八年级数学上册第2章实数章末复习习题讲评课件新版北师大版

合集下载

新版北师大版八年级数学上册第二章实数全章课件

新版北师大版八年级数学上册第二章实数全章课件

所以BD DC,则BD AB
由勾股定理得 : h

h
h不可能是整数;
B
D
C
h也不可能是分数.
四、强化训练
2、长,宽分别是3,2的长方形,它的对角线的长可能是整数 吗?可能是分数吗?
3 2
四、强化训练
3、如图是16个边长为1的小正方形拼成的,任意连接这些 小正方形的若干个顶点,可得到一些线段,试分别找出两 条长度是有理数的线段和两条长度不是有理数的线段.
, 3 3 9 ..... . 2 2 4,
a
结果都为分数,所以a不可能是以2为分母的
分数.
二、新课讲解
, ,
...... , ,
a
(3)(9)2 的算术平方根等于 3 .
四、强化训练
2.求下列各数的值
(1) 64
8
(3) (5)
21 4
3 2
32 42
5
(2) 0.81
0.9
(4) 0
0
(6)
1.44
1.2
四、强化训练
3.求下列各式中的正数x的值:
二、新课讲解
例 下列各数中,哪些是有理数?哪些是无理数?
解:有理数有: 无理数有:
三、归纳小结
1.任何有限小数或无限循环小数也都是有理数. 2.无限不循环小数称为无理数.
四、强化训练
1.选择题
(1)、正三角形的边长为4,高h是( D ) A.整数 B.分数 C.有理数 D.无理数
(2)、如果一个圆的半径是2,那么该圆的周长与直径的和 是( B ) A.有理数 B.无理数 C.分数 D.整数

秋八年级数学上册北师大版(通用版)习题讲评课件:《实数》章末复习(共20张PPT)

秋八年级数学上册北师大版(通用版)习题讲评课件:《实数》章末复习(共20张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/112021/9/112021/9/112021/9/119/11/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月11日星期六2021/9/112021/9/112021/9/11 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/112021/9/112021/9/119/11/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/112021/9/11September 11, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/112021/9/112021/9/112021/9/11
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/112021/9/11Saturday, September 11, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/112021/9/112021/9/119/11/2021 7:29:34 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/112021/9/112021/9/11Sep-2111-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/112021/9/112021/9/11Saturday, September 11, 2021

北师大版数学八年级上册第二章实数单元复习课课件

北师大版数学八年级上册第二章实数单元复习课课件

④8的立方根是___2____.
图Z2-2
6. (202X湘潭)在数轴上到原点的距离小于4的整数可以为
_3_(__答__案__不__唯__一__)____.(任意写出一个即可)
7. 下列数中:①-|-3|;②-0.3;③

⑦0;⑧1.202 002 000 2…(每两个2之间依次多一个0),⑨
无理数是__③__④__⑧___,整数是__①__⑥__⑦___,负分数是___②__⑨____.(
知识导航
无理数 概念:无限不循环小数
算术平方根

定义:一般地,如果一个正数x的平方等于a,即
数 平方根 x2=a,那么这个正数x就叫做a的算术平方根.
规定:0的算术平方根是0.
表示方法:正数a的算术平方根表示为 读作
“根号a”
续表
平方根 定义:一般地,如果一个数x的平方等于a,即x2 = a,那么这个 数叫做a 的平方根(二次方根). 平 性质: 实 方 ①一个正数有两个平方根,它们互为相反数; 数 根 ②0只有一个平方根,它是0本身; ③负数没有平方根
运算:实数的运算法则及运算律对二次根式仍然适用
专题1 平方根、立方根
1. (202X南京)3的平方根是( D )
A. 9
B.
C.
D. ±
2.
的算术平方根的倒数是( C )
A.
B. ±
C.
D. ±
3.有理数8的立方根为( B )
A.-2
B.2
C.±2
D.±4
4. 下列计算正确的是( D )
A.
=-3 B.
+(7-c)2=0,求-2a-b-c的立方根.
解:因为|a+3|+

北师大版八年级数学上册第二章《实数》章末复习题含答案解析 (3)

北师大版八年级数学上册第二章《实数》章末复习题含答案解析 (3)

