3函数逼近与曲线拟合
曲线拟合实验报告[优秀范文5篇]
![曲线拟合实验报告[优秀范文5篇]](https://img.taocdn.com/s3/m/ed56c4cd0342a8956bec0975f46527d3240ca6e1.png)
曲线拟合实验报告[优秀范文5篇]第一篇:曲线拟合实验报告数值分析课程设计报告学生姓名学生学号所在班级指导教师一、课程设计名称函数逼近与曲线拟合二、课程设计目的及要求实验目的: ⑴学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。
⑵学会基本的矩阵运算,注意点乘与叉乘的区别。
实验要求: ⑴编写程序用最小二乘法求拟合数据的多项式,并求平方误差,做出离散函数与拟合函数的图形;⑵用MATLAB 的内部函数polyfit 求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB的内部函数plot作出其图形,并与(1)结果进行比较。
三、课程设计中的算法描述用最小二乘法多项式曲线拟合,根据给定的数据点,并不要求这条曲线精确的经过这些点,而就是拟合曲线无限逼近离散点所形成的数据曲线。
思路分析 : 从整体上考虑近似函数)(x p 同所给数据点)(i iy x , 误差i i iy x p r -=)(的大小,常用的方法有三种:一就是误差i i iy x p r -=)(绝对值的最大值im ir≤≤ 0max ,即误差向量的无穷范数;二就是误差绝对值的与∑=miir0,即误差向量的 1成绩评定范数;三就是误差平方与∑=miir02的算术平方根,即类似于误差向量的 2 范数。
前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2 范数的平方,此次采用第三种误差分析方案。
算法的具体推导过程: 1、设拟合多项式为:2、给点到这条曲线的距离之与,即偏差平方与:3、为了求得到符合条件的 a 的值,对等式右边求偏导数,因而我们得到了:4、将等式左边进行一次简化,然后应该可以得到下面的等式5、把这些等式表示成矩阵的形式,就可以得到下面的矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑=====+==+====niininiiknikinikinikinikiniiniinikiniiyyyaax x xx x xx x11i11012111111211 1an MMΛM O M MΛΛ 6.将这个范德蒙得矩阵化简后得到⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡n kkn nkkyyyaaax xx xx x M MΛM O M MΛΛ21102 21 1111 7、因为 Y A X = * ,那么 X Y A / = ,计算得到系数矩阵,同时就得到了拟合曲线。
三次多项式曲线拟合算法

三次多项式曲线拟合算法
三次多项式曲线拟合是一种用来拟合数据的算法,通过使用三次多项式函数来逼近给定的数据点,从而得到一个平滑的曲线。
它通常用于拟合非线性的数据集。
以下是一个简单的三次多项式曲线拟合的算法步骤:
1. 假设有一组给定的数据点 (x, y),其中 x 是自变量,y 是因
变量。
2. 创建一个三次多项式函数模型:f(x) = a*x^3 + b*x^2 + c*x + d,其中 a、b、c 和 d 是待求解的系数。
3. 使用最小二乘法来估计模型的参数。
最小二乘法通过最小化残差的平方和来找到最佳拟合曲线的参数值。
残差是实际观测值与模型预测值之间的差异。
4. 可以使用一些常见的优化算法,如牛顿法或梯度下降法,来最小化残差的平方和,从而得到最佳的参数估计值。
5. 根据得到的参数估计值,计算模型的预测值。
6. 使用得到的参数和预测值,绘制拟合曲线。
7. 可以评估拟合曲线的质量,如计算拟合误差、残差分析等。
需要注意的是,三次多项式曲线拟合算法可能会存在过拟合的问题,即拟合曲线过度匹配了训练数据,导致在未知数据上的预测性能较差。
为了解决这个问题,可以使用交叉验证技术来选择合适的模型复杂度,或者使用正则化方法来约束模型的复杂度。
