数值分析--33曲线拟合及函数逼近
常用函数的逼近和曲线拟合

常用函数的逼近和曲线拟合在数学中,函数逼近和曲线拟合都是常见的问题。
函数逼近是指找到一个已知函数,尽可能地接近另一个函数。
而曲线拟合则是给定一组数据点,找到一条曲线来描述这些数据点的分布。
本文将讨论常用的函数逼近和曲线拟合方法。
一、函数逼近1. 插值法插值法是最简单的函数逼近方法之一。
它的基本思想是:给定一组已知点,通过构造一个多项式,使得该多项式在这些点处的函数值与已知函数值相等。
插值法的优点是精度高,缺点是易产生龙格现象。
常用的插值多项式有拉格朗日插值多项式和牛顿插值多项式。
拉格朗日插值多项式的形式为:$f(x)=\sum_{i=0}^{n}y_{i}\prod_{j=i,j\neq i}^{n}\frac{x-x_{j}}{x_{i}-x_{j}}$其中,$x_{i}$是已知点的横坐标,$y_{i}$是已知点的纵坐标,$n$是已知点的数量。
牛顿插值多项式的形式为:$f(x)=\sum_{i=0}^{n}f[x_{0},x_{1},...,x_{i}]\prod_{j=0}^{i-1}(x-x_{j})$其中,$f[x_{0},x_{1},...,x_{i}]$是已知点$(x_{0},y_{0}),(x_{1},y_{1}),...,(x_{i},y_{i})$的差商。
2. 最小二乘法最小二乘法是一种常用的函数逼近方法。
它的基本思想是:给定一组数据点,找到一个函数,在这些数据点上的误差平方和最小。
通常采用线性模型,例如多项式模型、指数模型等。
最小二乘法的优点是适用性广泛,缺点是对于非线性模型要求比较高。
最小二乘法的一般形式为:$F(x)=\sum_{i=0}^{n}a_{i}\varphi_{i}(x)$其中,$a_{i}$是待求的系数,$\varphi_{i}(x)$是一组已知的基函数,$n$是基函数的数量。
最小二乘法的目标是使得$\sum_{i=1}^{m}[f(x_{i})-F(x_{i})]^{2}$最小,其中$m$是数据点的数量。
曲线拟合实验报告[优秀范文5篇]
![曲线拟合实验报告[优秀范文5篇]](https://img.taocdn.com/s3/m/ed56c4cd0342a8956bec0975f46527d3240ca6e1.png)
曲线拟合实验报告[优秀范文5篇]第一篇:曲线拟合实验报告数值分析课程设计报告学生姓名学生学号所在班级指导教师一、课程设计名称函数逼近与曲线拟合二、课程设计目的及要求实验目的: ⑴学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。
⑵学会基本的矩阵运算,注意点乘与叉乘的区别。
实验要求: ⑴编写程序用最小二乘法求拟合数据的多项式,并求平方误差,做出离散函数与拟合函数的图形;⑵用MATLAB 的内部函数polyfit 求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB的内部函数plot作出其图形,并与(1)结果进行比较。
三、课程设计中的算法描述用最小二乘法多项式曲线拟合,根据给定的数据点,并不要求这条曲线精确的经过这些点,而就是拟合曲线无限逼近离散点所形成的数据曲线。
思路分析 : 从整体上考虑近似函数)(x p 同所给数据点)(i iy x , 误差i i iy x p r -=)(的大小,常用的方法有三种:一就是误差i i iy x p r -=)(绝对值的最大值im ir≤≤ 0max ,即误差向量的无穷范数;二就是误差绝对值的与∑=miir0,即误差向量的 1成绩评定范数;三就是误差平方与∑=miir02的算术平方根,即类似于误差向量的 2 范数。
前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2 范数的平方,此次采用第三种误差分析方案。
算法的具体推导过程: 1、设拟合多项式为:2、给点到这条曲线的距离之与,即偏差平方与:3、为了求得到符合条件的 a 的值,对等式右边求偏导数,因而我们得到了:4、将等式左边进行一次简化,然后应该可以得到下面的等式5、把这些等式表示成矩阵的形式,就可以得到下面的矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑=====+==+====niininiiknikinikinikinikiniiniinikiniiyyyaax x xx x xx x11i11012111111211 1an MMΛM O M MΛΛ 6.将这个范德蒙得矩阵化简后得到⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡n kkn nkkyyyaaax xx xx x M MΛM O M MΛΛ21102 21 1111 7、因为 Y A X = * ,那么 X Y A / = ,计算得到系数矩阵,同时就得到了拟合曲线。
数值分析第三章

称为1 − 范数 , 称为 2 − 范数 .
