高考数学复习点拨 理解三角函数的周期性

合集下载

备战高考数学复习知识点讲解课件33---三角函数的周期性、奇偶性与对称性

备战高考数学复习知识点讲解课件33---三角函数的周期性、奇偶性与对称性

三角函数图象的对称轴和 对称中心的求解思路和方法 (1)思路:函数y=Asin(ωx+φ)图象的对称轴和对称中心可结合y=sin x图象 的对称轴和对称中心求解.
(2)方法:利用整体代换的方法求解,令 ωx+φ=kπ+π2,k∈Z,解得 x= (2k+21ω)π-2φ,k∈Z,即对称轴方程;令 ωx+φ=kπ,k∈Z,解得 x=kπω-φ, k∈Z,即对称中心的横坐标(纵坐标为 0).对于 y=Acos(ωx+φ),y=Atan(ωx +φ),可以利用类似的方法求解(注意 y=Atan(ωx+φ)的图象无对称轴).
解析:因为
y=2
23sin
2x+12cos
2x=2sin2x+π6,所以
T=22π=π.
2.(2020·高考全国卷Ⅰ)设函数 f(x)=cosωx+π6在[-π,π]的图象大致如图, 则 f(x)的最小正周期为( )
10π

A. 9
B. 6
√C.43π
D.32π
解析:由题图知,函数 f(x)的最小正周期 T 满足 0-(-π)<T<π--49π,即 π<T<139π,即 π<|2ωπ|<139π,即1138<|ω|<2.因为函数 f(x)的图象过点-49π,0, 所以 cos-49πω+π6=0,所以-49πω+π6=π2+kπ(k∈Z),解得 ω=-94k-34 (k∈Z),又1138<|ω|<2,所以 k=-1,ω=32,所以 T=2ωπ=43π.
角度 2 对称性
(1)函数 f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的图象关于直线 x=π3
对称,它的最小正周期为 π,则函数 f(x)图象的一个对称中心是( )

高考数学复习点拨:例谈三角函数隐含周期性问题

高考数学复习点拨:例谈三角函数隐含周期性问题

例谈三角函数隐含周期性问题周期性是三角函数特有的一种性质,是研究三角函数图象及性质的重要工具,尤其一些问题中所隐含的周期性更成为解题的关键所在,本文给出几例,供大家参考.例1 直线y a =(a 为常数)与正切曲线tan (0)y x ωωω=>为常数,且相交的相邻两点间的距离是 ( )A .πB .2πωC . πωD .与a 值有关 解:由正切曲线的图象可知,直线y a =(a 为常数)与正切曲线tan (0)y x ωωω=>为常数,且相交的相邻两点间的距离恰好就是函数tan (0)y x ωω=>的最小正周期,为T πω=,答案选C . 例2 设函数()4sin()25x f x ππ=+,若对任意x ∈R ,都有12()()()f x f x f x ≤≤成立,则12||x x -的最小值是 .解:由正弦曲线的图象可知,1()f x 、2()f x 分别是函数()4sin()25x f x ππ=+的最小值、最大值,12||x x -的最小值就是相邻最小值、最大值横坐标之间的距离,等于函数的12个周期,故12||x x -的最小值1122222T ππ==⋅=. 例3 设点P 是函数()cos f x x ω=图象C 的一个对称中心,若点P 到图象C 的对称轴的最小值是4π,则ω= . 解:由余弦曲线的图象可知,函数()sin f x x ω=图象C 的一个对称中心到图象C 的对称轴的最小值就等于14个周期,即11244||4T ππω=⋅=,得2ω=±. 例3 为了使函数sin (0)y x ωω=>在区间[]0,1上至少出现50次最大值,则ω的最小值是 .解:∵函数sin (0)y x ωω=>在区间[]0,1上至少出现50次最大值,∴在区间[]0,1上至少含有1494个周期.∴1197249144T πω=⋅≤,得1972ωπ≥,故ω的最小值是1972π. 点评:函数sin()(0,0)y A x A ωϕω=+≠≠、cos()(0,0)y A x A ωϕω=+≠≠的周期公式是2||T πω=,函数tan()(0,0)y A x A ωϕω=+≠≠的周期公式||T πω=.对于一些没有直接指出三角函数最小正周期的问题,关键是正确理解题意,通过数形结合,准确找出隐含的最小正周期的个数,将问题化归为我们熟悉的正弦函数、余弦函数及正切函数的最小正周期问题加以解决.因此,正确理解题意进行等价转化是解题的关键.。