此外,三次多项式曲线拟合算法还可以扩展到更高次的多项式
拟合,例如四次多项式或更高次的多项式拟合。
不过随着多项式的次数增加,模型的复杂度也会增加,因此需要谨慎选择合适的多项式次数以避免过拟合问题。
函数逼近的几种算法及其应用汇总

函数逼近的几种算法及其应用汇总函数逼近是数值计算中非常重要的技术之一,它主要用于用已知函数逼近未知函数,从而得到未知函数的一些近似值。
在实际应用中,函数逼近广泛用于数据拟合、插值、信号处理、图像处理等领域。
下面将介绍几种常用的函数逼近算法及其应用。
1. 最小二乘法(Least Square Method)最小二乘法将函数逼近问题转化为最小化离散数据与拟合函数之间的残差平方和的问题。
它在数据拟合和插值中应用广泛。
例如,最小二乘法可以用于拟合数据点,找出最佳拟合曲线;也可以用于信号处理中的滤波器设计。
2. 插值法(Interpolation)插值法旨在通过已知数据点之间的连线或曲线,来逼近未知函数在这些数据点上的取值。
常见的插值方法有拉格朗日插值、牛顿插值和分段线性插值等。
插值法在图像处理中广泛应用,例如可以通过已知的像素点来重构图像,提高图像的质量和分辨率。
3. 最小二乘曲线拟合(Least Square Curve Fitting)最小二乘曲线拟合是一种将渐近函数与离散数据拟合的方法,常见的函数包括多项式、指数函数、对数函数等。
最小二乘曲线拟合可以在一定程度上逼近原始数据,从而得到曲线的一些参数。
这种方法在数据分析和统计学中经常使用,在实际应用中可以拟合出模型参数,从而做出预测。
4. 正交多项式逼近(Orthogonal Polynomial Approximation)正交多项式逼近是一种通过正交多项式来逼近未知函数的方法。
正交多项式具有良好的性质,例如正交性和递推关系,因此可以用于高效地逼近函数。
常见的正交多项式包括勒让德多项式、拉盖尔多项式和切比雪夫多项式等。
正交多项式逼近广泛应用于数值计算和信号处理中,例如用于图像压缩和数据压缩。
5. 插值样条曲线(Interpolating Spline)插值样条曲线是将多个局部的多项式插值片段拼接在一起,从而逼近未知函数的方法。
插值样条曲线在实现光滑拟合的同时,还能逼近离散数据点。
数值分析期末复习资料

数值分析期末复习资料数值分析期末复习题型:一、填空 二、判断 三、解答(计算) 四、证明第一章误差与有效数字一、有效数字1、定义:若近似值X*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。
2、两点理解:(1) 四舍五入的一定是有效数字(2) 绝对误差不会超过末位数字的半个单位eg. ・§丄% 3、 定理1 (P6):若x*具有n 位有效数字,则其相对误差虧疗茲T 4、考点:(1)计算有效数字位数:一个根据定义理解,一个根据定理1 (P7例题3) 二、避免误差危害原则 1、原则:(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:xl*x2= c / a ) 避免相近数相减(方法:有理化)eg. V777-77 =c ・2 X2sin7 或 减少运算次数(方法:秦九韶算法)eg.P20习题14 三. 数值运算的误差估计 1、公式:(1) 一元函数:I £*( f 3))1 Q |「(於)1・| £*(力|或其变形公式求相对误差(两边同时除以f (卅))eg. P19习题1、2、5(2) (3) ln(x + £)- In x = In 1;1 — cos X =(2)多元函数(P8) eg. P8例4, P19习题4第二章插值法一、插值条件1、定义:在区间[a, b]上,给定n+1个点,aWxoVx[V・・・VxWb的函数值yi=f(xi),求次数不超过n的多项式P(x),饋兀)=儿 i =0,1,2,…,力2、定理:满足插值条件、n+1个点、点互异、多项式次数Wn的P(x)存在且唯一二、拉格朗日插值及其余项1、n次插值基函数表达式(P26 (2.8))2、插值多项式表达式(P26 (2.9))3、插值余项(P26 (2.12)):用于误差估计4、插值基函数性质(P27 (2. 17及2. 18)) eg. P28例1三、差商(均差)及牛顿插值多项式1、差商性质(P30):(1)可表示为函数值的线性组合(2)差商的对称性:差商与节点的排列次序无关(3)均差与导数的关系(P31 (3.5))2、均差表计算及牛顿插值多项式例:已知X=1,4,9的平方根为1,2,3,利用牛顿基本差商公式求"的近似值。
