.2010黑龙江绥化如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线 A 1C 和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形A 2A 1B 2M 1,对角线A 1M 1和A 2B 2交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3M 2,对角线A 1M 2和A 3B 3交于点M 3;……依此类推,这样作的第n 个正方形对角线交点M n 的坐标为 .答案111,22nn ⎛⎫-⎪⎝⎭38.2010内蒙呼和浩特如图,矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,C B '交AD 于点E ,AD = 8,AB = 4,则DEEB图2的长为 .答案5三、解答题1.2010安徽省中中考如图,AD ∥FE,点B 、C 在AD 上,∠1=∠2,BF =BC ⑴求证:四边形BCEF 是菱形⑵若AB =BC =CD,求证:△ACF ≌△BDE 答案2.10湖南益阳如图7,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E .1 求∠ABD 的度数; 2求线段BE 的长.答案解:⑴ 在菱形ABCD 中,AD AB =,︒=∠60A∴ABD ∆为等边三角形∴︒=∠60ABD ……………………………4分⑵由1可知4==AB BD又∵O 为BD 的中点∴2=OB ……………………………6分 又∵AB OE ⊥,及︒=∠60ABD ∴︒=∠30BOE∴1=BE ……………………………8分D ABO607图3.10湖南益阳我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度..相等... 一条直线l 与方形环的边线有四个交点M 、'M 、'N 、N .小明在探究线段'MM 与N N ' 的数量关系时,从点'M 、'N 向对边作垂线段E M '、F N ',利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:⑴当直线l 与方形环的对边相交时如图18-,直线l 分别交AD 、D A ''、C B ''、BC 于M 、'M 、'N 、N ,小明发现'MM 与N N '相等,请你帮他说明理由;⑵当直线l 与方形环的邻边相交时如图28-,l 分别交AD 、D A ''、C D ''、DC 于M 、'M 、'N 、N ,l 与DC 的夹角为α,你认为'MM 与N N '还相等吗若 相等,说明理由;若不相等,求出NN MM ''的值用含α的三角函数表示.答案⑴解: 在方形环中,∵AD BC F N AD E M ,',⊥⊥'∥BC∴NF N M EM FN N EM M F N E M ',90','∠='∠=∠='∠='︒∴△E MM '≌△F NN '∴N N M M '=' ……………………………5分⑵解法一:∵α='∠='∠︒='∠='∠M M E N FN M ME N NF ,90 ∴N NF '∆∽EM M '∆ ……………………………8分∴NFEM N N M M '='' ∵F N E M '='∴αtan ''='=NFFN N N MM 或ααcos sin ……………………………10分 ①当︒=45α时,tan α=1,则N N M M '=' ②当︒≠45α时,N N M M '≠' 则αtan =''N N M M 或ααcos sin ……………………………12分 解法二:在方形环中,︒=∠90D又∵CD F N AD E M ⊥⊥'', ∴E M '∥E M F N DC '=', ∴α=∠='∠NF N E M M ' 在F N N Rt '∆与E M M Rt '∆中,B18-图28-图MM EM N N F N ''='=ααcos ,'sin N N M M E M M M N N F N ''=''⋅'=='cos sin tan ααα 即 αtan =''N N M M 或ααcos sin ……………………………10分 ①当︒=45α时,N N M M '=' ②当︒≠45α时,N N M M '≠' 则αtan =''N N M M 或ααcos sin ……………………………12分 4.2010江苏南京8分如图,正方形ABCD 的边长是2,M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止,连接EM 并延长交射线CD 于点F,过M 作EF 的垂线交射线BC 于点G ,连结EG 、FG;1设AE=x 时,△EGF 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; 2P 是MG 的中点,请直接写出点P 的运动路线的长;答案5.2010辽宁丹东市 如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm,矩形ABCD的周长为32cm,求AE 的长.答案解:在Rt△AEF 和Rt△DEC 中, ∵EF ⊥CE , ∴∠FEC =90°,∴∠AEF +∠DEC =90°,而∠ECD +∠DEC =90°,∴∠AEF =∠ECD . ····················· 3分 又∠FAE =∠EDC =90°.EF =EC ∴Rt△AEF ≌Rt△DCE . ····················· 5分 AE =CD . ····················· 6分 AD =AE +4.∵矩形ABCD 的周长为32 cm, ∴2AE +AE +4=32. ······················· 8分 解得, AE =6 cm . 10分6.2010山东济宁数学课上,李老师出示了这样一道题目:如图1,正方形ABCD 的边长为12,P 为边BC 延长线上的一点,E 为DP 的中点,DP 的垂直平分线交边DC 于M ,交边AB 的延长线于N .当6CP =时,EM 与EN 的比值是多少经过思考,小明展示了一种正确的解题思路:过E 作直线平行于BC 交DC ,AB 分别于F ,G ,如图2,则可得:DF DEFC EP=,因为DE EP =,所以DF FC =.可求出EF 和EG 的值,进而可求得EM 与EN 的比值.1 请按照小明的思路写出求解过程.2 小东又对此题作了进一步探究,得出了DP MN =的结论.你认为小东的这个结论正确吗如果正确,请给予证明;如果不正确,请说明理由. 答案1解:过E 作直线平行于BC 交DC ,AB 分别于点F ,G ,则DF DE FC EP =,EM EFEN EG=,12GF BC ==. ∵DE EP =,∴DF FC =. ······························································· 2分∴116322EF CP ==⨯=,12315EG GF EF =+=+=. ∴31155EM EF EN EG ===. ································································· 4分 2证明:作MH ∥BC 交AB 于点H , ····························································· 5分则MH CB CD ==,90MHN ∠=︒. ∵1809090DCP ∠=︒-︒=︒, ∴DCP MHN ∠=∠.∵90MNH CMN DME CDP ∠=∠=∠=︒-∠,90DPC CDP ∠=︒-∠, ∴DPC MNH ∠=∠.∴DPC MNH ∆≅∆. ········································ 7分第20题图BCA EDF 第22题∴DP MN =. ··········································································· 8分7.2010山东青岛已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .1求证:BE = DF ;2连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形并证明你的结论.答案证明:1∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF . ·························· 4分 2四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =.∴OE OF =.∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形. ·························· 8分8.2010山东日照如图,四边形ABCD 是边长为a 的正方形,点G ,E 分别是边AB ,BC 的中点,∠AEF =90o ,且EF 交正方形外角的平分线CF 于点F . 1证明:∠BAE =∠FEC ; 2证明:△AGE ≌△ECF ; 3求△AEF 的面积.第22题H B CDE M NA PA DB E F O CM 第21题图DCBAOE答案1证明:∵∠AEF =90o ,∴∠FEC +∠AEB =90o .………………………………………1分 在Rt △ABE 中,∠AEB +∠BAE =90o ,∴∠BAE =∠FEC ;……………………………………………3分 2证明:∵G ,E 分别是正方形ABCD 的边AB ,BC 的中点,∴AG=GB=BE=EC ,且∠AGE =180o -45o =135o . 又∵CF 是∠DCH 的平分线,∠ECF =90o +45o =135o .………………………………………4分在△AGE 和△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠=FEC GAE ECF AGE EC AG o,135, ∴△AGE ≌△ECF ; …………………………………………6分 3解:由△AGE ≌△ECF ,得AE=EF .又∵∠AEF =90o ,∴△AEF 是等腰直角三角形.………………………………7分由AB=a ,BE =21a ,知AE =25a ,∴S △AEF =85a 2.…………………………………………………9分 9.2010四川眉山如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .1试判断四边形OCED 的形状,并说明理由; 2若AB =6,BC =8,求四边形OCED 的面积.答案解:1四边形OCED 是菱形.…………2分∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,…………3分 又 在矩形ABCD 中,OC =OD ,∴四边形OCED 是菱形.…………………4分 2连结OE .由菱形OCED 得:CD ⊥OE , …………5分 ∴OE ∥BC 又 CE ∥BD∴四边形BCEO 是平行四边形∴OE =BC =8……………………………………………7分∴S 四边形OCED =11862422OE CD ⋅=⨯⨯=……………8分DCBAOE10.2010浙江宁波如图1,有一张菱形纸片ABCD ,AC =8, BD =6. 