一、选择题1.下列各式中,运算正确的是( )A.√8−√3=√5B.√13×√27=9C.3√2−√2=3D.√3×√5=√152.已知m=1+√2,n=1−√2,则代数式√m2+n2−3mn的值为( )A.±3B.3C.5D.93.如果代数式√−m+√mn有意义,那么,直角坐标系中点P(m,n)的位置在A.第一象限B.第二象限C.第三象限D.第四象限4.对于任意的正数m,n,定义运算⋇如下:m⋇n={√m−√n(m≥n),√m+√n(m<n).计算(3⋇2)×(8⋇12)的结果为( )A.2−4√6B.2C.2√5D.205.估计√13+1的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:72第一次→[√72]=8;第二次→[√8]=2;第三次→[√2]=1,这样对72只需进行3次操作即可变为1.类似地,将81变为1需要操作的次数是( )A.2B.3C.4D.57.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:72→第一次[√72]=8→第二次[√8]=2→第三次[√2]=1.这样对72只需进行3次操作后变为1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是( )A.254B.255C.256D.2578.设a>0,b>0,则下列运算错误的是A.√ab=√a⋅√b B.√a+b=√a+√b C.(√a)2=a D.√ab =√a√b9.在有理数1,12,−1,0中,最小的数是( )A.1B.12C.−1D.010.在下列各数中,无理数是( )A.207B.π3C.√4D.0.101001二、填空题11.若x−5y−4√xy=0,则xy=.12.设a是π的小数部分,则根式√a2+6a+10+2π可以用π表示为.13.实数a,b在数轴上的位置如图所示,则化简√(−a)2+√b2−√(a+b)2的结果为.14.在学习二次根式的过程中,小腾发现有一些特殊无理数之间具有互为倒数的关系.例如:由(√2+1)(√2−1)=1,可得√2+1与√2−1互为倒数,即√2+1=√2−1,√2−1=√2+1,类似地,3+2=√3−√2,3−2=√3+√2;2+3=2−√3,2−3=2+√3;⋯.根据小腾发现的规律,解决下列问题:(1)6+5=,√n+1+√n=;(n为正整数)(2)若22+m=2√2−m,则m=;(3)计算:√2+1√3+√2√4+√3+⋯√100+√99=.15.若a=√17+12,则a3−5a+2020=.16.对于实数a,我们规定:用符号[√a]表示不大于√a的最大整数,称[√a]为a的根整数,例如:[√9]=3,[√10]=3.(1)仿照以上方法计算:[√4]=;[√37]=.(2)若[√x]=1,写出所有满足题意的x的整数值:.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[√10]= 3→[√3]=1,这时候结果为1.(3)对 120 连续求根整数, 次之后结果为 1.(4)只需进行 3 次连续求根整数运算后结果为 1 的所有正整数中,最大的是 .17. 计算:√2a ⋅√a = .三、解答题 18. 阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:(2+√3)(2−√3)=1,(√5+√2)(√5−√2)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:√3=√3√3×√3=√33,√32−√3=√3)(2+√3)(2+√3)(2−√3)=7+4√3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化. 解决问题:(1) 4−√7 的有理化因式可以是 ,23分母有理化得 .(2) 计算:①已知 x =√3+1√3−1,y =√3−1√3+1,求 x 2+y 2 的值;②1+√2+√2+√3√3+√4⋯+√1999+√2000.19. 已知 x x 2+1=√55,求 x −3+x 3 的值.20. 计算:6(13√2+√3)−12(4√2−8√3)21. 当 x 取什么值时,√x +1+2 的值最小?请求出这个最小值.22. 计算:(1) −12×(−4)2+∣∣−52∣∣×6;(2) (√3−1)2−(√5+√2)(√5−√2).23. 记 R (x ) 表示正数 x 四舍五入后的结果,例如 R (2.7)=3,R (7.11)=7,R (9)=9.(1) R (π)= ,R(√3)= .(2) 若 R (12x −1)=3,则 x 的取值范围是 . (3) 若 R (R (x+2)2)=4,则 x 的取值范围是 .24. 已知:x =√5+√3,y =√5−√3,求代数式 (x +2)(y +2) 的值.25. 当 a =2 时,求下列二次根式的值.(1) √4a −8. (2) √a 2−2a +5.答案一、选择题1. 【答案】D【知识点】二次根式的乘法2. 【答案】B【解析】由已知可得:m+n=2,mn=(1+√2)(1−√2)=−1,原式=√(m+n)2−5mn=√22−5×(−1)=√9=3.