计算方法-最佳一致逼近多项式-切比雪夫多项式

xn )
|
要使 max 1 x 1
|
(x
x0 )(x
x1) … (x
xn )
|
取极小值, 只需令:
(x x0 )(x x1) … (x xn)
1 2n
Tn1(x),
最佳一致 逼近0的 多项式
而上式成立的充分必要条件是x0, x1,…xn是切比雪夫 多项式的0点。
将Lagrange插值多项式Ln(x)的节点取为Tn1(x) 的0点 :
最佳一致逼近多项式
§3 最佳一致逼近多项式
一、基本概念及其理论
不超过n次的实系 数多项式的全体
本节讨论f(x) C[a, b], 求多项式pn* (x) Hn , 使得误差
||
f(x)
pn* (x)
||
min
pn Hn
||
f(x)
pn(x)
||
此即所谓最佳一致逼近 或切比雪夫逼近问题 。
Hn
设f(x) Cn1[a, b], 则函数通过变换
x a b b a t, 1 t 1
2
2
化为
f(x)
f(a b 2
b 2
a t)
g(t)
针对g(t) 使用定理7
例如:为将[0, 1] [-1, 1],可以令:
则
x
0
2
1
1 0 2
t
1 (t 2
1)
f(x) f(1 (t 1)) g(t) , 1 t 1. 2
f(x)
p(x)
|
可以证明存在唯一的(a*0 , a1* , … , an* ), 使得
(a*0 , a1* , … , an* )
min{max
函数逼近的几种算法及其应用

函数逼近的几种算法及其应用函数逼近是数值计算中的一种重要技术,用于在给定的函数空间中找到与目标函数最相近的函数。
函数逼近算法可以在不知道目标函数解析表达式的情况下,通过对给定数据进行处理来逼近目标函数的结果。
这篇文章将介绍几种常见的函数逼近算法及其应用。
1.多项式逼近:多项式逼近是一种利用多项式函数逼近目标函数的方法。
多项式逼近算法有很多种,常见的有最小二乘法、拉格朗日插值法和牛顿插值法等。
多项式逼近广泛应用于数据拟合、信号处理和图像处理等领域。
最小二乘法是一种通过最小化实际观测值与多项式模型之间的差异来确定多项式系数的方法。
最小二乘法可以用于拟合非线性和线性函数。
拉格朗日插值法和牛顿插值法是通过插值多项式来逼近目标函数的方法,可以用于填充缺失数据或者生成曲线过程中的中间点。
2.三角函数逼近:三角函数逼近是一种利用三角函数来逼近目标函数的方法。
三角函数逼近算法有傅里叶级数逼近和小波变换等。
傅里叶级数逼近是一种利用三角函数的线性组合来逼近目标函数的方法。
这种方法广泛应用于信号处理、图像处理和数学建模等领域。
小波变换是一种通过特定的基函数来逼近目标函数的方法。
小波变换可以用于信号去噪、图像压缩和模式识别等应用。
3.插值逼近:插值逼近是一种通过已知数据点在给定区间内的函数值来确定目标函数的方法。
常见的插值逼近方法有拉格朗日插值法、牛顿插值法和差值多项式法等。
插值逼近广泛应用于任何需要通过已知数据点来逼近目标函数的领域。
在实际应用中,函数逼近常用于数据分析和模型构建。
例如,在金融领域,函数逼近可以用于确定股票价格走势的模型和预测。
在工程领域,函数逼近可以用于建立复杂系统的模型和优化控制。
在计算机图形学领域,函数逼近可以用于生成真实感图像和动画。
总结起来,函数逼近是一种重要的数值计算技术,有多种算法可供选择。
多项式逼近、三角函数逼近和插值逼近是常见的函数逼近算法。
函数逼近广泛应用于数据分析、模型构建和优化控制等领域,对于解决实际问题具有重要作用。
curvefitting拟合三元函数

curvefitting拟合三元函数曲线拟合是一种数学处理方法,旨在通过选择最佳拟合曲线来描述数据集的趋势和关系。
对于三元函数的曲线拟合,我们需要考虑三个变量之间的关系,并找到最适合数据的曲线模型。
一般而言,三元函数可以表示为f(x,y)=z,其中x、y和z分别是自变量和因变量。
我们的目标是找到合适的函数形式来描述x、y和z之间的关系。