1请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一 个平行四边形,在图2中用实线画出你所拼成的平行四边形;若 沿着BD 剪开,请在图3中用实线画出拼成的平行四边形.并直接 写出这两个平行四边形的周长.2沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.注:上述所画的平行四边形都不能与原菱形全等答案 解:11分周长为26 2分3分周长为22 4分 26分注:画法不唯一.11.2010浙江绍兴 1 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,∠AOF =90°. 求证:BE =CF .第21题图2 图3 图4周长为 ▲ 周长为 ▲图12 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°, EF =4.求GH 的长.3 已知点E ,H ,F ,G 分别在矩形ABCD 的边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°,EF =4. 直接写出下列两题的答案:①如图3,矩形ABCD 由2个全等的正方形组成,求GH 的长;②如图4,矩形ABCD 由n 个全等的正方形组成,求GH 的长用n 的代数式表示.答案1 证明:如图1,∵ 四边形ABCD 为正方形,∴ AB =BC ,∠ABC =∠BCD =90°, ∴ ∠EAB +∠AEB =90°. ∵ ∠EOB =∠AOF =90°, ∴ ∠FBC +∠AEB =90°,∴ ∠EAB =∠FBC , ∴ △ABE ≌△BCF , ∴ BE =CF . 2 解:如图2,过点A 作第23题图 1第23题图2第23题图3第23题图1第23题图2O ′NMAM 1证明:△AB E ≌△DAF ;2若∠AGB =30°,求EF 的长.答案解:1∵四边形ABCD 是正方形∴AB=AD在△ABE 和△DAF 中⎪⎩⎪⎨⎧∠=∠=∠=∠3412DA AB ∴△ABE ≌△DAF -----------------------4分2∵四边形ABCD 是正方形∴∠1+∠4=900∵∠3=∠4∴∠1+∠3=900∴∠AFD=900----------------------------6分 在正方形ABCD 中, AD ∥BC∴∠1=∠AGB=300在Rt △ADF 中,∠AFD=900AD=2∴AF=3 DF =----------------------------8分 由1得△ABE ≌△ADF ∴AE=DF=1∴EF=AF-AE=13- -----------------------------------------10分14.2010山东聊城如图,在等边△ABC 中,点D 是BC 边的中点,以AD 为边作等边△ADE .1求∠CAE 的度数;2取AB 边的中点F ,连结CF 、CE ,试证明四边形AFCE 是矩形.ABDEF 1423题图24答案1在等边△ABC 中,∵点D 是BC 边的中点,∴∠DAC =30o,又∵等边△ADE ,∴∠DAE =60o,∴∠CAE =30o 2在等边△ABC 中,∵F 是AB 边的中点,D 是BC 边的中点,∴CF =AD ,∠CF A =90o,又∵AD =AE ,∴AE =CF ,由1知∠CAE =30o,∴∠EAF =60o+30o =90o,∴∠CF A =∠EAF ,∴CF ∥AE ,∵AE =CF ,∴四边形AFCE 是平行四边形,又∵∠CF A =90o,∴四边形AFCE 是矩形.15.2010湖南长沙在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED 1求证:△BEC ≌△DEC ;2延长BE 交AD 于F,当∠BED =120°时,求EFD 的度数.答案解:1∵四边形ABCD 是正方形, ∴BC =DC又∵AC 为对角线,E 为AC 上一点, ∴∠BCE =∠DCE =45°. ∵EC =EC,∴△BEC ≌△DECSAS ;2∵△BEC ≌△DEC, ∠BED =120°, ∴∠BEC =∠DEC =60°. ∵∠DAC =45°, ∴∠ADE =15°∴∠EFD =∠BED -∠ADE =120°-15°=105°16.2010浙江金华本题12分如图,把含有30°角的三角板ABO 置入平面直角坐标系中,A ,B 两点坐标分别为3,0和3动点P 从A 点开始沿折线AO-OB-BA 运动,点P 在AO ,OB ,BA 上运动的速度分别为3长度单位/秒﹒一直尺的上边缘l 从x 轴的位置开 始以错误! 长度单位/秒的速度向上平行移动即移动过程中保持l ∥x 轴,且分别与OB , AB 交于E ,F 两点﹒设动点P 与动直线l 同时出发,运动时间为t 秒,当点P 沿折线 AO -OB -BA 运动一周时,直线l 和动点P 同时停止运动. 请解答下列问题:1过A ,B 两点的直线解析式是 ▲ ;2当t ﹦4时,点P 的坐标为 ▲ ;当t ﹦ ▲ ,点P 与点E 重合; 3① 作点P 关于直线EF 的对称点P′. 在运动过程中,若形成的四边形PEP′F 为菱形,则t 的值是多少第22题图F C② 当t ﹦2时,是否存在着点Q ,使得△FEQ ∽△BEP 若存在, 求出点Q 的坐标;若不存在,请说明理由.答案解:1333+-=x y ; 20,3,29=t ; 3①当点P 在线段AO 上时,过F 作FG ⊥x 轴,G 为垂足如图1∵FG OE =,FP EP =,∠=EOP ∠=FGP 90° ∴△EOP ≌△FGP ,∴PG OP =﹒又∵t FG OE 33==,∠=A 60°,∴t FG AG 3160tan 0== 而t AP =,∴t OP -=3,t AG AP PG 32=-=由t t 323=-得 59=t ;当点P 在线段OB 上时,形成的是三角形,不存在菱形; 当点P 在线段BA 上时,过P 作PH ⊥EF ,PM ⊥OB ,H 、M 分别为垂足如图2∵t OE 33=,∴t BE 3333-=,∴3360tan 0t BE EF -==∴6921tEF EH MP -===, 又∵)6(2-=t BP 在Rt △BMP 中,MP BP =⋅060cos 即6921)6(2tt -=⋅-,解得745=t .②存在﹒理由如下:图1y∵2=t ,∴332=OE ,2=AP ,1=OP 将△BEP 绕点E 顺时针方向旋转90°,得到 △EC B '如图3∵OB ⊥EF ,∴点B '在直线EF 上, C 点坐标为332,332-1 过F 作FQ ∥C B ',交EC 于点Q ,则△FEQ ∽△EC B '由3=='=QE CE FE E B FE BE ,可得Q 的坐标为-32,33根据对称性可得,Q 关于直线EF 的对称点Q '-32,3也符合条件;17.2010江苏泰州如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°.1求证:AC ∥DE ;2过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF 的形状,并说明理由.答案⑴在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB , ∴∠DCA =∠EDC ,∴AC ∥DE ; ⑵四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°, 又∠EDC =∠CAB ,AB=CD ,∴△DEC ≌△AFB ,∴DE =AF ,由⑴得AC ∥DE ,∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF , ∵在矩形ABCD 中,AD ∥BC 且AD =BC , ∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形. 18.2010江苏无锡1如图1,在正方形ABCD 中,M 是BC 边不含端点B 、C 上任意一点,P 是BC 延长线上一点,N 是∠DCP 的平分线上一点.若∠AMN =90°,求证:AM =MN .下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明. 证明:在边AB 上截取AE =MC ,连ME .正方形ABCD 中,∠B =∠BCD =90°,AB =BC . ∴∠NMC =180°—∠AMN —∠AMB =180°—∠B —∠AMB =∠MAB =∠MAE . 下面请你完成余下的证明过程2若将1中的“正方形ABCD ”改为“正三角形ABC ”如图2,N 是∠ACP 的平分线上一点,则当∠AMN =60°时,结论AM=MN 是否还成立请说明理由.3若将1中的“正方形ABCD ”改为“正n 边形ABCD ……X ”,请你作出猜想:当∠AMN = °时,结论AM =MN 仍然成立.直接写出答案,不需要证明答案解:1∵AE=MC ,∴BE=BM , ∴∠BEM=∠EMB=45°, ∴∠AEM =135°,∵CN 平分∠DCP ,∴∠PCN=45°,∴∠AEM=∠MCN=135°在△AEM 和△MCN 中:∵,,=CMN,AEM MCN AE MC EAM ∠=∠=∠∠⎧⎪⎨⎪⎩∴△AEM ≌△MCN ,∴AM=MN2仍然成立.在边AB 上截取AE=MC,连接ME ∵△ABC 是等边三角形, ∴AB=BC ,∠B=∠ACB=60°, ∴∠ACP=120°. ∵AE=MC,∴BE=BM ∴∠BEM=∠EMB=60° ∴∠AEM=120°.∵CN 平分∠ACP ,∴∠PCN =60°, ∴∠AEM =∠MCN =120°∵∠CMN=180°—∠AMN —∠AMB =180°—∠B —∠AMB=∠BAM ∴△AEM ≌△MCN,∴AM=MN3(2)180n n-︒19.2010山东临沂如图1,已知矩形ABCD ,点C 是边DE 的中点,且2AB AD =. 1判断ABC ∆的形状,并说明理由;2保持图1中的ABC ∆固定不变,绕点C 旋转DE 所在的直线MN 到图2中的位置当垂线段AD 、BE 在直线MN 的同侧.试探究线段AD 、BE 、DE 长度之间有什么关系并给予证明;3保持图2 中的ABC ∆固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置当垂线段AD 、BE 在直线MN 的异侧.试探究线段AD 、BE 、DE 长度之间有什么关系并给予证明.答案解:1△ABC 是等腰直角三角形; 如图1在矩形ABED 中, 因为点C 是边DE的中点,且AB=2AD, 所以MNPCBA图2M NPDCEBA 图1 E D CB A 图1E D C B A 图2MN NM 图3A B CD E。
中考数学真题-矩形菱形正方形