(
b 2 ∫a f ( x )dx
),
1 2
三、内积与内积空间
R n中向量x及y定义内积 : ( x, y ) = x1 y1 + L + x n y n .
定义3 上的线性空间, 定义3 设X是数域 K ( R或C)上的线性空间,对 ∀u, v ∈ X, 中一个数与之对应, 并满足条件: 有K中一个数与之对应,记 为( u, v ),并满足条件: (1) ( u,v ) = (v , u), ∀u,v ∈ X ; (2) (αu,v ) = α ( u,v ), α ∈ R; (3) ( u + v , w ) = ( u,w ) + (v,w ), ∀u,v,w ∈ X ; (4) ( u, u) ≥ 0, 当且仅当 u = 0时, , u) = 0. (u 则称( u, v )为X上的u与v的内积. 定义了内积的线性空间 称 的共轭, 为内积空间. (v , u)为( u,v )的共轭,当 K = R时 (v , u) = ( u,v ).
2)
j =1
∑ α ju j = 0 ⇔ ( ∑ α ju j , ∑ α ju j ) = 0
j =1 n j =1
n
n
n
⇔ ( ∑ α j u j , uk ) = 0, k = 1,L, n.
j =1
∴ G非奇异 ⇒ u1 , u2 ,L, un线性无关 (反证法 );反之亦然 .
在内积空间X上可以由内积导出一种范数, 即对u ∈ X , 记 || u ||= (u , u ), Cauchy − Schwarz不等式得出. (1.10) 易证它满足范数定义的正定性和齐次性, 而三角不等式由
实验二函数逼近与曲线拟合

《数值分析》课程设计实验报告实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t 的拟合曲线。
二、实验步骤先写出线性最小二乘法的M文件function c=lspoly(x,y,m)% x是数据点的横坐标组成的向量,y是纵坐标组成的向量% m是要构成的多项式的次数,c是多项式由高到低次的系数所组成的向量n=length(x);b=zeros(1:m+1);f=zeros(n,m+1);for k=1:m+1f(:,k)=x.^(k-1);enda=f'*f;b=f'*y';c=a\b;c=flipud(c);方法一:近似解析表达式为:y(t)=a1t+a2t2+a3t3第二步在命令窗口输入:lspoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44 ,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:ans =0.0000-0.00520.26340.0178即所求的拟合曲线为y=-0.0052t2+0.2634t+0.0178在编辑窗口输入如下命令:>>x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44, 3.87,4.15,4.37,4.51,4.58,4.02,4.64];>> t=0:0.1:55;>> z=-0.0052*t.^2+0.2634*t+0.0178;>> plot(x,y,'ro',t,z);grid命令执行得到如下图(图2-1)0102030405060拟合多项式与数据点的关系方法二:假设近似表达式为:y(t)=c0+c1t+c2t2第一步在命令窗口输入:>>lspoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3. 44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:ans =-0.00240.20370.2305即所求的拟合曲线为y=-0.0024t2+0.2037t+0.2305在编辑窗口输入如下命令:>>x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64];>> t=0:0.1:55;>> z=-0.0024*t.^2+0.2037*t+0.2305;>> plot(x,y,'ro',t,z);grid命令执行得到如下图(图2-2)拟合多项式与数据点的关系三、实验结论在利用数据的最小二乘法求拟合曲线时,选取合适的近似表达式很重要,应通过不断的试验找出较为合适的近似表达式,这样才能尽可能的提高拟合精度。
5函数逼近与曲线拟合.docx

第5章函数逼近与曲线拟合上一章讨论的是函数插值问题,通常都是用一个多项式来代替一个已知的函数,它们在 给定的插值基点上有相同的函数值,是对原函数的一-种近似。