【知识点】二次根式的加减、二次根式的乘法、完全平方公式3. 【答案】C【知识点】二次根式的概念4. 【答案】B【解析】原式=(√3−√2)×(√8+√12) =(√3−√2)×(2√2+2√3)=2(√3−√2)×(√3+√2)=2×[(√3)2−(√2)2]=2×(3−2)= 2.【知识点】二次根式的混合运算5. 【答案】C【解析】∵3<√13<4,∴4<√13+1<5,即√13+1在4和5之间,故选:C.【知识点】平方根的估算6. 【答案】B【知识点】二次根式的乘法7. 【答案】B【知识点】平方根的估算8. 【答案】B【知识点】二次根式的概念9. 【答案】C【解析】根据有理数比较大小的方法,可得<1,−1<0<12,−1,0这四个数中,最小的数是−1.∴在1,12【知识点】实数的大小比较10. 【答案】B是分数,是有理数,故不是无理数;【解析】A.207是无理数;B.π3C.√4=2是整数,故不是无理数;D.0.101001是有理数,故不是无理数.【知识点】无理数二、填空题11. 【答案】25或1【知识点】二次根式的混合运算12. 【答案】π+1【知识点】二次根式的性质与化简13. 【答案】2b【知识点】二次根式的加减14. 【答案】√6−√5;√n+1−√n;±√7;9【解析】(1)∵(√6+√5)(√6−√5)=1,=√6−√5;∴√6+√5∵(√n+1+√n)(√n+1−√n)=(√n+1)2−(√n)2=1,=√n+1−√n;∴√n+1+√n(2)=2√2−m,∵2√2+m∴(2√2+m)(2√2−m)=1.∴(2√2)2−m2=1,∴m 2=7, ∴m =±√7; (3)√2+1√3+√2√4+√3⋯√100+√99=(√2−1)+(√3−√2)+(√4−√3)+⋯+(√100−√99)=−1+√2−√2+√3−√3+√4+⋯−√99+√100=√100−1=9.【知识点】二次根式的加减、分母有理化15. 【答案】 2024【解析】 ∵a =√17+12, ∴a 2=9+√172,a 3=13+5√172,∴a 3−5a +2020=13+5√172−5×√17+12+2020=13+5√17−5√17−52+2020=82+2020=4+2020=2024.【知识点】二次根式的加减、简单的代数式求值、二次根式的乘法16. 【答案】 2 ; 6 ; 1,2,3 ; 3 ; 255【解析】(1)∵22=4,62=36,72=49, ∴6<√37<7, ∴[√4]=2,[√37]=6.(2)∵12=1,22=4,且 [√x]=1, ∴x =1,2,3.(3)第 1 次:[√120]=10,第 2 次:[√10]=3,第 3 次:[√3]=1. (4)∵[√255]=15,[√15]=3,[√3]=1,∴ 对 255 只需进行 3 次连续求根整数运算后结果为 1. ∵[√256]=16,[√16]=4,[√4]=2,[√2]=1, ∴ 对 256 需进行 4 次连续求根整数运算后结果为 1,∴ 只需进行 3 次连续求根整数运算后结果为 1 的所有正整数中,最大的是 255. 【知识点】实数的大小比较17. 【答案】 √2a【知识点】二次根式的乘法三、解答题18. 【答案】(1) 4+√7;√32(2) ①当x=√3+1√3−1=√3+1)(√3+1)(√3−1)(√3+1)=4+2√32=2+√3,y=√3−1√3+1=√3−1)(√3−1)(√3+1)(√3−1)=4−2√32=2−√3时,x2+y2=(x+y)2−2xy=(2+√3+2−√3)2−2×(2+√3)×(2−√3)=16−2×1=14.②原式=√2−1+√3−√2+√4−√3+⋯+√2000−√1999 =√2000−1.【解析】(1) 4−√7的有理化因式可以是4+√7,2√3=√3×√32√3=√32.【知识点】二次根式的除法19. 【答案】2√5.【知识点】二次根式的混合运算20. 【答案】原式=2√2+6√3−2√2+4√3=10√3.【知识点】二次根式的加减21. 【答案】当x=−1时,最小值为2.【知识点】二次根式的概念22. 【答案】(1) 原式=−12×16+52×6=−8+15=7.(2) 原式=3−2√3+1−(√52−√22) =4−2√3−3=1−2√3.【知识点】二次根式的混合运算、有理数的加减乘除乘方混合运算23. 【答案】(1) 3;2(2) 7≤x<9(3) 4.5≤x<6.5【解析】(1) ∵π≈3.14,∴R(π)=3;∵√3≈1.73,∴R(√3)=2,即:R(π)=3;R(√3)=2.x−1)=3,(2) ∵R(12x−1<3.5,∴2.5≤12解得:7≤x<9.)=4,(3) ∵R(R(x+2)2<4.5,∴3.5≤R(x+2)2∴7≤R(x+2)<9,∵R(x+2)为整数,∴R(x+2)=7或R(x+2)=8,∴6.5≤x+2<8.5,∴4.5≤x<6.5.【知识点】解连不等式、实数的大小比较+2√5.24. 【答案】412【知识点】二次根式的混合运算25. 【答案】(1) 当a=2时,√4a−8=√4×2−8=√0=0.(2) 当a=2时,√a2−2a+5=√22−2×2+5=√5.【知识点】二次根式的性质与化简。