高中数学一轮复习之三角函数的周期性

高中数学一轮复习之三角函数的周期性

高中数学一轮复习之三角函数的周期性
三角函数是数学中重要的概念之一,它们具有周期性的特点。

本文将对三角函数的周期性进行详细介绍。

正弦函数的周期性
正弦函数是最基本的三角函数之一,表示为sin(x)。

其周期性非常明显,即每隔一定的距离,函数的值将重复。

正弦函数的周期是2π,即在区间[0, 2π]上,sin(x)的值将重复出现。

余弦函数的周期性
余弦函数是另一种常见的三角函数,表示为cos(x)。

和正弦函数一样,余弦函数也具有周期性。

余弦函数的周期也是2π,即在区间[0, 2π]上,cos(x)的值将重复出现。

正切函数的周期性
正切函数是三角函数中稍微复杂一些的函数,表示为tan(x)。

和正弦函数、余弦函数类似,正切函数也具有周期性。

但是,和正弦函数、余弦函数不同的是,正切函数的周期是π,即在区间[0, π]上,tan(x)的值将重复出现。

其他三角函数的周期性
除了正弦函数、余弦函数和正切函数外,还有很多其他的三角函数,如余割函数、正割函数等等。

这些函数也都具有周期性,其周期和对应的函数关系密切相关。

总结
三角函数的周期性是它们的重要特性之一。

正弦函数和余弦函数的周期都是2π, 而正切函数的周期是π。

除了这些常见的三角函数外,还有其他的三角函数也具有周期性。

了解三角函数的周期性将有助于我们更好地理解和应用三角函数的相关概念。

以上就是对高中数学一轮复之三角函数的周期性的详细介绍。

希望本文能够对您的研究有所帮助。

参考资料:
- 数学教材《高中数学》。

三角函数的周期性与变化规律

三角函数的周期性与变化规律

三角函数的周期性与变化规律三角函数是高等数学中的重要知识点之一,它们具有独特的周期性和变化规律。

在本文中,我将详细介绍三角函数的周期性及其相关的变化规律,并对其应用进行一些实际案例分析。

一、三角函数的周期性-----------------------三角函数包括正弦函数、余弦函数和正切函数,它们都具有周期性。

正弦函数的周期为2π,即在每个2π的区间内,函数的值将重复。

这是因为正弦函数的定义是在单位圆上,随着自变量的增长,对应的函数值会不断重复。

余弦函数也具有相同的周期,即在每个2π的区间内,函数的值会周期性地重复。

与正弦函数不同的是,余弦函数在自变量增长时,对应的函数值与正弦函数有90°(或π/2)的相位差。

正切函数的周期为π,即在每个π的区间内,函数的值将周期性地重复。

正切函数的定义是通过正弦函数和余弦函数来计算的,因此也具有相同的周期性。

二、三角函数的变化规律-----------------------1. 正弦函数的变化规律正弦函数的取值范围在[-1, 1]之间,且当自变量为0时,函数取得最小值0。