然而,在实际应用中插值问题 仍有明显的缺点:对于有解析式的函数而言,在其它点上误差可能很大,如龙格现象;对于 离散(表)函数而言,给定的数据点本身是有误差的,刚性地让插值函数通过这些点不仅没 有意义,而且会影响对原函数的近似程度。
另外,泰勒展示也是对连续函数的一种低阶近似, 它在展开点附近误差较小,但在展开点远处,误差会很大。
本章讨论在新的函数谋旁度最条件下的函数近似问题,对连续函数称之为函数逼近问题, 对于离散函数称之为dii 线拟合问题。
主要内容有:函数最佳逼近的概念,正交多项式,最佳 均方逼近少最小二乘曲线拟合问题等。
5.1函数最佳逼近的概念希望能有一种方法寻求出一个近似多项式,使它在整个区间上既均匀的逼近/(%),所需 的计算呆又小,这就是函数逼近要解决的问题。
为了刻划“均匀逼近”,设P n (x)是定义在区 间[a,b ]上原函数/(x)的近似多项式。
我们用||/(x) -p n (x)||来度量p n (x)与/(x)近似逼近 程度。
这样,自然地会有下面两种不同的度暈标准:fM- p n (x)使丿IJ 这个度量标准的函数逼近称为均方逼近或平方逼近;/W 一 p n (x) = max f(x) 一 p n (x) 使用这个度量标准的函数逼近称为一致逼近或均匀逼近o关于一致逼近的问题,在数学分析中有以下结论。
设函数/(X )在区间[a,b ]上连续,若£>0,则存在多项式P(x)使|/(x)-P(x)|<£,在区间[a,b ]上一致成立。
对于函数插值而 言,如果插值余项也能满足对任意的£〉0, \R n (x)\ = \f(x)-p n M\<e 都成立的话,贝闹 值多项式P n M 是/(Q 的一致逼近多项式。
数据拟合与函数逼近

第十三章 数据拟合与函数逼近数据拟合与函数逼近涉及到许多内容与方法,从不同角度出发,也有多种叫法。
这一章,我们主要通地线性拟合而引出最小乘法这一根本方法。
13.1 数据拟合概念与直线拟合插值法是一种用简单函数近似代替较复杂函数的方法,它的近似标准是在插值点处的误差为零。
但有时,我们不要求具体某些点的误差为零,而是要求考虑整体的误差限制。
对了达到这一目的,就需要引入拟合的方法,所以数据拟合与插值相比:数据拟合--不要求近似 函数过所有的数据点,而要求它反映原函数整体的变化趋势。
插值法--在节点处取函数值。
实际给出的数据,总有观测误差的,而所求的插值函数要通过所有的节点,这样就会保留全部观测误差的影响,如果不是要求近似函数过所有的数据点,而是要求它反映原函数整的变化趋势,那么就可以用数据拟合的方法得到更简单活用的近似函数。
13.1.1 直线拟合由给定的一组测定的离散数据(,)i i x y (1,2,,i N = ),求自变量x 和因变量y 的近似表达式()y x ϕ=的方法。
影响因变量y 只有一个自变量x 的数据拟合方法就是直线拟合。
直线拟合最常用的近似标准是最小二乘原理,它也是流行的数据处理方法之一。
直线拟合步骤如下:(1) 做出给定数据的散点图(近似一条直线)。
(2) 设拟合函数为:i bx a y +=*(13.1.1)然后,这里得到的*i y 和i y 可能不相同,记它们的差为:i i i i i bx a y y y --=-=*δ (13.1.2)称之为误差。
在原始数据给定以后,误差只依赖于b a ,的选取,因此,可以把误差的大小作为衡量b a ,的选取是否优良的主要标志。
最小二乘法便是确定“最佳” 参数的方法,也就是要误差的平方和达到最小。
(3) 写出误差和表达式:),()(1212b a bx a yQ Ni i iNi iϕδ=--==∑∑== (13.1.3)要选择b a ,而使得函数),(b a ϕ最小,可以用数学分析中求极值的方法,即先分别对b a ,求偏导,再使偏导等于零。
数值分析---函数逼近与曲线拟合

于是
1 5 1 5 17 2 2 ( x) x ( x ) x x 9 7 4 7 252
2
3)几种常用的正交多项式
• 勒让德多项式 当区间[-1,1],权函数ρ(x) ≡1时,由 {1,x,…,xn,…}正交化得到的多项式就称为 勒让德多项式,并用P0(x),P1(x),…,Pn(x),… 表示. 其简单的表达式为
全体,按函数的加法和数乘构成连续函数 空间---- C[a, b]
3.1 函数逼近的基本概念
1)线性无关
设集合S是数域P上的线性空间,元素
x1,x2,…,xn∈S,如果存在不全为零的数
a1,a2,…,an∈P,使得
a1 x1 a2 x2 ... an xn 0,
则称x1,x2,…,xn线性相关.