矩形菱形正方形姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·四川成都市·中考真题)如图,四边形ABCD 是菱形,点E ,F 分别在,BC DC 边上,添加以下条件不能判定ABE ADF ≌的是( )A .BE DF =B .BAE DAF ∠=∠C .AE AD = D .AEB AFD ∠=∠2.(2021·四川遂宁市·中考真题)如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的F 处,则CE 的长是( )A .1B .43C .32D .53 3.(2021·重庆中考真题)如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 做ON △OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1B 2C .2D .224.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若AB BC =,则点B 是线段AC 的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心5.(2021·四川泸州市·中考真题)下列命题是真命题的是( )A .对角线相等的四边形是平行四边形B .对角线互相平分且相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形6.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D 作DF 的垂线交小正方形对角线EF 的延长线于点G ,连结CG ,延长BE 交CG 于点H .若2AE BE =,则CG BH 的值为( )A .32B .2C .3107D .3557.(2021·安徽中考真题)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+ 8.(2021·重庆中考真题)如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,30PMN ∠=︒,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则AMP ∠的度数为( )A .60°B .65°C .75°D .80°9.(2021·四川乐山市·中考真题)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为( )A .32B .3C .2D .5210.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52B .58C .3D .5511.(2021·浙江绍兴市·中考真题)如图,菱形ABCD 中,60B ∠=︒,点P 从点B 出发,沿折线BC CD -方向移动,移动到点D 停止.在ABP △形状的变化过程中,依次出现的特殊三角形是( )A .直角三角形→等边三角形→等腰三角形→直角三角形B .直角三角形→等腰三角形→直角三角形→等边三角形C .直角三角形→等边三角形→直角三角形→等腰三角形D .等腰三角形→等边三角形→直角三角形→等腰三角形12.(2021·陕西中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则AC BD的值为( )A .12B .22C .32D .33二、填空题13.(2021·山东临沂市·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).△射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;△车轮做成圆形,应用了“圆是中心对称图形”;△学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;△地板砖可以做成矩形,应用了“矩形对边相等”.14.(2021·四川泸州市·中考真题)如图,在边长为4的正方形ABCD 中,点E 是BC 的中点,点F 在CD 上,且CF =3BF ,AE ,BF 相交于点G ,则AGF 的面积是________.15.(2021·四川成都市·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B ¢上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.16.(2021·江苏扬州市·中考真题)如图,在ABC 中,AC BC =,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC 上,若4CF =,3BF =,且2DE EF =,则EF 的长为________.17.(2021·云南中考真题)已知ABC 的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC 的一条边长为6,则点D 到直线AB 的距离为__________.18.(2021·山东泰安市·中考真题)如图,将矩形纸片ABCD 折叠(AD AB >),使AB 落在AD 上,AE 为折痕,然后将矩形纸片展开铺在一个平面上,E 点不动,将BE 边折起,使点B 落在AE 上的点G 处,连接DE ,若DE EF =,2CE =,则AD 的长为________.19.(2021·江苏连云港市·中考真题)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OE AD ⊥,垂足为E ,8AC =,6BD =,则OE 的长为______.20.(2021·四川南充市·中考真题)如图,点E 是矩形ABCD 边AD 上一点,点F ,G ,H 分别是BE ,BC ,CE 的中点,3AF =,则GH 的长为________.21.(2021·四川凉山彝族自治州·中考真题)菱形ABCD 中,对角线10, 24AC BD ==,则菱形的高等于___________.22.(2021·重庆中考真题)如图,在菱形ABCD 中,对角线12AC =,16BD =,分别以点A ,B ,C ,D 为圆心,12AB 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)23.(2021·四川遂宁市·中考真题)如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:△ABF DBE ∠=∠;△ABF DBE ∽;△AF BD ⊥;△22BG BH BD =;△若:1:3CE DE =,则:17:16BH DH =,你认为其中正确是_____(填写序号)24.(2021·湖北十堰市·中考真题)如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为_______.25.(2021·浙江绍兴市·中考真题)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上.若30cm AB =,则BC 长为_______cm (结果保留根号).26.(2021·湖北黄冈市·中考真题)如图,正方形ABCD 中,1AB =,连接AC ,ACD ∠的平分线交AD 于点E ,在AB 上截取AF DE =,连接DF ,分别交CE ,AC 于点G ,H ,点P 是线段GC 上的动点,PQ AC ⊥于点Q ,连接PH .下列结论:△CE DF ⊥;△DE DC AC +=;△3EA =;△PH PQ +的最小值是22.其中所有正确结论的序号是_____.27.(2021·湖南衡阳市·中考真题)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从---,点Q的运O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O A D O ---.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如动路线为O C B O-段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为__________图2所示,当点P在A D厘米.28.(2021·湖南株洲市·中考真题)《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,△和CBD为“大三斜”组共十三只(图△中的“様”和“隻”为“样”和“只”).图△为某蝶几设计图,其中ABD件(“一様二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线∠=︒,则D C PADQDQ对称,连接CP、DP.若24∠=___________度.29.(2021·江苏苏州市·中考真题)如图,四边形ABCD 为菱形,70ABC ∠=︒,延长BC 到E ,在DCE ∠内作射线CM ,使得15ECM ∠=︒,过点D 作DF CM ⊥,垂足为F ,若5DF =,则对角线BD 的长为______.(结果保留根号)30.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形△的边BC 及四边形△的边CD 都在x 轴上,“猫”耳尖E 在y 轴上.若“猫”尾巴尖A 的横坐标是1,则“猫”爪尖F 的坐标是___________.三、解答题31.(2021·四川广安市·中考真题)如图,四边形ABCD 是菱形,点E 、F 分别在边AB 、AD 的延长线上,且BE DF =.连接CE 、CF . 求证:CE CF =.32.(2021·江苏扬州市·中考真题)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且22AD =,求四边形AFDE 的面积.33.(2021·浙江金华市·中考真题)已知:如图,矩形ABCD 的对角线,AC BD 相交于点O ,120,2BOC AB ∠=︒=.(1)求矩形对角线的长.(2)过O 作OE AD ⊥于点E ,连结BE .记ABE α∠=,求tan α的值.34.(2021·江苏连云港市·中考真题)如图,点C 是BE 的中点,四边形ABCD 是平行四边形. (1)求证:四边形ACED 是平行四边形;(2)如果AB AE =,求证:四边形ACED 是矩形.35.(2021·四川凉山彝族自治州·中考真题)如图,在四边形ABCD 中,90ADC B ∠=∠=︒,过点D 作DE AB ⊥于E ,若DE BE =.(1)求证:DA DC =;(2)连接AC 交DE 于点F ,若30,6ADE AD ∠=︒=,求DF 的长.36.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F . (1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.37.(2021·四川自贡市·中考真题)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.⨯的正方形网格中,网格线的交点称为格点,B在格点上,38.(2021·浙江嘉兴市·中考真题)如图,在77每一个小正方形的边长为1.(1)以AB为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.∠是锐角,E是BC边上的动点,将射线39.(2021·浙江丽水市·中考真题)如图,在菱形ABCD中,ABCAE 绕点A 按逆时针方向旋转,交直线CD 于点F .(1)当AE BC EAF ABC ,^Ð=Ð时, △求证:AE AF =;△连结BD EF ,,若25EF BD =,求ABCDAEF菱形SS的值;(2)当12EAF BAD ∠=∠时,延长BC 交射线AF 于点M ,延长DC 交射线AE 于点N ,连结AC MN ,,若42AB AC ==,,则当CE 为何值时,AMN 是等腰三角形.40.(2021·安徽中考真题)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10AB cm =,6BC cm =.求零件的截面面积.参考数据:sin 530.80︒≈,cos530.60︒≈.41.(2021·四川眉山市·中考真题)如图,在等腰直角三角形ABC 中,90ACB ∠=︒,25AC BC ==,边长为2的正方形DEFG 的对角线交点与点C 重合,连接AD ,BE . (1)求证:≌ACD BCE V V ;(2)当点D 在ABC 内部,且90ADC ∠=︒时,设AC 与DG 相交于点M ,求AM 的长;(3)将正方形DEFG 绕点C 旋转一周,当点A 、D 、E 三点在同一直线上时,请直接写出AD 的长.42.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.。
