三角函数图像2:周期性

合集下载

三角函数的周期性

三角函数的周期性

2
2
(4) y cos2 x
(5) y sin2 x
说明,一般都是指的最小正周期;
(2)【判断】:是不是所有的周期函数都有最小正周期?
例1.求下列函数周期:
ቤተ መጻሕፍቲ ባይዱ
(1) y 3cos x x R
(2) y sin 2x x R
(3) y 2sin(1 x )
26
xR
说明: 一般结论:函数 y Asin(x ) 及 函数 y Acos(x ) x R
( 其中 A,, 为常数,且 A 0, 0 ) 的周期 T 2 ;
0 呢???
例2.求下列函数的周期:
(1) y sin( x)
32
(2)y cos 3x cos x sin 3x sin x
22
22
(3) y cos2 x sin2 x

不去自鸣自喧的人,才是雅士;不为名利争吵的人,才是有道德的人;没有时间多嘴多舌、忙于空谈者,才是智人。所以,静是大雅大德大智。 有人貌似闲散无事,但内心却整日里被各种私欲所占有;有人虽很忙碌,但心思单纯,内心幽静。我们推崇和欣赏的是内心宁静淡泊的人,这才 是“静”的高品位。 ? 作文题七 有位高僧欲选一徒,便对二小童进行测试。 他指着两间同样大小的空屋子说:“看谁能在最短的时间内以最节省的办法用东西把它装满。”一小童想到的是柴火,他挑来一担又一担的柴火,累得气喘吁吁,终于把空屋填满了。而轮到另一小童,他却 一点力气都不费,只是在屋内点了一小堆火,用火的光亮装满了整个屋子。 老僧对他笑了,叹道:“世间万物,有实有虚,虚实相生,怎能只知实而不见虚呢?” 请以“实与虚”为话题写一篇不少于 800 字的作文,自定立意,自选文体,自拟文题。 [提示] 在传统文化