( x , 0 )
2
1
0
于是
1
1 1 ( x) x 4
1 x ln xdx 9
2
1 1 2 1 1 7 2 (1 , 1 ) ( ln x)( x ) dx (ln x)( x x )dx 0 0 4 2 16 144
1 5 ( x , 1 ) ( ln x) x ( x )dx 0 4 144
且有以下常用公式
p 0 ( x) 1 p1 ( x ) x p 2 ( x ) (3 x 2 1) / 2 p 3 ( x ) (5 x 3 3 x ) / 2 p 4 ( x ) (35x 4 30x 2 x ) / 8 p 5 ( x ) (63x 5 70x 3 15x ) / 8 p 6 ( x ) ( 231 x 6 315x 4 105x 2 5) / 16
《数值分析》第3讲:函数逼近与计算

函数的逼近与计算
pn * ( x) ? 1、Chebyshev给出如下概念
设 f ( x) C[a,b], 如p果( x) Hn ,
f (x)
|
p( x0 )
f
(
x0
)
|
max
a xb
|
p( x)
f ( x) |
p4 0*(x)
则称 x是0 偏差点。
如果 p( x0 ) f ( x0 ) 则称 x是0 正偏差点。
b
2a
a0 (
x ) 0 (
x)k
(
x)dx
b
b
2a an( x)n( x)k ( x)dx 2a ( x) f ( x)k ( x)dx
即
I ak
2a0 0( x),k ( x) 2a11( x),k ( x)
2an n( x),k ( x) 2 f ( x),k ( x)
函数的逼近与计算
则
1
1 1
2
n1
1 H 2
1 3
1 n2
1 n 1
1 n2
1 2n 1
例3.2 (P56)
已知 f ( x) 1 x2 C[0, 1], span{1, x}
则
1
(0 , 0 )
1dx 1,
0
(0 , 1)
1
1
xdx
0
2
(1, 0 )
1
1
xdx ,
▲ 1856年解决了椭圆积分的雅可比逆转问题,建立了椭圆函数 新结构的定理,一致收敛的解析函数项级数的和函数的解析性的 定理,圆环上解析函数的级数展开定理等。
函数的逼近与计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际上是 a0, a1, …, an 的多元函数,即
[ ] (a0
在
,的a1 极, ...值, a点n )应 法有i/m*1/方r*enag程o0rre组msa0sa回(1,il或oxe归nkiq正cu系o0.a规.,e.t数.if.o方.f,inacnsn程iex*n/in组ts)*y/ i
++ +
+ +
P=a1+a2/x
+ +++ +
P=aebx
+ +
++ +
P=ae-bx
+ + + ++
例: y
§1 L-S Approximating Polynomials
(xi , yi) , i = 1, 2, …, m
x
方案一:设
y
P(x)
x ax b
求
a
和
b
使得
(a,b)
称为切比雪夫多项式。他还研究了二次逼近和用三角函数及有理函数逼
近连续函数的问题。由此,创立了函数构造理论。切比雪夫在数学分析
中也作了大量的工作。他研究了无理函数的可积性,解决了有限形式下
椭圆积分问题,证明了著名的微分二项式可积性条件的定理,对正交多
项式理论和内插法理论也作出了贡献。
曲线拟合问题最常用的解法——线性最小二乘法的基本思路
y1
y
yn
超定方程一般是不存在解的矛盾方程组。 n
如果有向量a使得 (ri1a1 ri2a2 rimam yi )2 达到最小, i 1
则称a为上述超定方程的最小二乘解。
所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题。
数据拟合的最小二乘法
/* Least Squares Method */
仍然是已知 x1 … xm ; y1 … ym, 求一个简单易 算的近似函数 P(x) f(x)。
但是 ① m 很大; ② yi 本身是测量值,不准确,即 yi f (xi)
这时没必要取 P(xi) = yi , 而要使 P(xi) yi 总体上尽可能小。
•
切比雪夫是圣彼得堡数学学派的创始人 。在数论方面,从本质上推
进了对素数分布问题的研究,1848年,他探讨了素数分布的渐近规律,
还证明了任何自然数n与 2n之间至少有一素数。稍后,他研究了用有理
数逼近实数的问题,发展了丢番图逼近理论。切比雪夫的工作为数论研
究开辟了新方向 。 在概率论方面 , 切比雪夫建立了证明极限定理的新
m
m
记 (a1, a2 , an )
2 i
[P(xi ) yi ]2
i 1
i 1
mn
[ ak rk (xi ) yi ]2
(2)
i1 k 1
问题归结为,求 a1,a2, …am 使 (a1, a2 , an ) 最小。
超定方程组:方程个数大于未知量个数的方程组
定理 Ba = c 的解就是 的极小点。即:设 a 为解,则任
n
意 b = (b0 b1 … bn )T 对应的多项式 F(x) bj x j 必有
j0
m
m
(a ) [P( xi ) yi ]2 [F ( xi ) yi ]2 (b)
i 1
i 1
m
m
证明:(b) (a) [F ( xi ) yi ]2 [P( xi ) yi ]2
i 1
i 1
m
m
[F(xi ) P(xi ) P(xi ) yi ]2 [P(xi ) yi ]2
i 1
i 1
0 m
m
[F(xi ) P(xi )]2 2 [F(xi ) P(xi )][P(xi ) yi ]
只要分别计算各点的误差 i f (xi ) P(xi )
利用 || || 或 || ||2 , 比较不同逼近函数误差范数的大小,
并从中挑选误差较小的模型.