中考数学热身 矩形、菱形、正方形(含解析)-人教版初中九年级全册数学试题

矩形、菱形、正方形一、填空题1.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm,则这个矩形的一条较长边为cm.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是cm.3.正方形的一条对角线长为2,则它的面积为.4.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.二、选择题5.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形6.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°8.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形三、解答题9.如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.10.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.11.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.12.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.13.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.14.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.矩形、菱形、正方形参考答案与试题解析一、填空题1.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm,则这个矩形的一条较长边为2cm.【考点】矩形的性质.【分析】根据矩形的性质推出OA=OB,证出等边△OAB,求出BA,根据勾股定理求出BC即可得到答案.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=AC=2(cm),∵四边形ABCD是矩形,∴AB=CD=2cm,∠ABC=90°,在△ABC中,由勾股定理得:BC===2(cm),∴AD=BC=2(cm).故答案是:2.【点评】本题主要考查对矩形的性质,等边三角形的性质和判定,勾股定理等知识点的理解和掌握,能求出AB的长是解此题的关键.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是8 cm.【考点】勾股定理;菱形的性质.【专题】压轴题.【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是3.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.【解答】解:在菱形ABCD中,AB=5,AC=6,因为对角线互相垂直平分,所以∠AOB=90°,AO=3,在RT△AOB中,BO==4,∴BD=2BO=8.【点评】注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.3.正方形的一条对角线长为2,则它的面积为 2 .【考点】正方形的性质.【专题】计算题.【分析】根据正方形的性质利用勾股定理可求得其边长,从而就不难求得其面积.【解答】解:由题意得,正方形的边长为,故面积为2.故答案为2.【点评】主要考查到正方形的性质和面积的求法.要注意:正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.4.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24 cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.二、选择题5.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【考点】菱形的判定;矩形的判定;正方形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.6.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,对折前后角相等.【解答】解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形【考点】剪纸问题.【专题】操作型.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:由于EF的位置是不确定的,只能得到所求的四边形的一组对边平行,所以是梯形.故选A.【点评】本题主要考查学生的动手能力及空间想象能力.三、解答题9.如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.【考点】菱形的性质.【分析】根据菱形的对角线可以求得菱形ABCD的面积,根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】解:菱形的对角线BD,AC的长分别是6和8,则菱形的面积为×6×8=24,菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为20,答:菱形的周长为20,面积为24.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.10.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.【考点】正方形的判定;三角形中位线定理;平行四边形的判定.【专题】证明题.【分析】通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF ⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.【解答】证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC且GF=EC.又∵H是EC的中点,EH=EC,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,∴GH∥BC且GH=BC.又∵EF⊥BC且EF=BC,又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.【点评】主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.11.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.【考点】菱形的性质.【专题】计算题.【分析】首先连接BD,根据菱形的四条边都相等,可得AB=BC=CD=AD;又由BE⊥AD,AE=ED,可得AB=AD=BD,所以∠A=60°,可得∠ADC=120°,即可得∠EBF的度数.【解答】解:连接BD,∵BE⊥AD,AE=ED,∴AB=BD,∵四边形ABCD是菱形,∴AB=BC=CD=AD,AD∥BC,AB∥CD,∴AB=AD=BD,∴∠A=60°,∴∠ADC=120°,∵BE⊥AD,BF⊥CD,∴∠BED=∠BFD=90°,∴∠EBF=60°.【点评】此题考查了菱形的性质:菱形的四条边都相等.还考查了线段垂直平分线的性质.此题比较简单,解题要细心.12.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.【考点】矩形的性质;全等三角形的判定与性质.【专题】探究型.【分析】由全等三角形的判定定理直接可证△ADE≌△FCD,即证AD=CF.【解答】解:(1)AD=CF.(2分)(2)证明:∵四边形ABCD是矩形,∴CD∥AE,AB=CD,∴∠AED=∠FDC,∵DE=AB,∴DE=AB=CD.又∵CF⊥DE,∴∠CFD=∠A=90°.(4分)∴△ADE≌△FCD(AAS).(5分)∴AD=CF.(6分)【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.13.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.【考点】全等三角形的判定与性质;正方形的判定.【专题】几何综合题.【分析】先利用HL判定Rt△BDF≌Rt△CDE,从而得到∠B=∠C,即△ABC是等腰三角形;由已知可证明它是矩形,因为有一组邻边相等即可得到四边形AFDE是正方形.【解答】(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,又∵,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.∴△ABC是等腰三角形;(2)解:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.【点评】此题主要考查学生对全等三角形的判定和性质及正方形的判定方法的掌握情况.判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.14.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【考点】矩形的判定.【专题】几何综合题.【分析】(1)根据平行线性质和角平分线性质,以及由平行线所夹的内错角相等易证.(2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证.【解答】(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO.(2)解:当点O运动到AC的中点时,四边形AECF是矩形.理由:∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,∵CF平分∠BCA的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=×180°=90°.即∠ECF=90°,∴四边形AECF是矩形.【点评】本题涉及矩形的判定定理,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.。
中考数学16 、矩形、菱形、正方形(含解析)新人教版