三角函数的周期与周期函数

三角函数的周期与周期函数

三角函数的周期与周期函数三角函数是数学中重要的函数之一,它具有很多特性和性质,其中之一就是周期性。

在本文中,我将探讨三角函数的周期以及周期函数的相关知识。

一、三角函数的周期1. 正弦函数的周期正弦函数(sin)是最常见的三角函数之一,其周期是2π,即sin(x + 2π) = sin(x)。

这意味着当自变量x增加2π时,正弦函数的值重复出现。

2. 余弦函数的周期余弦函数(cos)和正弦函数非常相似,其周期也是2π,即cos(x + 2π) = cos(x)。

与正弦函数不同的是,余弦函数在自变量增加2π时,其值也会重复出现。

3. 正切函数的周期正切函数(tan)是另一个常见的三角函数,其周期是π,即tan(x + π) = tan(x)。

当自变量x增加π时,正切函数的值会重新开始。

二、周期函数的性质1. 周期函数的定义周期函数是指当自变量增加一个周期时,函数值会重复出现的函数。

三角函数就是典型的周期函数。

2. 周期函数的图像特点周期函数的图像在一个周期内呈现出循环的形式。

对于正弦函数和余弦函数来说,它们的图像在一个周期内上升和下降,并且对称于坐标轴。

而正切函数的图像则在一个周期内交替地趋近于正无穷和负无穷。

3. 周期函数的性质周期函数具有一些特殊的性质。

例如,正弦函数具有奇对称性质,即sin(-x)=-sin(x),而余弦函数则具有偶对称性质,即cos(-x)=cos(x)。

这些性质使得周期函数在数学和物理中应用广泛。

三、常见的周期函数1. 方形波函数方形波函数是一种以方形波形进行周期性重复的函数。

它在每个周期内的一半时间内取常数值,另一半时间内则取相反的常数值。

2. 锯齿波函数锯齿波函数是一种以锯齿形状进行周期性重复的函数。

它在一个周期内不断上升或下降,然后在下一个周期重新从起点开始。

3. 指数函数指数函数也可以是周期函数,例如指数函数f(x) = e^x。

尽管指数函数本身并不是周期函数,但可以通过在指数函数中引入复数来使其变成周期函数。

三角函数的周期性

三角函数的周期性
2
2、最小正周期的定义 对于一个周期函数 f (x) 如果在它所
有的周期中存在一个最小的正数,
那么这个最小的正数就叫做 f (x)的
最小正周期。
说明: (1)我们现在谈到三角函数周期时,如果不加特别
说明,一般都是指的最小正周期;
(2)【判断】:是不是所有的周期函数都有最小正周期?
例1.求下列函数周期:
(1) y 3cos x x R
(2) y sin 2x x R
(3) y 2sin(1 x )
26
xR
说明: 一般结论:函数 y Asin(x ) 及 函数 y Acos(x ) x R
( 其中 A,, 为常数,且 A 0, 0 ) 的周期 T 2 ;
那么函数 f (x)就叫做周期函数,
非零常数 T 叫做这个函数的周期。
说明: (1)T必须是常数,且不为零;
(2)对周期函数来说 f (x T ) f (x) 必须对定义域内的任意 x都成立。

思考:
(1)对于函数y sin x, x R,有sin( 2 ) sin ,
– –
y
正弦曲线 1 y sinx , x R
x
-2
-
o
2 3
4
-1
余弦曲线 y 1 y cosx , x R
-2
-
o
2
3
x
-1
1、周期的定义
对于函数 f (x) ,如果存在一个非零常
数 T,使得当 x 取定义域内的每一
个值时,都有 f (x T ) f (x),
63
6
能否说 2 是y sin x的周期。
3

常见三角函数图像总结

常见三角函数图像总结

常见三角函数图像总结
一、正弦函数的图像特征
正弦函数是最常见的三角函数之一,其图像特征如下:
•周期性:正弦函数的周期为$2\\pi$,即在$[0, 2\\pi]$区间上完整呈现一个周期。

•奇函数性质:正弦函数关于原点对称,即f(f)=−f(−f)。

•取值范围:正弦函数的值域在[−1,1]之间。

二、余弦函数的图像特征
余弦函数是另一种常见的三角函数,其图像特征如下:
•周期性:余弦函数的周期也为$2\\pi$,与正弦函数一样。

•偶函数性质:余弦函数关于f轴对称,即f(f)= f(−f)。

•取值范围:余弦函数的值域同样在[−1,1]之间。

三、正切函数的图像特征
正切函数是三角函数中的另一个重要函数,其图像特征包括:
•周期性:正切函数的周期为$\\pi$,在$[0, \\pi]$区间内完成一个周期。

•奇函数性质:正切函数也是一个奇函数,即f(f)=−f(−f)。

•渐进性质:正切函数在其定义域内无限多个渐近线。

四、三角函数的图像变换
除了原始的正弦、余弦和正切函数外,这些函数还可以通
过图像的平移、伸缩和反转等方式进行变换。

其中:
•平移变换:将函数图像沿f轴或f轴平移。

•伸缩变换:改变函数图像的振幅、频率或其它参数。

•反转变换:关于f轴或f轴进行反转,改变函数图像的对称性。

综上所述,三角函数的图像总结包括正弦函数、余弦函数
和正切函数的特征,以及它们的基本变换。

深入了解这些函数的图像特性对于理解三角函数在数学和物理中的应用具有重要意义。

三角函数公式图像大全

三角函数公式图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =A tan 12tanA2-Sin2A=2SinA•CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan2aa-其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =asin 1 sec(a) =a cos 1双曲函数sinh(a)=2e -e -a a cosh(a)=2e e -a a + tg h(a)=)cosh()sinh(a a公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα公式三任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h 正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l 弧长公式l=a*r a是圆心角的弧度数r >0扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h--------------------------------------------------------------------------------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。

人教A版高中数学必修一课件 《三角函数的图象与性质》三角函数(第二课时正、余弦函数的周期性与奇偶性)