根据数据集的分布情况,我们可以选择适当的函数模型进行拟合。
以下是一些常见的三元函数模型:1. 线性函数:f(x, y) = ax + by + c,其中a、b和c是拟合曲线的系数。
这个模型适合于变量之间的简单线性关系。
2. 多项式函数:f(x, y) = ax² + bxy + cy² + dx + ey + f。
这个模型适合于拟合包含二次或更高次项的数据。
3. 指数函数:f(x, y) = ab^(cx) + dy。
这个模型适用于自变量和因变量之间存在指数增长或衰减的情况。
4. 对数函数:f(x, y) = a + bln(x) + cln(y)。
这个模型适用于数据集呈现出对数增长或衰减的情况。
5.样条函数:样条函数是一种灵活的曲线拟合方法,适用于数据集呈现出复杂的曲线形状。
它通过在数据集中插入节点来逼近拟合曲线。
选择合适的函数模型后,我们需要使用数值优化方法来估计模型的参数。
最常用的方法之一是最小二乘法,它通过最小化观测值和拟合值之间的差异来确定最佳拟合曲线。
一旦拟合曲线的参数确定,我们可以使用这个曲线模型来预测和分析其他数据。
最后,我们需要评估拟合结果的质量。
可以使用统计指标如均方根误差(RMSE)或确定系数(R²)来衡量拟合曲线对原始数据的拟合程度。
总结起来,曲线拟合是一种重要的数学处理方法,用于找到最佳拟合曲线来描述三元函数数据集的关系。
它可以帮助我们理解和预测变量之间的关联性,并为进一步的分析和预测提供基础。
选择合适的函数模型、使用数值优化方法进行参数估计以及评估拟合结果的质量是进行曲线拟合的关键步骤。
李庆扬数值分析第五版习题答案解析清华大学出版社

又
即计算值比准确值大。
故 在 内至少有三个互异零点,
依此类推, 在 内至少有一个零点。
记为 使
又
其中 依赖于
分段三次埃尔米特插值时,若节点为 ,设步长为 ,即
在小区间 上
16.求一个次数不高于4次的多项式P(x),使它满足
解:利用埃米尔特插值可得到次数不高于4的多项式
设
其中,A为待定常数
从而
17.设 ,在 上取 ,按等距节点求分段线性插值函数 ,计算各节点间中点处的 与 值,并估计误差。
19。观测物体的直线运动,得出以下数据:
时间t(s)
0
0.9
1.9
3.0
3.9
5.0
距离s(m)
0
10
30
50
80
110
求运动方程。
解:
被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程
令
则
则法方程组为
从而解得
故物体运动方程为
20。已知实验数据如下:
19
25
31
38
44
19.0
32.3
将 代入得
由此得矩阵开工的方程组为
求解此方程组,得
又 三次样条表达式为
将 代入得
21.若 是三次样条函数,证明:
若 ,式中 为插值节点,且 ,则
证明:
从而有
第三章 函数逼近与曲线拟合
1. ,给出 上的伯恩斯坦多项式 及 。
解:
伯恩斯坦多项式为
其中
当 时,
当 时,
2.当 时,求证
证明:
若 ,则
3.证明函数 线性无关
解:
采用复化梯形公式时,余项为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a11 a12
A
a21 a22
第an13章an2
函 数aaa21nnnn逼 近与xi 曲bi线 ijl拟i1i1 lij合x j
i 2,3,, n
P115 1 4 8 10 16 19 21 本章作业
第3章 函数逼近与曲线拟合
§1 函数逼近 简单的函数 p(x) 近似地代替函数 f (x),
是计算数学中最基本的概念和方法之一。近 似代替又称为逼近,函数f (x)称为被逼近的 函数,p (x)称为逼近函数,两者之差
R(x) f (x) p(x)
称为逼近的误差或余项。
如何在给定精度下,求出计算量最小的近 似式,这就是函数逼近要解决的问题
函数逼近问题的一般提法:
对于函数类A中给定的函数 f (x),要求在另 一类较简单的且便于计算的函数类B( A)中 寻找一个函数p (x),使p (x)与f (x)之差在某种 度量意义下最小。
0
max p(x) 0 1 x1
2.勒让德(Legendre)多项式
定义 多项式
pn
(x)
1 2n
n!