专题16 平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________1.【湖南益阳2015年中考数学试卷】如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误是()A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD【【答案】】D [#~^@%]【【分析】】考点:矩形性质2.【2015届浙江省杭州市5月中考模拟】用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形依据是()[&@^~#]A.一组邻边相等四边形是菱形B.四边相等四边形是菱形C.对角线互相垂直平行四边形是菱形D.每条对角线平分一组对角平行四边形是菱形 [&%*@^]【【答案】】B.【【分析】】试题【分析】:由图形作法可知:AD=AB=DC=BC ,∴四边形ABCD 是菱形,故选:B .考点:菱形判定;作图—复杂作图.3.【2015届浙江省金华市外国语学校联考中考模拟】如图,在周长为20cm ▱ABCD 中,AB ≠AD ,对角线AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 周长为( )A .4cmB .6cmC .8cmD .10cm【【答案】】D .【【分析】】 [~^@%*]考点:1. 线段垂直平分线性质;2.平行四边形性质.4.【黑龙江绥化2015年中考数学试卷】如图□ABCD 对角线AC,BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC=600,AB=21BC ,连接OE .下列 结论:①∠CAD=300 ② S □ABCD =AB •AC ③ OB=AB ④ OE=41BC 成立个数有( ) [@~*^&]A. 1个B. 2个C. 3个D. 4个 [^@&~*]【【答案】】C【【分析】】考点:1.平行四边形性质;2.等边三角形判定与性质;3.直角三角形性质;4.三角形中位线.5.【黑龙江牡丹江2015年中考数学试题】如图,四边形ABCD对角线相交于点O,AO=CO,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形. [%&@^*]【【答案】】BO=DO.【【分析】】试题分析:条件中已给出AO=CO,因为对角线互相平分四边形是平行四边形,所以只要添加BO=DO就可以了.考点:平行四边形判定.6.【黑龙江省黑河市、齐齐哈尔市、大兴安岭2015年中考数学试题】菱形ABCD 对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为.【【答案】】5cm73.【【分析】】试题分析:∵AC=6cm,BD=4cm,∴AO=12AC=12×6=3cm,BO=12BD=12×4=2m,如图1,正方形ACEF在AC上方时,过点B作BG⊥AF交FA延长线于G,BG=AO=3cm,FG=AF+AG=6+2=8cm,在Rt△BFG中,BF=22+=73cm,38+=22BG FG如图2,正方形ACEF在AC下方时,过点B作BG⊥AF于G,BG=AO=3cm,FG=AF ﹣AG=6﹣2=4cm,在Rt△BFG中,BF=2234+=5cm,综上所述,BF+=22BG FG长为5cm或73cm. [~@^%#]故【答案】为:5cm或73cm.[^&~@*]考点:1.菱形性质;2.正方形性质;3.分类讨论.7.【2015届山东省青岛市李沧区中考三模】如图,正方形ABCD和正方形CEFG 中,点D在CG上,BC=1,CE=3,H是AF中点,那么CH长是.【【答案】】5[【【分析】】则AM=BC+CE=1+3=4,FM=EF ﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD 和四边形GCEF 是正方形, [*^~&#]∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H 为AF 中点,∴CH=12AF , 在Rt △AMF 中,由勾股定理得:AF=22224225AM FM +=+=,[~^%@*]∴CH=5.考点:1.正方形性质;2.直角三角形斜边上中线;3.勾股定理. [%~^*#]8.【2015届河北省邯郸市武安七中中考模拟】如图,依次连接第一个矩形各边中点得到一个菱形,再依次连接菱形各边中点得到第二个矩形,按照此方法继续下去.已知第一个矩形面积为1,则第n 个矩形面积为 .【【答案】】11()4n -. 【【分析】】 [@%^#&][*#%~@]考点:1.矩形性质;2.菱形性质.9.【2015届江苏省盐城市亭湖区新洋实验学校中考模拟】如图,将▱ABCD边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠ABC,连接AC、BE.求证:四边形ABEC是矩形.【【答案】】(1)【【分析】】考点:1.矩形判定;2.全等三角形判定与性质;3.平行四边形性质.10.【黑龙江牡丹江2015年中考数学试题】已知四边形ABCD是正方形,等腰直角△AEF直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.(1)当点E在边BC上,点M在边AD延长线上时,如图①,求证:AB+BE=AM;[*#%&~](提示:延长MF,交边BC延长线于点H.)(2)当点E在边CB延长线上,点M在边AD上时,如图②;当点E在边BC延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间数量关系,不需要证明;(3)在(1),(2)条件下,若BE=,∠AFM=15°,则AM= .[*@^&~]【【答案】】(1)参见【分析】;(2)图②:AB=EB+AM,图③:BE=AM+AB;(3)3 33. [~^@*%]【【分析】】试题【分析】:(1)如图①,构建全等三角形,延长MF,交边BC延长线于点H,∵四边形ABCD是正方形,FM⊥AD,∴∠ABE=90°,∠EHF=90°,四边形ABHM为矩形,∴AM=BH=BE+EH,∵△AEF为等腰直角三角形,∴AE=EF,∠AEB+∠FEH=90°,∵∠EFH+∠FEH=90°,∴∠AEB=∠EFH(同角余角相等),∴△ABE≌△EHF(AAS),∴AB=EH,∵AM=BH=BE+EH,∴AM=BE+AB,即AB+BE=AM;(2)同上题思路一样,找到全等三角形,利用全等三角形性质把已知线段进行等量代换,如图②,设BC与MF交于H,∵∠AEB+∠FEH=90°,∠AEB+∠EAB=90°,∴∠FEH=∠EAB(同角余角相等),又∵AE=FE,∠ABE=∠EHF=90°,∴△ABE≌△EHF(AAS),∴AB=EH=EB+BH,又BH=AM;∴AB=EB+AM.如图③,设BC与MF交于H,∠BAE+∠AEB=90°,∠AEB+∠HEF=90°,∴∠BAE=∠HEF(同角余角相等),在△ABE与△EHF中,∵∠ABE=∠EHF=90°,AE=EF,∴△ABE≌△EHF(AAS),∴AB=EH,∵BH=AM,∴BE=BH+EH=AM+EH=AM+AB,即BE=AM+AB;(3)根据(1)(2)图形进行分类讨论:如图①,∵∠AFM=15°,∠AFE=45°,∴∠EFM=45°+15°=60°,∴∠EFH=180°-60°=120°,在△EFH中,∵∠FHE=90°,∠EFH=120°,这与三角形内角和定理矛盾,∴此情况不存在;如图②,∵∠AFM=15°,考点:1.矩形与正方形性质;2.全等三角形判定与性质;3.等腰直角三角形性质;4.锐角三角函数. [*&^@~][^~@*%]。
中考数学试题-矩形、菱形、正方形试题及答案
中考试题专题之19-矩形、菱形、正方形试题及答案一、选择题1.(湖北荆州)如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中 点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm2..(山西省)如图(1),把一个长为、宽为的长方形()沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .B .C .D .3.( 黑龙江大兴安岭)在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③CH CA =;④ED BE 3=,正确的( ) A .②③ B .③④ C .①②④D .②③④4.(河北)如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20B .15C .10D .55.(兰州)如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展m n m n >2m n -m n -2m2nmnnn (2)(1)N M FEBABAC D开后是6.(济南)如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( ) A .1.6 B .2.5 C .3 D .3.47.(凉山州)如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=B .EBD EDB ∠=∠C .ABE CBD △∽△ D .sin AEABE ED∠=8.(济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是 A .12 B . 14 C . 15D .9.(衡阳市) 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确 的个数为( )①DE =3cm ; ②EB =1cm ; ③2A BCD 15S cm =菱形. A .3个B .2个C .1个D .0个C D C 'A BEA .B .C .D .10.(衡阳市)如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B .34 C .23D .211.(广西南宁)如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ) A .210cmB .220cmC .240cmD .280cm12.(宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形AB CDEA ′G DB CAABCD图2DBCANM O13.(桂林百色)如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放 在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿 图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从B 点 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止,在这个 过程中,线段QR 的中点M 所经过的路线围成的图形的面积为 ( ).A .2B .C .D .14.(河池)已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( ) A . 23cmB . 24cmC .2 D .215.(杭州市)如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( ) A .35° B .45° C .50° D .55°16.(义乌)如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积为 A .4x A .12x A .8x A .16x17.(台湾) 如图(八),长方形ABCD 中,E 点在上,且平分∠BAC 。
2024成都中考数学复习专题 矩形、菱形、正方形的性质与判定(含答案)