2024八年级数学上册第二章实数全章热门考点整合应用习题课件新版北师大版

2024八年级数学上册第二章实数全章热门考点整合应用习题课件新版北师大版
点 O 两侧,且到原点的距离相等,以 AB 为边作正方形
ABCD . 若点 A 表示的数为1,正方形 ABCD 的面积为
7,则 B , E 两点之间的距离是(
1
A. +2
B. -2
C. +1
D. -1
2
3
4
5
6
7
8
9
10
11
12
A
13
14
)
15
16
17
18
19
20
思想2
整体思想

+a
18
19
20
【点拨】
A. 负数没有平方根,故原说法错误;
B. 100的平方根是±10,故原说法错误;
C. -16没有平方根,故原说法错误;
D. 0的算术平方根是0,故原说法正确.
【答案】 D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

2. 若 x = − ,则 x ( x -5)- x2的值为(
是(
C
A.



)
.
C. . =
1
2
3
4
5


6
7
8
9
10
B.





D.

=3

11
12
13
14

15
16
17
18
19
20
考点5

北师大版八年级数学上册第二章《实数》章末复习题含答案解析 (40)

北师大版八年级数学上册第二章《实数》章末复习题含答案解析 (40)

一、选择题1. 若二次根式 √2x 2 与 √3x 是同类二次根式,则 x 的值不可能是 ( ) A . 23B . 32C . 6D . 82. 下列二次根式中,最简二次根式的是 ( ) A . √18B . √8C . √10D . √123. 如图,数轴上有 A ,B ,C ,D 四点,则这四点所表示的数与 5−√11 最接近的是 ( )A .点 AB .点 BC .点 CD .点 D4. 如 x 为实数,在“(√3−1)▫x ”的“▫”中添上一种运算符号(在“+”,“−”,“×”,“÷”中选择),其运算结果是有理数,则 x 不可能是 ( ) A . √3−1B . √3+1C . 3√3D . 1−√35. 若 a ,b 均为正整数,且 a >√7,b <√83,则 a +b 的最小值是 ( )A . 3B . 4C . 5D . 66. 下列计算,正确的是 ( ) A . √(−2)2=−2 B . √(3−π)2=π−3 C . 3√2−√2=3D . √8+√2=√107. √7 的整数部分为 a ,小数部分为 b ,则 b = ( )A . 2B . 3C . √7−2D . 3−√78. 下列四个数:√9,227,π,(√3)2,其中无理数是 ( ) A . √9 B .227C . πD . (√3)29. 下列各式中,最简二次根式是 ( ) A . √15B . √0.5C . √5D . √5010. 设 √10 的小数部分为 b ,则 b(√10+3) 的结果是 ( ) A . 1 B .是一个无理数 C . 3 D .无法确定二、填空题 11. 等式 √a+13−a=√a+1√3−a成立的条件是 .12. 与 √19 最接近的整数是 .13. 已知最简根式 √a +2b −a+2b−3与√b −2a −2a+b−1是同类根式,则 a b +b a 的值为 .14. 观察分析下列数,寻找规律:0,√3,√6,3,2√3,√15,3√2 ⋯ 那么第 10 个数是 .15. 在实数 √4,√3,−175,π,0.9,1.010010001⋯(每两个 1 之间 0 的个数依次加 1)中,无理数有 个.16. 设 a =√7,b =2+√3,c =√3−√2,则 a ,b ,c 从小到大的顺序是 .17. 计算 (2√2−3)2的结果等于 .三、解答题 18. 已知 x =√2+1,求 2x−x 2−1x 2−x+(1x−1)2÷1−x 2x 3的值.19. 计算:(1) −22+√273+√(−2)2−√9; (2) −14+√(−2)2−√273+∣√3−2∣.20. 计算题.(1)√5√54+14√80. (2) √0.1253−√3116+√(−18)23.21. 