人教A版高中数学必修一课件 《三角函数的图象与性质》三角函数(第二课时正、余弦函数的周期性与奇偶性)
15
三角函数奇偶性的判断 【例 2】 判断下列函数的奇偶性: (1)f(x)=sin-12x+π2; (2)f(x)=lg(1-sin x)-lg(1+sin x); (3)f(x)=1+s1i+n xs-in cxos2x.
16
[思路点拨]
17
[解] (1)显然x∈R,f(x)=cos12x,
A.-12
B.12
C.-
3 2
D.
3 2
24
[思路点拨] (1)先作出选项A,B中函数的图象,化简选项C、D中函 数的解析式,再判断奇偶性、周期性.
(2)先依据f(x+π)=f(x)化简f53π;再依据f(x)是偶函数和x∈0,π2,f(x) =sin x求值.
25
(1)D (2)D [(1)y=cos|2x|是偶函数,y=|sin 2x|是偶函数,y= sinπ2+2x=cos 2x是偶函数,y=cos32π-2x=-sin 2x是奇函数,根据公 式得其最小正周期T=π.
32
[提示] (1)×.因为对任意 x,sin23π+x与 sin x 并不一定相等. (2)×.不是所有的函数都有最小正周期,如函数 f(x)=5 是周期函数, 就不存在最小正周期. (3)×.函数 y= sin x的定义域为{x|2kπ≤x≤2kπ+π,k∈Z},不关于 原点对称,故非奇非偶. [答案] (1)× (2)× (3)×
23
【例3】 (1)下列函数中是奇函数,且最小正周期是π的函数是
() A.y=cos|2x|
B.y=|sin 2x|
C.y=sinπ2+2x
D.y=cos32π-2x
(2)定义在R上的函数f(x)既是偶函数,又是周期函数,若f(x)的最小正
周期为π,且当x∈0,π2时,f(x)=sin x,则f53π等于( )