2024成都中考数学复习专题矩形、菱形、正方形的性质与判定基础题1. (2023上海)在四边形ABCD中,AD∥BC,AB=C D.下列说法能使四边形ABCD为矩形的是()A. AB∥CDB. AD=BCC. ∠A=∠BD. ∠A=∠D2. (2023自贡)如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第2题图3. (2022玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等4. (2023深圳)如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a 个单位长度得到线段EF,若四边形ECDF为菱形时,则a的值为()第4题图A. 1B. 2C. 3D. 45. (2023十堰)如图,将四根木条用钉子钉成一个矩形框架ABCD,然后向左扭动框架,观察所得四边形的变化.下面判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. 对角线BD的长度减小C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变第5题图6. 如图,菱形ABCD中,点E,F分别为AB,BC的中点,EF=2,BD=8,则该菱形的面积为()第6题图A. 12B. 16C. 20D. 327. (2023杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则ABBC=()A. 12 B.3-12 C.32 D.33第7题图8. (2023大庆)将两个完全相同的菱形按如图方式放置,若∠BAD=α,∠CBE=β,则β=()第8题图A. 45°+12α B. 45°+32αC. 90°-12αD. 90°-32α 9. (2023河北)如图,在Rt △ABC 中,AB =4,点M 是斜边BC 的中点,以AM 为边作正方形AMEF .若S 正方形AMEF =16,则S △ABC =( ) A. 4 3 B. 8 3 C. 12 D. 16第9题图10. [新考法—条件开放](2023齐齐哈尔)如图,在四边形ABCD 中,AD =BC ,AC ⊥BD 于点O .请添加一个条件:________,使四边形ABCD 成为菱形.第10题图 11. (2023怀化)如图,点P 是正方形ABCD 的对角线AC 上的一点,PE ⊥AD 于点E ,PE =3.则点P 到直线AB 的距离为________.第11题图12. (2023绍兴)如图,在菱形ABCD 中,∠DAB =40°,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则∠AEC 的度数是________.第12题图13. (2023河南)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为________.14. [新考法—条件开放](2023十堰)如图,▱ABCD 的对角线AC ,BD 交于点O ,分别以点B ,C 为圆心,12AC ,12BD 长为半径画弧,两弧交于点P ,连接BP ,CP . (1)试判断四边形BPCO 的形状,并说明理由;(2)请说明当▱ABCD 的对角线满足什么条件时,四边形BPCO 是正方形?第14题图15. 如图,在平行四边形ABCD 中,点E ,F 分别在边BC ,AD 上,且BE =DF ,连接AE ,CF ,EH ⊥CF 于点H ,FG ⊥AE 于点G .(1)判断四边形EGFH 的形状,并说明理由;(2)若AE =5,tan ∠DAE =2,EG =2GF ,求AG 的长.第15题图拔高题16. (2022青羊区模拟)我们规定菱形与正方形接近程度称为“接近度”,设菱形相邻两个内角的度数分别为α,β,将菱形的“接近度”定义为|α-β|,于是|α-β|越小,菱形越接近正方形.第16题图①若菱形的一个内角为80°,则该菱形的“接近度”为________;②当菱形的“接近度”等于________时,菱形是正方形.课时2基础题1. (2023湘潭)如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为()A. 20°B. 60°C. 70°D. 80°第1题图2. 如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC 中点,则EF的长为()第2题图A. 3B. 4C. 5D. 63. 如图所示,将一张矩形纸片沿虚线对折两次,当剪刀与纸片的夹角∠ABC=45°时,已知AB=4 cm,则剪下来图形的周长为()第3题图A. 4 cmB. 4 2 cmC. 16 cmD. 16 2 cm4. (2022青岛改编)如图,O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形.若AB =2,则OE 的长度为________.第4题图5. [新考法—数学文化](2023内江)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一.如图,在矩形ABCD 中,AB =5,AD =12,对角线AC 与BD 交于点O ,点E 为BC 边上的一个动点,EF ⊥AC ,EG ⊥BD ,垂足分别为点F ,G ,则EF +EG =________.第5题图6. (2023天津)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.第6题图(1)△ADE 的面积为________;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为________.7. (2023内江)如图,在△ABC 中,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交CE 的延长线于点F .(1)求证:F A =BD ;(2)连接BF ,若AB =AC ,求证:四边形ADBF 是矩形.第7题图8. (2023兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.第8题图拔高题9. (2023绍兴改编)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E 在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.当E,F,O三点重合时,当点E,F分别为OB,OD的中点时,当E,F分别运动到B,D两点时,四边形E1E2F1F2形状的变化依次是()第9题图A. 菱形→平行四边形→矩形B. 菱形→矩形→菱形C. 平行四边形→矩形→平行四边形D. 平行四边形→菱形→正方形10. (2023武侯区二诊节选)如图①,在矩形ABCD中,AD=nAB(其中n>1),点P是AD边上一动点(点P不与点A重合),点E是AB边的中点,连接PE,将矩形ABCD沿直线PE进行翻折,其顶点A翻折后的对应点为O,连接PO并延长,交BC边于点F(点F不与点C重合),过点F作∠PFC的平分线FG,交矩形ABCD的边于点G.(1)求证:PE∥FG;(2)如图②,在点P运动过程中,若E,O,G三点在同一条直线上时,点G与点D刚好重合,求n的值.图①图②第10题图参考答案与解析1. C2. C 【解析】∵正方形的边长为3,∴DC =BC =3,DC 与BC 分别垂直于y 轴和x 轴.∵点C 在第一象限,∴点C 的坐标为(3,3).3. D 【解析】如解图,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第3题解图4. B 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,CE ∥FD ,CD =AB =4.∵将线段AB 水平向右平移得到线段EF ,∴AB ∥EF ∥CD ,∴四边形ECDF 为平行四边形,当CD =CE =4时,▱ECDF 为菱形,此时a =BE =BC -CE =6-4=2.5. C 【解析】将四根木条用钉子钉成一个矩形框架ABCD ,然后向左扭动框架,∵两组对边的长度分别相等,∴四边形ABCD 是平行四边形,故A 正确,∵向左扭动框架,∴BD 的长度减小,故B 正确;∵平行四边形ABCD 的底不变,高变小了,∴平行四边形ABCD 的面积变小,故C 错误;∵平行四边形ABCD 的四条边长度不变,∴四边形ABCD 的周长不变,故D 正确.6. B 【解析】如解图,连接AC ,∵点E ,F 分别为AB ,BC 的中点,∴EF 是△ABC 的中位线,∴AC =2EF =4.∵四边形ABCD 是菱形,∴AC ⊥BD ,∴S 菱形ABCD =12 AC ·BD =12×4×8=16.第6题解图7. D 【解析】∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∠ABC =90°,∴∠OBC =∠OCB .∵∠AOB =60°,∴∠ACB =12 ∠AOB =30°,∴AB BC =tan ∠ACB =tan 30°=33. 8. D 【解析】∵四边形ABCD 和四边形BGHF 是完全相同的菱形,∴∠DBE =∠BAD =α,AB =AD ,∠ABD =∠CBD =∠CBE +∠DBE =β+α.∴∠ADB =∠ABD =β+α.∵∠BAD +∠ADB +∠ABD =180°,∴α+β+α+β+α=180°,∴β=90°-32α. 9. B 【解析】∵S 正方形AMEF =16,∴AM =4.∵M 是斜边BC 的中点,∴AM 是Rt △ABC 斜边上的中线,∴BC =2AM =8.在Rt △ABC 中,由勾股定理,得AC =BC 2-AB 2 =43 ,∴S △ABC =12 AB ·AC =12×4×43 =83 . 10. AD ∥BC (答案不唯一) 【解析】当AD ∥BC ,AD =BC 时,四边形ABCD 为平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形.11. 3 【解析】如解图,过点P 作PF ⊥AB 于点F ,∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴∠AEP =∠AFP .∵AP =AP ,∴△AEP ≌△AFP (AAS),∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第11题解图12. 10°或80° 【解析】如解图,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E 和E ′.在菱形ABCD 中,∠DAC =∠BAC ,∵∠DAB =40°,∴∠DAC =20°.∵AC =AE ,∴∠AEC =(180°-20°)÷2=80°.∵AE ′=AC ,∴∠AE ′C =∠ACE ′=10°.综上所述,∠AEC 的度数是10°或80°.第12题解图 13. 2或2 +1 【解析】分两种情况,①当∠DNM =90°时,如解图①,则MN ∥AB ,∴AN BM=AD BD.∵M 是BD 的中点,∴BD =2BM ,∴AD =2AN =2;②当∠DMN =90°时,如解图②,连接BN ,∵M 是BD 的中点,∠DMN =90°,∴BN =DN =AB 2+AN 2 =12+12 =2 ,∴AD =2 +1.综上所述,AD 的长为2或2 +1.图①图②第13题解图14. 解:(1)四边形BPCO 为平行四边形.