计算:8x 3√xy ⋅3√y 2x ÷12√xy .22.计算:(2√3+√6)(2√3−√6)−(√2−1)2.23.请回答下列问题.3+√7+√25−√(−3)2.(1) 计算:∣∣4−√7∣∣+√−27(2) 求x的值:25x2−16=0.24.小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.小明抽到的卡片如下:小华抽到的卡片如下:请你通过计算判断谁为胜者?25.计算:;(1) √27√3√3⋅√6;(2) √2⋅13(3) √2;81(a≥0,x>0);(4) √25a16x2(5) √2√3;(6) √8√2x;(7) √13×√27;(8) √b5:√b20a2(a>0,b>0);(9) √113÷√213÷√125.答案一、选择题1. 【答案】D【知识点】同类二次根式2. 【答案】C【知识点】最简二次根式3. 【答案】D【解析】∵0<9<11<16,∴√9<√11<√16,∴3<√11<4,∴−4<−√11<−3,∴1<5−√11<2,故选D.【知识点】平方根的估算4. 【答案】C【解析】A.(√3−1)÷(√3−1)=1,故不合题意;B.(√3−1)×(√3+1)=2,故不合题意;C.(√3−1)与3√3无论运用哪种运算,无法得出有理数,故符合题意;D.(√3−1)÷(1−√3)=−1,故不合题意.【知识点】二次根式的除法、二次根式的乘法5. 【答案】B【知识点】平方根的估算6. 【答案】B【知识点】二次根式的加减、二次根式的性质7. 【答案】C【知识点】平方根的估算8. 【答案】C【知识点】无理数9. 【答案】C【知识点】最简二次根式【知识点】二次根式的乘法二、填空题11. 【答案】 −1≤a <3【知识点】二次根式的乘除法则12. 【答案】 4【知识点】实数的大小比较13. 【答案】 −23【解析】 ∵ 最简根式√a +2b −a+2b−3与√b −2a −2a+b−1是同类根式(注意没说是同类二次根式), ∴ 根指数与被开方数相同,即 {−a +2b −3=−2a +b −1,a +2b =b −2a, 即 {a =−1,b =3.∴a b +b a =−23.【知识点】同类二次根式14. 【答案】3√3【知识点】二次根式的乘法15. 【答案】 3【解析】 ∵√4=2,∴ 在实数 √4,√3,−175,π,0.9,1.010010001⋯ (每两个 1 之间 0 的个数依次加 1)中,无理数有:√3,π,1.010010001⋯(每两个 1 之间 0 的个数依次加 1). 【知识点】无理数16. 【答案】a <c <b【知识点】实数的大小比较、分母有理化17. 【答案】 17−12√2【知识点】二次根式的乘法三、解答题18. 【答案】 3−√2.【知识点】二次根式的混合运算(1) 略.(2) 略.【知识点】算术平方根的运算、立方根的运算、二次根式的加减20. 【答案】(1) 原式=√5+√52+14×4√5=52√5.(2) 原式=0.5−74+14=12−32=−1.【知识点】二次根式的加减21. 【答案】2xy2√x.【知识点】二次根式的除法、二次根式的乘法22. 【答案】(2√3+√6)(2√3−√6)−(√2−1)2 =(2√3)2−(√6)2−(3−2√2)=12−6−3+2√2=3+2√2.【知识点】二次根式的混合运算23. 【答案】(1)∣∣4−√7∣∣+√−273+√7+√25−√(−3)2 =4−√7−3+√7+5−3= 3.(2) 25x2−16=0.25x2=16.x2=1625.x=±45.【知识点】二次根式的加减、绝对值的化简、利用平方根解方程24. 【答案】小明抽到卡片的计算结果:√18−√324−√8+12=3√2−√2−2√2+12 =12.小华抽到卡片的计算结果:√20−3√54√12+√3√372=2√5−32√5+3−72=√52−12.因为12<√52−12,所以小华获胜.【知识点】二次根式的加减25. 【答案】(1) 3(2) 2(3) √29(4) 5√a4x(5) √63(6) 2√xx(7) 3(8) 2a(9) 2√57【知识点】二次根式的除法、二次根式的乘法。