§8.1 周期函数最佳平方逼近
设 f(x) 周期为2的平方可积函数,从数学分析知道: {1,cosx, sinx,…,coskx,sinkx,…}在[0, 2]上是一正交函数族.
进分析学,建立了实数理论,引进了现今分析学上通用的极限的εδ定义,为分析学的算术化作出重要贡献。在变分法中,他给出了 带有参数的函数的变分结构,研究了变分问题的间断解。在微分几 何中,研究了测地线和最小曲面;在线性代数中,建立了初等因子 理论,并用来简化矩阵。Weierstrass的学生还包括H.A. Schwarz , Sonya Kovalevski(柯瓦列夫斯卡娅 ), MittagLeffler(米塔-列夫勒 )(据说诺贝尔因此人而不设数学奖), G.Cantor, Hilbert等.称为“古典分析学集大成者 ”.
线性化:由
ln
y
ln
a
b x
可做变换
Y ln y ,
X
1 x
,
A ln a ,
B b
Y A BX 就是个线性问题
将( xi , yi ) 化为( X i ,Yi ) 后易解 A 和B
a eA , b B , P(x) a eb/x 如何比较不同逼近函数的好坏?
i 1
i 1
注: L-S method 首先要求设定 P(x) 的形式。若设
n=m1,则可取 P(x) 为过 m 个点的m1阶插值多
项式,这时 = 0。
P(x) 不一定是多项式,通常根据经验确定。
人物介绍
• Weierstrass(1815-1899)德意志帝国数学家,他把严格的论证引
b00
...
bn0
... b0n a0 c0
...
...
...
...
...
bn n
an
cn
§1 L-S Approximating Polynomials
定理 L-S 拟合多项式存在唯一 (n < m)。
常见做法:
不可导,求解困难 太复杂
➢
使
max |
1 i m
P( xi
)
yi
|
最小
/*
minimax
problem
*/
m
➢ 使 | P( xi ) yi | 最小
i 1
m
➢ 使 | P( xi ) yi |2 最小 /* Least-Squares method */ i 1
方法 —— 矩法 , 用十分初等的方法证明了一般形式的大数律,研究了
独立随机变量的和函数的收敛条件,证明了这种和函数可以按n-1/2的方
幂渐近展开(n为变量的个数)。他的贡献使概率论的发展进入新阶段 。
切比雪夫从研究机 械 原理出发,研究了用多项式逼近连续函数的问题,
建立了偏离零最小函数的专门理论,他为此构造的几个著名的多项式,
B为正定阵,若则不非然奇,异则,所以法方程组存在唯一解。 存在一个 u 0 Rn1 使得 Φ u 0 …
n
即
x
j k
u
j
0,
k 1, ... , m
j0
x1, ... , xm 是 n 阶多项式
P( x) u0 u1 x ... un xn 的根
§1 L-S Approximating Polynomials
[0,
2
]
上展开为三角级数
C
e i ( jx )
j
,
j0
N 1
其中Cj 为复系数总,e之i( jx要) 进cos行 j形x如 i sCinj jx,x则k W实k际j 计算时要取
2
ak
0
ak
m
2 [P(xi )
i 1
yi
]
P( xi ak
)
mn
2
[
a
j
x
j i
yi ]
x
k i
i1 j0
n
m
m
2
aj
x jk i
yi xik
j0
i 1
i 1
m
m
记 bk xik , ck yi xik
i1
i1
m i 1
(axixi
b
yi )2
最小。
线性化
/*
linearization
*/:令
Y
1 y
,
X
1 x
,则
Y a bX 就是个线性问题
将( xi , yi ) 化为( X i ,Yi ) 后易解 a 和b。
§1 L-S Approximating Polynomials
方案二:设 y P( x) a eb/ x ( a > 0, b > 0 )
其中
Ra=y
(3)
r1 ( x1 ) rm ( x1 )
R
,
r1 ( xn ) rm ( xn )
a1
a
,
am
y1
y
yn
定理:当RTR可逆时,超定方程组(3)存在最小二乘 解,且即为方程组