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。

(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。

正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。

4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。

理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。

5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。

三角函数图像-三角函数图像。

三角函数图像-三角函数图像。
信号处理
在信号处理中,三角函数图像可以用来进行频谱 分析和滤波。
测量技术
在测量技术中,三角函数图像可以用来进行角度、 距离等测量。
在数学分析中的应用
微积分
在微积分中,三角函数图像可以用来理解函数的极限、连续性、 可导性等概念。
复数分析
在复数分析中,三角函数图像可以用来理解复数的概念和性质。
线性代数
04
正切函数图像
正切函数的定义
总结词
正切函数是三角函数的一种,定义为直 角三角形中锐角的对边长度除以邻边长 度。
VS
详细描述
在直角坐标系中,以原点为顶点,x轴为 对边,y轴为邻边的单位圆上,正切函数 定义为直角三角形中锐角的对边长度除以 邻边长度。
正切函数的性质
总结词
正切函数具有周期性、奇偶性、单调性等性 质。
三角函数图像
目录
• 三角函数图像概述 • 正弦函数图像 • 余弦函数图像 • 正切三角函数图像概述
三角函数图像的定义
三角函数图像
三角函数图像是指将三角函数的值域映射到平面坐标 系上形成的图形。
常见的三角函数
常见的三角函数包括正弦函数、余弦函数、正切函数 等。
通过使用数学软件或绘图工具,可以绘制出余弦函数的图 像。
要点二
详细描述
绘制余弦函数的图像需要确定函数的定义域和值域,然后 选择适当的坐标系和单位。接下来,可以使用数学软件或 绘图工具,如MATLAB、Python的matplotlib库等,来绘 制余弦函数的图像。在绘制过程中,可以选择不同的参数 和颜色来展示函数的形状和变化趋势。最终得到的图像是 一个周期性的波形,具有对称性和有界性等特点。
01
02
03
手工绘制
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期函数如果现在是早上9点钟,问你:24小时以后是几点钟?你会毫不犹豫地回答:还是早上9点钟.因为你很清楚,0点、1点、2点、3点……23点,每隔24小时就重复出现一次.如果今天是星期一,问你:7天以后是星期几?你也会回答:还是星期一.因为你很清楚,星期一、星期二……星期天,每隔7天就重复出现一次.相同的间隔而重复出现的现象称为周期现象,如“24小时1天”、“7天1星期”、“365天1年”就是我们所熟悉的周期现象.自然界中有很多周期现象,如日出日落、月圆月缺、四季交替,等等.正弦函数、余弦函数是否有这样的周期性呢?1.周期函数(1)周期函数条件①对于函数f(x),存在一个__非零__常数T②当x取定义域内的每一个值时,都有__f(x+T)=f(x)__结论函数f(x)叫做__周期函数__,__非零常数T__叫做这个函数的__周期__(2)最小正周期条件周期函数f(x)的所有周期中存在一个最小的__正数__结论这个最小__正数__叫做f(x)的最小正周期2.正弦函数、余弦函数的周期性和奇偶性函数y=sin x y=cos x周期2kπ(k∈Z且k≠0)2kπ(k∈Z且k≠0)最小正周期2π__2π__奇偶性__奇函数____偶函数__[知识点拨]1.对周期函数的两点说明(1)并不是每一个函数都是周期函数,若函数具有周期性,则其周期也不一定唯一.(2)在周期函数y=f(x)中,若x∈D,则x+nT∈D(x∈Z).从而要求周期函数的定义域一定为无限集,且无上下界.2.对函数最小正周期的两点说明(1)最小正周期是指能使函数值重复出现的自变量x 要加上的那个最小正数,这个正数是对x 而言的,如y =sin2x 的最小正周期是π,因为y =sin(2x +2π)=sin [2(x +π)],即π是使函数值重复出现的自变量x 加上的最小正数,π是对x 而言的,而非2x .(2)并不是所有的周期函数都有最小正周期,譬如,常数函数f (x )=c ,任意一个正实数都是它的周期,因而不存在最小正周期.3.正弦函数、余弦函数的奇偶性(1)正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.(2)正弦曲线、余弦曲线既是中心对称图形又是轴对称图形. 预习自测1.函数f (x )=-2sin(πx +π3)的最小正周期为( D )A .6B .2πC .πD .22.下列函数中,周期为π2的是( D )A .y =sin x2B .y =sin2xC .y =cos x4D .y =cos(-4x ) 3.