北师大版八年级数学上册-第二章实数(同步+复习)精品串讲课件

北师大版八年级数学上册-第二章实数(同步+复习)精品串讲课件
内蒙古包头瑞星教育原创精品课件——版权所有
第二章
实数
八年级(下)
第一单元:认识无理数
一.无理数的存在性探索
1. 探究:
① ② 什么是有理数:整数和分数统称为有理数。 不是有理数的数:π、正方形的面积为2、3、5、 6、7,13---时,它们的边长。--- 广泛存在。 X2=a(a ≥0),当我们知道a求x 时,结果可能 是有理数,也可能不是有理数。

二.算术平方根
1. 2. 定义:一个正数a有两个平方根±√a— ,其中 — 正的平方根√a叫做a的算术平方根。 — √a 表示a 的算术平方根。规定:0的算术平 方根是0。显然:负数没有算术平方根。 重要性质:
① ② ③ √a的非负性:a ≥0,√a≥0( 双非负)。 √a是非负数a的算术平方根;-√a是算术平方根的 相反数(另外一个平方根)。 √a开得尽是运算;开不尽可能就是个数(最写)
(5) 81
三.平方根与算术平方根的区别与联系
1. 2. 3. 4.
5.
a≥0时:√a,-√a,±√a的区别与联系。 区别一:正数有两个平方根,它们的和为零。 有一个算术平方根。 区别二:表示方法不同: √a; ±√a 区别三:取值范围不同:正数的算术平方根 一定是正数,平方根一正一负互为相反数。 联系:平方根包含算术平方根;被开方数都 必须是非负数;0的平方根和算术平方根都 是 0。
( 5) (- 4 )2的 算 术 平 方 根 是 _ _ 4 10 ( 6) 10的 算 术 平 方 根 是 _ _
1_ .2 36=_ _ 1.44=_
6
3 1 2 =_ _ 25=_ _ 2 4
5
【练习】 求下列各数的算术平方根:
(1)900; (4)14

北师大版八年级数学上册第2章《实数》复习课件

北师大版八年级数学上册第2章《实数》复习课件

九江市第三中学
北京师范大学出版社 八年级 | 上册
已知 x 2 3, y 2 3, 求x 2 xy y 2
解:x2 xy y2
(2 3)2 (2 3)(2 3) (2 3)2
(4 4 3 3) 1 (4 4 3 3)
4 4 3 3 1 4 4 3 3 13
1、基本概念 算术平方根:如果一个正数x的平方等于a,
那么这个正数x叫做a的算术平方根;0的算术平方根是0;
平方根:如果一个数x的平方等于a,那么这个数x叫做a的平方根; 立方根:如果一个数x的立方等于a,那么这个数x叫做a的立方根。
九江市第三中学
北京师范大学出版社 八年级 | 上册
2、关系式表示 §算术平方根:若 x2 ( a x 0),则x叫a的算术平方根
第二章 实数复习课
知识回顾
本章主要内容
概念 实数
算术平方根 平方根
立方根 分类 绝对值,相反数 实数与数轴上点的对应
实数运算和比较大小
天才在于功夫, 功夫在于重复, 平方根、立方根 二次根式记在心
有限小数及无限循环小数 整数
正整数 0
有理数
负整数
分数
正分数
实 数
无理数
负分数 正无理数
负无理数
自然数
(2) 5 1 5 5 5 5
5
25
25
5 5 4 5. 55
九江市第三中学
北京师范大学出版社 八年级 | 上册
3、化简:
1 48 6 1 ;2 32 3
3
6
3 2 3 27 ;4 1 28 700
3
7
化简:
(1) 50 (3) 48 3 (4) 5 1
5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档