当自变量增加时,正弦函数的值会先上升到最大值1,然后下降到最小值-1,再回升到0,不断重复这一过程。

2. 余弦函数的变化规律余弦函数的取值范围也在[-1, 1]之间,且当自变量为0时,函数取得最大值1。

当自变量增加时,余弦函数的值会先下降到最小值-1,然后上升到最大值1,再下降到0,也会不断重复这一过程。

3. 正切函数的变化规律正切函数的取值范围是整个实数轴,即它可以取任意实数值。

正切函数在某些自变量的取值下是无界的,例如在π/2和3π/2等点。

当自变量增加时,正切函数的值会在相邻的两个无界点之间不断变换,呈现出周期性的特点。

三、三角函数的应用实例-----------------------三角函数的周期性和变化规律在物理学、工程学等领域中有广泛的应用。

下面将以振动和电路分析为例,说明三角函数在实际问题中的应用。

高考数学之三角函数知识点总结

高考数学之三角函数知识点总结

高考数学之三角函数知识点总结高考数学中,三角函数是一个重要的知识点。

它在解三角形、解三角方程和求极限等方面都有广泛应用。

下面是对高考数学中三角函数的知识点进行总结:一、基本概念和性质:1.三角函数的定义:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的定义。

2.三角函数的周期性:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的周期性。

3.三角函数的奇偶性:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的奇偶性。

4.三角函数的范围:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的范围。

二、基本公式和恒等变换:1.三角函数的和差化积公式。

2.三角函数的倍角公式。

3.三角函数的半角公式。

4.三角函数的和差化积公式的逆运算。

三、极坐标与三角函数:1.极坐标下的坐标转换。

2.极坐标下的两点间距离公式。

四、三角函数的解析式:1.任意角的解析式。

2.一些特殊角的解析式。

五、三角函数的图像与性质:1.正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的图像和性质。

2.三角函数图像的平移、伸缩和翻转。

3.三角函数的性态。

六、三角函数的应用:1.三角函数在测量中的应用:测量高度、测量角度、计算地理位置等。

2.三角函数在力学中的应用:力的合成、平衡条件等。

3.三角函数在电路中的应用:交流电的正弦表达式等。

4.三角函数在几何中的应用:解三角形、求面积等。

5.三角函数在物理中的应用:波动现象、振动现象等。

以上是高考数学中三角函数的主要知识点总结。

掌握这些知识点,对于解答相关题目、理解相关概念都有很大帮助。

在备考高考数学时,应不断强化基础知识,多进行题目练习和真题训练,同时注重理解和巩固基本概念和性质,提高解题的能力和技巧。

高中数学知识点精讲精析 三角函数的周期性

高中数学知识点精讲精析 三角函数的周期性

1.3.1 三角函数的周期性(一)、周期函数定义1、我们先看函数周期性的定义.定义 对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫做这个函数的周期.2、需要注意的几点:①T 是非零常数.②任意x D ∈,都有x T D +∈,0T ≠,可见函数的定义域无界是成为周期函数的必要条件.③任取x D ∈,就是取遍D 中的每一个x ,可见周期性是函数在定义域上的整体性质. 理解定义时,要抓住每一个x 都满足),()(x f T x f =+成立才行周期也可推进,若T 是)(x f y =的周期,那么2T 也是)(x f y =的周期.这是因为 )()()]([)2(x f x t f x T T f x T f =+=++=+,若T 是)(x f y =的周期,,0≠∈k Z k 且则kT 也是f(x)的周期.即2π是函数x y x y cos sin ==和的周期,那么x y x y k Z k k cos sin )0(2==≠∈和也是且π的周期. 如:),4sin()24sin(πππ=+ ),43sin()243sin(πππ=+ 但,6sin )26sin(πππ≠+x y sin 2=∴不是π的周期. (二)、最小正周期的概念.对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期.例如函数x y sin =的周期中,2π,-2π,4π,-4π,…,存在最小正数2π,那么,2π就是x y sin =的最小正周期.函数x y cos =的最小正周期也是2π,今后不加特殊说明,涉及的周期都是最小正周期,不是每个周期函数都有最小正周期.1. 求下列函数的最小正周期T.(1)x x f sin 3)(=(2)x x f 2sin )(=(3))421sin(2)(π+=x x f 【解析】 解:(1)πππ2)2()2sin(3sin 3)(=+=+==T x f x x x f(2))()(2sin )22sin(2sin )(πππ+=+=+==x f x x x x f ∴函数的最小正周期为π.(3))4(]4)4(21sin[2)2421sin(2)421sin(2)(ππππππ+=++=++=+=x f x x x x f 函数的最小正周期为4π.总结一般规律:)cos(),sin(ϕωϕω+=+=x A y x A y 的最小正周期是||2ωπ.令 z x ωϕ=+,由sin ,y A z z R =∈的周期是2π,则 ()222z x x ππωϕπωϕω⎛⎫+=++=++ ⎪⎝⎭因而自变量x 只要并且至少要增加到2x πω+,即2T πω=.2. 求证:(1)x x y sin 2cos +=的周期为π;(2).2|cos ||sin |π的周期为x x y += 【解析】证明:(1))22sin()22cos()(2sin )(2cos )(x x x x x f +++=+++=+πππππ π的周期是x x y x f x x 2sin 2cos )(2sin 2cos +=∴=+=(2))(|cos ||sin ||sin ||cos |)2cos(||)2sin(|)2(x f x x x x x x x f =+=-+=+++=+πππ ∴.2|cos ||sin |π的周期是x x y +=(一般不要求证明是最小正周期)总结:(1)一般函数周期的定义 (2))cos(),sin(ϕωϕω+=+=x A y x A y 周期求法3. 研究一下函数的周期性(1)x sin 2; (2)x sin【解析】(1)x sin 2的定义域为R ,值域为]2,21[,作图可知,它是最小正周期为π2的周期函数. (2)x sin 的定义域为]2,2[πππ+k k ,值域为【0,1】,作图可知,它是最小正周期为π2的周期函数.【说明】从基本函数的定义域,值域和单调性出发,通过作图,还可确定,)sin(sin ,sin 1,sin ,log x x x x a 都是最小正周期π2的周期函数.。