设函数f (x )=sin(2x -π2),x ∈R ,则f (x )是( B )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数4.若f (x )(x ∈R )为奇函数,且f (x +2)=f (x ),则f (4)=__0__.命题方向1 ⇨三角函数的周期 典例1 求下列函数的周期. (1)y =sin 12x ;(2)y =2sin(x 3-π6).[思路分析] 可以根据周期函数的定义求解,也可以用公式T =2π|ω|直接求解.[解析] 解法1:(1)令u =12x ,则y =sin u 是周期函数,且周期为2π.∴sin(12x +2π)=sin 12x ,即sin[12(x +4π)]=sin 12x .∴y =sin 12x 的周期是4π.(2)∵2sin(x 3-π6+2π)=2sin(x 3-π6),∴2sin[13(x +6π)-π6]=2sin(x 3-π6),∴y =2sin(x 3-π6)的周期是6π.解法2:(1)∵ω=12,∴T =2π12=4π.(2)∵ω=13,∴T =2π13=6π.『规律总结』 求三角函数周期的方法(1)定义法:紧扣周期函数的定义,寻求对定义域内的任意实数x 都满足f (x +T )=f (x )的非零常数T .该方法主要适用于抽象函数.(2)公式法:对形如y =A sin(ωx +φ)和y =A cos(ωx +φ)(其中A ,ω,φ是常数,且A ≠0,ω≠0),可利用T =2π|ω|来求.(3)图象法:可画出函数的图象,借助于图象判断函数的周期,特别是对于含绝对值的函数一般可采用此法.〔跟踪练习1〕求下列函数的最小正周期. (1)y =sin(3x +π3);(2)y =|cos(2x +π6)|;(3)y =sin(2πx -π4).[解析] (1)∵ω=3,T =2π3.(2)∵函数y =cos(2x +π6)的最小正周期为π,而函数y =|cos(2x +π6)|的图象是将函数y =cos(2x +π6)的图象在x 轴下方的部分对折到x 轴上方,并且保留在x 轴上方图象而得到的,由此可知所求函数的最小正周期为T =π2.(3)∵ω=2π,∴T =2π2π=π2.命题方向2 ⇨三角函数奇偶性的判断 典例2 判断下列函数的奇偶性: (1)f (x )=|sin x |+cos x ; (2)f (x )=sin(3x 4+3π2);(3)f (x )=1+sin x -cos 2x1+sin x.[思路分析] 先求函数的定义域,判断函数定义域是否关于原点对称,再判断f (-x )与f (x )的关系,最终确定奇偶性.[解析] (1)函数的定义域为R .∵f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ), ∴函数f (x )是偶函数.(2)f (x )=sin(3x 4+3π2)=-cos 3x4,x ∈R .∵f (-x )=-cos(-3x 4)=-cos 3x4=f (x ),∴函数f (x )=sin(3x 4+3π2)是偶函数.(3)函数应满足1+sin x ≠0,则函数f (x )=1+sin x -cos 2x1+sin x 的定义域为{x ∈R |x ≠2k π+3π2,k ∈Z }.显然定义域不关于原点对称,故函数f (x )=1+sin x -cos 2x1+sin x 为非奇非偶函数.『规律总结』 1.判断函数奇偶性的常用方法:(1)定义法,即从f (-x )的解析式中拼凑出f (x )的解析式,再看f (-x )=-f (x )或f (-x )=f (x )是否成立.(2)图象法,即作出函数的图象,由图象的对称性确定其奇偶性. (3)验证法,即验证f (-x )+f (x )=0或f (-x )-f (x )=0(或f (-x )f (x )=±1)是否成立.此法通常用于函数是非奇非偶的情形.2.判断函数奇偶性时,必须先判断其定义域是否关于原点对称.如果是,再验证f (-x )是否等于-f (x )或f (x ),进而再判断函数的奇偶性;如果不是,则该函数是非奇非偶数.〔跟踪练习2〕判断下列函数的奇偶性. (1)f (x )=x cos(π+x );(2)f (x )=sin(cos x ).[解析] (1)函数f (x )的定义域为R , ∵f (x )=x ·cos(π+x )=-x ·cos x ,∴f (-x )=-(-x )·cos(-x )=x ·cos x =-f (x ). ∴f (x )为奇函数.(2)函数f (x )的定义域为R .∵f (-x )=sin [cos(-x )]=sin(cos x )=f (x ). ∴f (x )为偶函数.三角函数奇偶性与周期性的综合运用典例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,求f (5π3)的值.[思路分析] 利用周期性与奇偶性将5π3化到[0,π2]内再求值.[解析] ∵f (x )的最小正周期为π,∴f (5π3)=f (2π3+π)=f (2π3)=f (π-π3)=f (-π3).