理由如下:由作法得,BP =12 AC ,CP =12BD , ∵四边形ABCD 为平行四边形,∴OC =12 AC ,OB =12BD, ∴OC =BP ,OB =CP ,∴四边形BPCO 为平行四边形.(2)当▱ABCD 的对角线垂直且相等时,四边形BPCO 为正方形.理由:∵AC ⊥BD ,∴四边形BPCO 为矩形,∵AC =BD ,∴OB =OC ,∴四边形BPCO 为正方形.15. 解:(1)四边形EGFH 是矩形.理由如下:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∵BE =DF ,∴AD -DF =BC -BE ,∴AF =CE ,∴四边形AECF 是平行四边形,∴AE ∥CF ,∴∠AEH +∠FHE =180°.∵EH ⊥CF ,FG ⊥AE ,∴∠FGE =∠FHE =∠GEH =90°,∴四边形EGFH 是矩形;(2)∵FG ⊥AE ,∴∠AGF =90°.在Rt △AGF 中,tan ∠DAE =GF AG=2, ∴GF =2AG .∵EG =2GF ,∴EG =4AG .∵AE =AG +EG =5,∴AG =1,即AG 的长为1.16. 20°;0° 【解析】①∵菱形相邻两个内角的度数和为180°,∴α+β=180°,即80°+β=180,解得β=100°,∴该菱形的“接近度”为|α-β|=|80°-100°|=20°;②∵当α=β=90°时,菱形是正方形,∴|α-β|=0°时,菱形是正方形.课时21. C 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴∠DCA =∠1=20°,∴∠2=90°-∠DCA =70°.2. C 【解析】∵四边形ABCD 是菱形,∴BC =DC ,BE =DE ,∵∠DBC =60°,∴△BDC是等边三角形,∴CD =BD =10.∵点F 为BC 中点,∴EF =12CD =5. 3. D 【解析】由折叠可知,剪下的图形两条对角线互相垂直且平分,此时图形为菱形,∵∠ABC =45°,∴剪下的图形有一个角为90°,∴有一个角为90°的菱形是正方形,∵AB =4 cm ,根据勾股定理得BC =42 cm ,故剪下来图形的周长为4×42 =16 2 cm. 4. 6 【解析】∵四边形ABCD 为正方形,AB =2,∴AC =22 .∵O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形,∴∠AOE =90°,∴AC =AE =22 ,AO =2 ,∴OE=6 .5. 6013【解析】如解图,连接OE ,∵四边形ABCD 是矩形,∴∠BAD =90°, AB =CD =5,AD =BC =12.在Rt △ABD 中,BD =AB 2+AD 2 =13.∴AC =BD =13.∵AC 与BD 交于点O ,∴AO =CO =BO =DO =132 .∵S △BCO =14 S 四边形ABCD =14×12×5=15,∴S △BCO =S △BEO +S △CEO =12 BO ·EG +12 CO ·EF =12 ×132 (EG +EF )=15,∴EF +EG =15×413 =6013.第5题解图6. (1)3 【解析】(1)如解图,过点E 作EM ⊥AD 于点M ,∵△ADE 是等腰三角形,EA =ED =52 ,AD =3,∴AM =12 AD =32,∴EM =AE 2-AM 2 =(52)2-(32)2 =2,∴S △ADE =12 AD ·EM =12 ×3×2=3. (2)13 【解析】如解图,延长EM 交AG 于点N ,∵∠BAD =∠AME =90°,∴AB ∥NE ,∴∠ABF =∠FEN ,∠BAF =∠ENF .又∵点F 为BE 中点,∴BF =EF ,∴△AFB ≌△NFE ,∴EN =BA =3.由(1)知,EM =2,∴NM =1.∵∠NMD =∠ADC =90°,且M 为AD 中点,∴NM ∥GD ,∴NM 为△AGD 的中位线,∴GD =2NM =2,∴AG =AD 2+GD 2 =13 .第6题解图7. 证明:(1)∵AF ∥BC ,∴∠AFE =∠DCE .又∵E 是AD 的中点,∴AE =DE .在△AFE 和△DCE 中,∵ ⎩⎪⎨⎪⎧∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AFE≌△DCE,∴AF=DC.又∵D是BC的中点,∴BD=CD,∴AF=BD;(2)∵AB=AC,∴△ABC是等腰三角形.又∵D是BC的中点,∴∠ADB=90°,由(1)知F A=BD,又∵F A∥BD,∴四边形ADBF是平行四边形.又∵∠ADB=90°,∴四边形ADBF是矩形.8. 解:(1)四边形OCDE为菱形,理由如下:∵CE是线段OD的垂直平分线,∴OF=DF,OC=DC.∵CD∥OE,∴∠EOF=∠CDF.∵∠EFO=∠CFD,∴△OFE≌△DFC,∴OE=CD,∴四边形OCDE是平行四边形.又∵OC=CD,∴四边形OCDE是菱形;(2)∵四边形ABCD是矩形,∴DO=OC=OA,由(1)可知,OC=DC,∴OC=DO=CD,∴△OCD 是等边三角形,∴∠DCO =∠CDO =60°,∴∠FDG =90°-60°=30°.∵四边形OCDE 是菱形,∴∠DEC =∠DCE =30°,∠CGD =90°-∠DCE =60°,∴∠EDG =30°,∴DG =EG .∵CD =4,∴tan ∠DCG =DG CD =DG 4, ∴DG =4·tan 30°=4×33 =433, ∴EG =433. 9. B 【解析】∵四边形ABCD 为矩形,∠ABD =60°,∴∠CDF =60°,∠EDA =∠CBD =30°.∵OE =OF ,O 为对角线BD 的中点,∴DF =EB .由对称的性质得DF =DF 2,BF =BF 1,BE =BE 2,DE =DE 1,∠F 2DC =∠CDF =60°,∠EDA =∠E 1DA =30°,∠F 1BC =∠FBC =30°,∴E 1F 2=E 2F 1,∠E 1DB =60°,∠F 1BD =60°,∴DE 1∥BF 1,∴E 1F 2∥E 2F 1,∴四边形E 1E 2F 1F 2是平行四边形,如解图①,当E ,F ,O 三点重合时,DO =BO ,∴DE 1=DF 2=AE 1=AE 2,即E 1E 2=E 1F 2,∴四边形E 1E 2F 1F 2是菱形,如解图②,当E ,F 分别为OB ,OD 的中点时,设DB =4,则DF 2=DF =1,DE 1=DE =3,在Rt △ABD 中,AB =2,AD =23 ,连接AE ,易得AE =32 AB =3 ,根据对称性可得AE 1=AE =3 ,∵AD 2=12,DE 21 =9,AE 21 =3,即AD 2=AE 21 +DE 21 ,∴△DE 1A 是直角三角形,且∠E 1=90°,∴四边形E 1E 2F 1F 2是矩形;如解图③,当F ,E 分别与D ,B 重合时,△BE 1D ,△BDF 1都是等边三角形,则四边形E 1E 2F 1F 2是菱形,∴在这三个位置时,四边形E 1E 2F 1F 2形状的变化依次是菱形→矩形→菱形.图①图②图③第9题解图10. (1)证明:由翻折知,∠APE=∠OPE,∵FG平分∠PFC,∴∠PFG=∠CFG.∵AD∥BC,∴∠APF=∠CFP,∴∠EPF=∠PFG,∴PE∥FG;(2)解:由翻折知,EA=EO,∠EOP=90°.∵E,O,D三点在同一条直线上,∴∠DOF=∠EOF=∠C=90°.又∵DF=DF,∠OFG=∠CFG,∴△DOF≌△DCF(AAS),∴DO=DC=AB.∵E是AB的中点,∴设EA=EB=EO=a,∴OD=CD=AB=2a,∴DE=OE+OD=3a.在Rt△ADE中,由勾股定理,得AD2+AE2=DE2,∴AD=(3a)2-a2=22a.∵AD=nAB,∴22a=2na,∴n=2.。
中考数学专题训练:矩形、菱形、正方形(附参考答案)
中考数学专题训练:矩形、菱形、正方形(附参考答案)1.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形2.如图,D ,E ,F 分别是△ABC 各边的中点,则以下说法错误的是( )A .△BDE 和△DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形3.如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠AGE =∠CDF .其中正确的结论是( )A .①②B .①③C .②③D .①②③4.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC .其中正确结论的个数是( )A .4B .3C .2D .15.如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G.若G是EF的中点,则BG的长为______cm.6.如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC的中点,则EF的长为_____.7.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.8.如图,在菱形ABCD中,E,F,G,H分别是AB,BC,CD,AD上的点,且BE =BF=CG=AH.若菱形的面积等于24,BD=8,则EF+GH=_____.9.如图,在矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.10.(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC 到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.参考答案1.A 2.C 3.A 4.D5.√13 6.5 7.(1)证明略 (2)略8.6解析:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是菱形,BD =8,∴AB =BC =AD =CD ,AC ⊥BD ,AO =OC =12AC ,BO =OD =12BD =4. ∵S 菱形ABCD =12AC ·BD =24,∴AC =6,∴AO =3,∴AB =√AO 2+BO 2=5=AD .∵BE =BF =CG =AH ,∴AE =CF =DH =DG ,∴BE AE =BF CF ,∴EF ∥AC .同理可得GH ∥AC ,设BE =BF =CG =AH =a ,则有DH =5-a ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴BE AB =EF AC ,即a 5=EF 6,∴EF =65a ,同理可得DH DA =GH CA ,即5−a 5=GH 6,∴GH =6-65a ,∴EF +GH =6.9.(1)证明略(2)与△OBF相似的三角形有△ECF,△BAF,理由略(3)DE=3+√1910.(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°.∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF.(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°.∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF.∵CH=DE,∴CF=CH.∵点H在BC的延长线上,∴∠DCH=∠DCF=90°.又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H.∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H.(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG. ∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11.∵CF+CG=FG,∴CF=FG-CG=11-8=3,即CF的长为3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试题专题矩形、菱形、正方形试题及答案一、选择题1.(2009年湖北荆州)如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm2..(2009年山西省)如图(1),把一个长为、宽为的长方形()沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .C .2m n -D .3.(2009 黑龙江大兴安岭)在矩形中,,,平分,过点作于,延长、交于点,下列结论中:①;②;③;④,正确的( )A .②③B .③④C .①②④D .②③④4.(2009年河北)如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于( )A .20B .15C .10D .55.(2009年兰州)如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是6.(2009年济南)如图,矩形中,过对角线交点作交于则的长是( )A .1.6B .2.5C .3D .3.47.(2009年凉山州)如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )A .B .C .D .8.(2009年济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是A. B. C. D.9.(2009年衡阳市)如图,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,,则下列结论中正确的个数为()①DE=3cm;②EB=1cm;③.A.3个B.2个C.1个D.0个10.(2009年衡阳市)如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.C.D.211.(2009年广西南宁)如图2,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.B.C.D.12.(2009年宁波市)如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是()A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形AMON与四边形ABCD是位似图形D.四边形MBCO和四边形NDCO都是等腰梯形13.(2009桂林百色)如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为().A.2 B.C.D.14.(2009河池)已知菱形的边长和一条对角线的长均为,则菱形的面积为()A.B.C.D.15.(2009年杭州市)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD 于点P,则∠FPC=()A.35°B.45°C.50°D.55°16.(2009年义乌)如图,一块砖的外侧面积为,那么图中残留部分墙面的面积为A.A.A.A.17.(2009年台湾)如图(八),长方形ABCD中,E点在上,且平分 BAC。
若=4,=15,则 AEC面积为何?(A) 15 (B) 30 (C) 45 (D) 60 。
18. (2009年台湾)图(十二)中,过P点的两直线将矩形ABCD分成甲、乙、丙、丁四个矩形,其中P在上,且:=:=4:3。
下列对于矩形是否相似的判断,何者正确?(A) 甲、乙不相似 (B) 甲、丁不相似 (C) 丙、乙相似(D) 丙、丁相似。
19.(2009年滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.矩形B.直角梯形C.菱形D.正方形【关键词】矩形的判定.【答案】A20.(2009仙桃)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为().A、B、2 C、3 D、21.(2009年桂林市、百色市)如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为().A.2 B.C.D.22.(2009年郴州市)如图2是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA 上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm23.(2009年长春).菱形在平面直角坐标系中的位置如图所示,,则点的坐标为()A.B.C.D.24.(2009年甘肃白银)下列图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形25.(2009年甘肃庆阳)如图4,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.B.C.D.26.(2009年烟台市)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm27.(2009泰安)如图,双曲线经过矩形QABC的边BC的中点E,交AB于点D。
若梯形ODBC的面积为3,则双曲线的解析式为(A)(B)(C)(D)28.(2009年湘西自治州)13.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形29.(2009年南宁市)如图2,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.B.C.D.30. (2009年重庆市江津区)如图:在菱形ABCD 中,AC =6, BD =8,则菱形的边长为( )A . 5B . 10C . 6D .831.(2009年包头)下列图形中,既是图形的有()A .4个B .3个C .2个D .1个32.(2009年长沙)如图,矩形的两条对角线相交于点,,则矩形的对角线的长是( )A .2B .4C .D .33.(2009年莆田)如图1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则当时,点应运动到( ) A .2m n -处 B .2m n -处 C .2m n -处 D .2m n -处34.(09湖北宜昌)如图1,由“基本图案”正方形ABCO 绕O 点顺时针旋转90°后的图形是 ( ).基本图案图1 A . B . C . D .35.(2009年漳州)如图,要使成为矩形,需添加的条件是( )A .B .C .D .36. (2009年赤峰市)将一张三角形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可能是 ( )A 、三角形B 、平行四边形C 、矩形D 、正方形37.(2009四川绵阳)如图,四边形ABCD 是矩形,AB :AD = 4:3,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE ,则DE :AC =DA .1:3B .3:8C .8:27D .7:25A C AB AC A C A B OO O O O38.(2009四川绵阳)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒39.(2009眉山)下列命题中正确的是() A .矩形的对角线相互垂直B .菱形的对角线相等C .平行四边形是轴对称图形D .等腰梯形的对角线相等40.(2009东营)如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 ( )(A ) 70°(B ) 65° (C ) 50° (D ) 25°41.(2009年抚顺市)如图所示,正方形2m n -的面积为12,2m n-是等边三角形,点2m n -在正方形2m n -内,在对角线2m n-上有一点2m n -,使2m n -的和最小,则这个最小值为( )A .2m n -B .2m n -C .3D .2m n-二.填空1.(2009年湘西自治州)长方形一条边长为3cm ,面积为12cm 2,则该长方形另一条边长为 cm .2.(2009白银市)如图6,四边形ABCD 是平行四边形,使它为矩形的条件可以是 .3.(2009泰安)如图所示,矩形ABCD 中,AB =8,BC =6,P 是线段BC 上一点(P 不与B 重合),M是DB 上一点,且BP =DM ,设BP =x ,△MBP 的面积为y ,则y 与x 之间的函数关系式为(第17题图)MA D。
B 1A O B A 14.(2009江西)如图,一活动菱形衣架中,菱形的边长均为若墙上钉子间的距离则 度.5. (2009年烟台市)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .6.(2009年天津市)我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形的中点四边形是一个矩形,则四边形可以是 .【关键词】矩形、正方形、菱形的性质及判定【答案】正方形(对角线互相垂直的四边形均可)7.(2009年牡丹江市)矩形中,对角线、交于点,于若则 .8.(2009年甘肃白银)如图,四边形ABCD 是平行四边形,使它为矩形的条件可以是 .9.(2009年甘肃庆阳)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,,则这个菱形的面积= cm 2.10.(2009年长春)如图,,矩形的顶点在直线上,则 度.11.(2009年长春)如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).12. (2009年株洲市)(本题满分10分)如图,在中,,,将绕点沿逆时针方向旋转得到.(1)线段的长是 ,的度数是 ;(2)连结,求证:四边形是平行四边形;(3)求四边形的面积.13.(09湖北宜昌)如果只用圆、正五边形、矩形中的一种图形镶嵌整个平面,那么这个图形只能是 . 14.(2009年莆田)如图,菱形的对角线相交于点请你添加一个条件: ,使得该菱形为正方形.答案:或或等15.(2009年上海市)17.在四边形中,对角线与互相平分,交点为.在不添加任何辅助线的前提下,要使四边形成为矩形,还需添加一个条件,这个条件可以是 .16. (2009年北京市)如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边的中点,则A ′N = ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(,且n 为整数),则A ′N = (用含有n 的式子表示)A'MC A DE17.(2009年安顺)如图所示,两个全等菱形的边长为1米,一个微型机器人由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在______点。