第7章-7.3.1 三角函数的周期性-7.3.2-三角函数的图象与性质高中数学必修第一册苏教版

第7章-7.3.1 三角函数的周期性-7.3.2-三角函数的图象与性质高中数学必修第一册苏教版
12
2 12
12 12
π
π

2sin 2 − 的单调递增区间为[− + π, + π],
3
12
12
∈ .
子题1 函数 = −2sin 2
π

3


[− + , + ], ∈
的单调递减区间为_________________________.


【解析】求函数 =-(切勿忽略此处负号对单调性的影响)2sin 2 −
=
C.0
× −3

+ ]
4
=

4
D.−
=

sin
4
=
2
.
2
)
2
2

2
例1-3 [多选题](2024·河南省南阳市六校联考)在下列函数中,周期为π 的函数为
( CD
)
A. = tan
C. = cos
π
2 −
4
π
2 +
6
→=
→=
π
2

2
B. = cos + 1 → =
π
为[
2
+

2π,
2

(函数
2
π
3
+ 2π], ∈ ,函数 = − 2在上单调递减,结合复合函数单调性可
得该式), ∈ ,
得π

+
12
= 2sin 的单调递减区间
≤ ≤ π
11π
+
,
12

三角函数的周期性及其应用

三角函数的周期性及其应用

三角函数的周期性及其应用三角函数是数学中重要的概念之一,它具有周期性质,即在一定范围内,函数值会重复出现。

本文将探讨三角函数的周期性及其在实际问题中的应用。

一、正弦函数的周期性正弦函数是最基本的三角函数之一,记作sin(x)。

它的定义域为实数集合,值域为[-1,1]。

我们可以观察到,正弦函数在[0,2π]区间内呈现周期性,即在这个范围内,函数值会重复出现。

具体来说,在[0,2π]区间内,sin(x)的图像从0递增至最大值1,然后再递减至最小值-1,最后再回到0。

类似地,在[2π,4π]、[4π,6π]等区间内,sin(x)的图像也会重复出现相同的变化规律。

二、余弦函数的周期性余弦函数是另一个重要的三角函数,记作cos(x)。

与正弦函数类似,余弦函数也在一定范围内呈现周期性。

在[0,2π]区间内,cos(x)的图像从最大值1递减至最小值-1,然后再递增至最大值1,最后再回到1。

在其他区间内,余弦函数的图像也会以相同的方式重复出现。

三、三角函数的应用三角函数的周期性在实际问题中有广泛的应用。

以下是其中几个常见的应用领域:1. 物理学:三角函数的周期性在描述波动现象中起到重要的作用。

例如,正弦函数可以用来描述声音的频率和振幅,余弦函数可以用来描述光的波动。

2. 电工电子学:交流电流和交流电压的变化也可以利用三角函数来描述。

正弦函数可以描述电流和电压的周期性变化,而余弦函数则可以描述相位差。

3. 统计学:三角函数可以应用于周期性数据的分析和预测。

例如,通过对历史天气数据的正弦曲线拟合,可以预测未来几天的气温变化趋势。

4. 工程学:三角函数在工程计算、机械振动等方面也有广泛的应用。