又f (x )是偶函数.∴f (-π3)=f (π3)=sin π3=32.『规律总结』 1.解答此类题目的关键是利用化归的思想,借助于周期函数的定义把待求问题转化到已知区间上,代入求解即可.2.如果一个函数是周期函数,若要研究该函数的有关性质,结合周期函数的定义可知,完全可以只研究该函数在一个周期上的特征,加以推广便可以得到该函数在其它义域内的有关性质.〔跟踪练习3〕若f (x )是以π2为周期的奇函数,且f (π3)=1,求f (-5π6)的值.[解析] ∵f (x )为以π2为周期的奇函数∴f (-56π)=-f (56π)=-f (π2+π3)=-f (π3)=-1.不清楚f (x +T )表达的意义典例4 利用定义求f (x )=sin(2x -π6)的最小正周期.[错解] ∵f (x +2π)=sin ⎣⎡⎦⎤2(x +2π)-π6 =sin ⎝⎛⎭⎫2x -π6+4π=sin ⎝⎛⎭⎫2x -π6=f (x ), ∴T =2π是f (x )的最小正周期.[错因分析] 错解中求的不是最小正周期.对于y =A sin(ωx +φ)(A >0,ω>0),其周期为2πω. [正解] 令z =2x -π6,∵x ∈R ,∴z ∈R .又∵y =sin z 的周期是2π, z +2π=⎝⎛⎭⎫2x -π6+2π=2(x +π)-π6, ∴f (x +π)=sin ⎣⎡⎦⎤2(x +π)-π6 =sin ⎝⎛⎭⎫2x -π6+2π=sin ⎝⎛⎭⎫2x -π6=f (x ). ∴T =π.[点评] 最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.〔跟踪练习4〕对于函数y =sin x ,x ∈R 有sin(π6+2π3)=sin π6,能否说2π3是它的周期?[解析] 不能.周期必须对定义域内的每一个值都有f (x +T )=f (x ). 课堂检测1.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( D )2.函数y =sin2x 是( A ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为π2的偶函数D .周期为π2的奇函数3.若函数f (x )=cos(ωx +π3)(ω>0)的最小正周期是2,则ω的值为( B )A .π2B .πC .3π2D .2π4.函数f (x )是以2为周期的函数,且f (2)=2,则f (6)=__2__. [解析] f (6)=f (4+2)=f (4)=f (2+2)=f (2)=2.5.设f (x )是以1为一个周期的奇函数,且当x ∈(-12,0)时,f (x )=4x -1,求f (-318)的值.[解析] ∵f (x )的周期为1,f (-318)=f (-4+18)=f (18).又当x ∈(-1,0)时,f (x )=2x +1, ∴f (-18)=4×(-18)-1=-32,又∵f (x )是奇函数,∴f (-18)=-f (18),∴f (18)=32.故f (-318)=32.A 级 基础巩固一、选择题1.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( B )[解析] 由已知,得f (x )是周期为2的偶函数,故选B . 2.函数y =sin ⎝⎛⎭⎫-x 2+π4的最小正周期为( C ) A .π B .2π C .4πD .π23.函数f (x )=7sin(2x 3+15π2)是( A )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为3π的奇函数D .周期为4π3的偶函数4.函数y =|cos x |的最小正周期是( C ) A .π4B .π2C .πD .2π5.下列说法中正确的是( A )A .当x =π2时,sin(x +π6)≠sin x ,所以π6不是f (x )=sin x 的周期B .当x =5π12时,sin(x +π6)=sin x ,所以π6是f (x )=sin x 的一个周期C .因为sin(π-x )=sin x ,所以π是y =sin x 的一个周期D .因为cos(π2-x )=sin x ,所以π2是y =cos x 的一个周期6.若函数y =2sin ωx (ω>0)的图象与直线y +2=0的两个相邻公共点之间的距离为2π3,则ω的值为( A )A .3B .32C .23D .13[解析] 函数y =2sin ωx 的最小值是-2,该函数的图象与直线y +2=0的两个相邻公共点之间的距离恰好是一个周期,故由2πω=2π3,得ω=3.二、填空题7.若函数f (x )=sin ωx (ω>0)的周期为π,则ω=__2__.8.已知函数f (x )是定义在R 上的周期为6的奇函数,且f (1)=1,则f (5)=__-1__. [解析] 由于函数f (x )是定义在R 上的周期为6的奇函数,则f (5)=f (5-6)=f (-1)=-f (1).