dn dxn
[( x 2
1)n
]
(n 0, 1, 2, ) 称为n次勒让德多项式。
勒让德多项式的性质:
(1) 正交性
勒让德多项式序列{pn(x)}是在[-1, 1]上带权
为n 次的切比雪夫多项式(第一类)。
切比雪夫多项式的性质:
(1) 正交性:
由{ Tn (x)}所组成的序列是在区间[-1, 1]上带权
(x) 1
1 x2
的正交多项式序列。且
0, m n
1 1
1 1
x2
Tm (x)Tn (x)dx
2
,
,
mn0 mn0
(2) 递推关系
相邻的三个切比雪夫多项式具有三项递推关系式
b
( f , g) a (x) f (x)g(x)dx 0
则称f (x)与g (x)在[a, b]上带权 (x)正交。
定义 设在[a, b]上给定函数系{k(x)} ,若满足条件
( j (x), k (x)
0,
Ak
jk 0, j k
( j, k 0, 1, ) ( Ak是常数)
则称函数系{k (x)}是[a, b]上带权 (x)的正交
T0 (x) 1, T1(x) x Tn1 (x) 2x Tn (x) Tn1(x)
(n 1, 2, )
(3) 奇偶性:
切比雪夫多项式Tn (x),当n为奇数时为奇函数; n为偶数时为偶函数。
Tn (x) cos[n arccos(x)] cos(n narc cos x)
(1)n cos(narc cos x) (1)nTn (x)
最常用的度量标准:
(一) 一致逼近
以函数f
(x)和p
(x)的最大误差
max
x[ a ,b ]
f
(x)
p(x)
作为度量误差 f (x) - p (x) 的“大小”的标准
在这种意义下的函数逼近称为一致逼 近或均匀逼近
对于任意给定的一个小正数 >0,如果存在函
数p (x),使不等式 max f (x) p(x) a xb
此函数系中任何两个不同函数的乘积在区
间[- , ]上的积分都等于0 !
我们称这个函数中任何两个函数在[- , ]
上是正交的,并且称这个函数系为一个正交 函数系。
若对以上函数系中的每一个函数再分别 乘以适当的数,使之成为:
1 , 1 cos x, 1 sin x, , 1 cos nx, 1 sin nx,
2
那么这个函数系在[- , ]上不仅保持正交
的性质,而且还是标准化的(规范的)
1.权函数
定义 设 (x)定义在有限或无限区间[a, b]上,
如果具有下列性质:
(1) (x) ≥0,对任意x [a, b],
xb
n
(2) 积分
(x)dx存在,(n = 0, 1, 2, …),
a
(3) 对非负的连续函数g (x) 若
成立,则称该函数p (x)在区间[a, b]上一致逼近 或均匀逼近于函数f (x)。
(二) 平方逼近:
采用
b
[
f
(x)
p( x)] 2 dx
a
作为度量误差的“大小”的标准的函数逼近 称 为平方逼近或均方逼近。
§2 正交多项式
一、正交函数系的概念 考虑函数系 1,cosx,sinx,cos2x,sin2x,…,connx,sinnx,…
(4) Tn (x)在区间[-1, 1]上有n 个不同的零点
xk
cos (2k 1)
2n
,
(k 1, 2, , n)
(5) Tn (x) 在[-1, 1]上有n + 1个不同的极值点
xk
cos k
n
(k 0, 1, 2, , n。
(6) 切比雪夫多项式的极值性质
Tn (x) 的最高次项系数为 2n-1 (n = 1, 2, …)。
定理 在-1≤x ≤1上,在首项系数为1的一切
n次多项式Hn (x)中
T~n (x)
1 2 n1
Tn (x)
与零的偏差最小,且其偏差为 1
2 n1
即,对于任何 p(x) Hn (x) , 有
1 2 n 1
max
1 x1
T~n
(x)
的内积。 内积的性质:
(1) (f, f )≥0,且 (f, f )=0 f = 0;
(2) (f, g) = (g, f );
(3) (f1 + f2, g ) = (f1, g) + (f2, g);
(4) 对任意实数k,(kf, g) = k (f, g )。
3.正交性
定义 设 f (x),g(x) C [a, b] 若
b
a g(x)(x)dx 0
则在(a, b)上g (x) 0
称 (x)为[a, b]上的权函数
2.内积
定义 设f (x),g (x) C [a, b], (x)是[a, b]
上的权函数,则称
( f , g)
b
(x) f (x)g(x)dx
a
为 f (x) 与 g (x)在 [a, b]上以 (x)为权函数
函数系,
特别地,当Ak 1时,则称该函数系为标准 正交函数系。
若定义中的函数系{k (x)}为多项式函数系, 则称为以 (x)为权的在[a, b]上的正交多项式系。 并称pn(x)是[a, b]上带权 (x)的n次正交多项式。
二、常用的正交多项式 1.切比雪夫(чебыщев)多项式
定义 称多项式 Tn (x) cos(n arccos x) (1 x 1, n 0, 1, 2 )