例如,在建筑设计中,通过正弦函数可以描述建筑物受地震等力的变形情况。

总结:三角函数具有周期性质,如正弦函数和余弦函数,在一定范围内函数值会重复出现。

这种周期性在物理学、电工电子学、统计学和工程学等领域中都有广泛的应用。

了解三角函数的周期性及其应用,有助于帮助我们理解和解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学复习点拨理解三角函数的周期性高考数学复习点拨理解三角函数的周期性
高考数学复习点拨理解三角函数的周期性
认知三角函数的周期性
(+2kπ)=sin,x(k∈z及)cos(x+2kπ)=cosx(k∈z)成立,y=sinx,x∈r和等式sinx
y=cosx,x∈r的图象内要2π重复.
函数周期性定义:对于函数f(x),如果存在一个非零常数t,使得当x取定义域内的每一个值时,都有f(x+t)=f(x),那么函数f(x)叫做周期函数,非零常数t叫做这个函数的周期.
1.认知定义时,必须把握住定义域内任一个x都满足用户f(x+t)=f(x)设立才行及π5ππ⎛ππ⎛⎛5ππ⎛⎛ππ⎛例如:sin+⎛=sin,sin+⎛=sin,但sin+⎛≠sin,446⎛42⎛⎛42⎛⎛62⎛
π不是y=sinx的周期.2
周期并不惟一,若t就是y=f(x)的周期,那么2t也就是y=f(x)的周期.这是因为
f(2t+x)=f[t+(t+x)]=f(t+x)=f(x);若t就是y=f(x)的周期,k∈z且k≠0,则kt也就是f(x)的周期.2π就是函数y=sinx和y=cosx的周期,那么2kπ(k∈z且k≠0)也就是
y=sinx和y=cosx∴的周期.
2.最小正周期的概念
如果在周期函数f(x)的所有周期中存有一个最轻的正数,那么这个最轻正数就叫作f(x)的最轻正周期.
-2π,4π,-4π,…中,存在最小正数2π,那么2π就是例如:函数y=sinx的周期2π,
y=sinx的最轻正周期.函数y=cosx的最轻正周期也就是2π.基准1谋以下函数的最轻正周期t.
(1)f(x)=3sinx;
(2)f(x)=sin2x;
π⎛⎛1(3)f(x)=2sinx+⎛.4⎛⎛2
求解:(1)f(x)=3sinx=3sin(x+2π)=f(x+2π),最轻正周期t=2π.
(2)f(x)=sin2x=sin(2x+2π)=sin2(x+π)=f(x+π),最小正周期t=π;
π⎛π⎛1⎛1⎛⎛1(3)
f(x)=2sinx+⎛=2sinx++2π⎛=2sin⎛(x+4π)+4⎛4⎛2⎛2⎛⎛2最小正周期t=4π.π⎛=f(x+4π),4⎛⎛
2π总结通常规律:y=asin(ωx+ϕ),y=acos(ωx+ϕ)的最轻正周期就是
y=atan(ωx+ϕ)的最小正周期是ω;π.ω
π⎛⎛1基准2澄清:y=2sinx+⎛的周期为2π.3⎛⎛2
π⎛2π⎛1=4π,证明:y=2sinx+⎛的周期为123⎛⎛2
根据函数的图象特征,所述函数的周期增加一倍,故其周期为2π.
注:遇到求形式较复杂的函数的周期时要结合函数图象处理.。

相关文档
最新文档