又f (1)=1,则f (5)=-1. 三、解答题9.已知定义在R 上的函数f (x )满足f (x +2)f (x )=1,求证:f (x )是周期函数. [证明] ∵f (x +2)=1f (x ),∴f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ).∴函数f (x )是周期函数,4是一个周期.10.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x .(1)求当x ∈[-π,0]时,f (x )的解析式; (2)画出函数f (x )在[-π,π]上的简图; (3)求当f (x )≥12时x 的取值范围.[解析] (1)∵f (x )是偶函数,∴f (-x )=f (x ). ∵当x ∈[0,π2]时,f (x )=sin x ,∴当x ∈[-π2,0]时,f (x )=f (-x )=sin(-x )=-sin x .又∵当x ∈[-π,-π2]时,x +π∈[0,π2],f (x )的周期为π,∴f (x )=f (π+x )=sin(π+x )=-sin x .∴当x ∈[-π,0]时,f (x )=-sin x . (2)如右图.(3)∵在[0,π]内,当f (x )=12时,x =π6或5π6,∴在[0,π]内,f (x )≥12时,x ∈[π6,5π6].又∵f (x )的周期为π,∴当f (x )≥12时,x ∈[k π+π6,k π+5π6],k ∈Z .B 级 素养提升一、选择题1.函数y =cos(k 4x +π3)(k >0)的最小正周期不大于2,则正整数k 的最小值应是( D )A .10B .11C .12D .13[解析] T =2πk 4=8πk ≤2,∴k ≥4π又k ∈N *∴k 最小为13,故选D .2.函数y =⎪⎪⎪⎪7sin ⎝⎛⎭⎫3x -π5的周期是( C ) A .2π B .π C .π3D .π6[解析] T =12·2π3=π3.3.函数y =|sin x |+|cos x |的最小正周期为( A ) A .π2B .πC .2πD .4π[解析] ∵⎪⎪⎪⎪sin (x +π2)+⎪⎪⎪⎪cos (x +π2)=|sin x |+|cos x |.∴原函数的最小正周期为π2. 4.函数f (x )=4sin(23x +15π2)是( A )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为43π的奇函数D .周期为43π的偶函数[解析] f (x )=4sin(23x +15π2)=4sin(23x +32π)=-4cos 23x ,∴T =3π,且满足f (-x )=f (x ),故选A .二、填空题5.若函数f (x )是以π2为周期的偶函数,且f (π3)=1,则f (-17π6)=__1__.[解析] ∵f (x )的周期为π2,且为偶函数,∴f (-17π6)=f (-3π+π6)=f (-6×π2+π6)=f (π6)=f (π2-π2)=f (-π3)=f (π3)=1.6.设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝⎛⎭⎫α4+π12=95,则sin α的值为 ±45. [解析] ∵f (x )的最小正周期为π2,ω>0,∴ω=2ππ2=4.∴f (x )=3sin ⎝⎛⎭⎫4x +π6. 由f ⎝⎛⎭⎫α4+π12=3sin ⎝⎛⎭⎫α+π3+π6=3cos α=95, ∴cos α=35.∴sin α=±1-cos 2α=±45.三、解答题7.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. [解析] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π)(k ∈Z ).11 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π.8.已知f (x )是以π为周期的偶函数,且x ∈[0,π2]时,f (x )=1-sin x ,求当x ∈[52π,3π]时f (x )的解析式.[解析] x ∈[52π,3π]时, 3π-x ∈[0,π2], 因为x ∈[0,π2]时,f (x )=1-sin x , 所以f (3π-x )=1-sin(3π-x )=1-sin x .又f (x )是以π为周期的偶函数,所以f (3π-x )=f (-x )=f (x ),所以f (x )的解析式为f (x )=1-sin x ,x ∈[52π,3π]. C 级 能力拔高定义在R 上的偶函数f (x )满足f (x )=f (x +2),当x ∈[3,4]时,f (x )=x -2,则有下面三个式子:①f (sin 12)<f (cos 12);②f (sin π3)<f (cos π3);③f (sin1)<f (cos1).其中一定成立的是__②③__(填序号).。

相关文档
最新文档