水力平衡计算
某住宅小区供暖热水管网水力平衡计算与分析

- 110 -工 程 技 术0 引言供热工程在调试、运行过程中,室温经常无法符合设计要求,即热源近端用户室内温度过高,而远端用户则出现室内温度不达标的情况。
其主要原因往往是水系统各并联环路之间出现严重水力失衡的情况,导致末端换热设备的供热量大幅偏离设计条件,进而影响室温调节。
为保证末端用户的供热效果,后期运维人员常采取提高二次热水温度,或提升水泵扬程的方法。
上述做法虽能解决用户供热需求,却同时带来热源效率降低、热媒输配功耗增加等一系列问题。
笔者在参与住宅供暖项目设计时发现,小区二次供热管网设计一般都滞后于单体供暖施工图,且由不同设计人员来完成,设计人员往往会忽视各并联水环路的资用压头,仅按最大允许流速、经济比摩阻直接确定管径,确定单体热力入口处平衡阀规格时,要直接按接管管径选型。
大量工程案例表明,按上述错误的设计做法,仅依靠后期调试很难实现水力平衡,无法使每个房间的实际散热量与设计供热量相匹配。
因此,笔者以某住宅小区供暖工程为例,浅谈设计过程中热水管网水力平衡的计算与设计。
1 相关规范条文文献[1]第5.9.11条:“室内热水供暖系统的设计应进行水力平衡计算,并应采取措施使设计工况时各并联环路之间(不含共用段)的压力损失相对差额不大于15%。
”当双管系统并联环路之间的压力损失相对差额不大于15%时,最大流量偏差可控制在8%左右,平均水温及散热量偏差可控制在2%左右[3],可保证供暖系统的运行效果。
文献[2]第5.3.6条:设计室内热水供暖系统时,应计算水力平衡,并采取控制措施,使设计工况下各并联环路之间(不含公共段)的压力损失差额不大于15%;在计算水力平衡时,要计算水冷却产生的附加压力,其值可取设计供、回水温度条件下附加压力值的2/3。
2 计算公式及原理热水供暖系统中计算管段的压力损失计算如下[4]。
'''P P P d l y iO UX ]UX 2222(1)式中:∆P —计算管段的压力损失,Pa ;∆P y —计算管段的沿程损失,Pa ;∆P i —计算管段的局部损失,Pa ;λ—管段的摩擦阻力系数;d —管段内径,m ;l —管段长度,m ;ρ—热水的密度,kg/m 3;υ—热水流速,m/s ;ζ—局部阻力系数,常用管道配件可参考文献[3]。
热网水力平衡分析

热网水力平衡分析热网水力平衡分析热网水力平衡分析是指对热网中的各个部分进行水力计算和平衡分析的过程。
热网是指由多个热源、热力设备和热交换器组成的热能传输系统。
在热网中,热水或蒸汽通过管道输送到各个用户的热力设备中,完成供热或供热水的任务。
而热网水力平衡分析则是为了保证热水或蒸汽能够在热网中均匀分配,使各个用户能够得到合理的供热效果。
在热网水力平衡分析中,首先需要对热网进行水力计算,即计算管道中的流速和压力损失。
流速是指在管道中流动的热水或蒸汽的速度,而压力损失则是指由于摩擦力和阻力而引起的管道中压力的降低。
通过对热网中各个管道的水力计算,可以得到各个管道的流速和压力损失。
在进行热网水力平衡分析时,还需要考虑热负荷的分配和平衡。
热负荷是指热网中各个用户需要的供热或供热水的能量。
不同的用户可能有不同的热负荷需求,因此需要根据用户的需求合理分配热负荷,以保证各个用户能够得到满意的供热效果。
在进行热负荷的分配时,需要考虑热负荷的大小、管道的长度和管道的直径等因素。
另外,在热网水力平衡分析中,还需要考虑管道的布局和连接方式。
管道的布局和连接方式直接影响热水或蒸汽在管道中的流动情况,因此对于不同的热网系统,需要选择合适的管道布局和连接方式。
合理的管道布局和连接方式可以减小管道的压力损失,提高热水或蒸汽的传输效率。
除了上述的因素之外,热网水力平衡分析还需要考虑阀门和泵的选择与调节。
阀门的选择与调节可以控制热水或蒸汽的流量和压力,进而影响管道中的水力平衡。
而泵则可以提供足够的压力,使热水或蒸汽能够在管道中稳定地流动。
因此,选择合适的阀门和泵,并合理调节其工作状态,对于热网水力平衡分析是非常重要的。
总之,热网水力平衡分析是对热网中的各个部分进行水力计算和平衡分析的过程。
通过合理的热网水力平衡分析,可以保证热水或蒸汽能够在热网中均匀分配,使各个用户能够得到合理的供热效果。
在进行热网水力平衡分析时,需要考虑热网的水力计算、热负荷的分配和平衡、管道的布局和连接方式以及阀门和泵的选择与调节等因素。
采暖系统设计中水力平衡计算的分析

03
采暖系统水力平衡计算的具体步 骤
采暖系统模型的建立
建立模型
首先,需要根据实际采暖系统的布局和构造,建立一个准确的水力模型。这个 模型应该包括所有的管道、暖气片、阀门和其他水力组件。
考虑影响因素
在建立模型的过程中,需要考虑到各种影响水力平衡的因素,如管道的长度、 直径、摩擦系数,暖气片的阻力,阀门的开度等。
伯努利方程是水力平衡计算的基础公式,描述了流体在管道中流动时的压力、速度和高度 之间的关系。
压降公式
压降公式用于计算管道中的压力损失,包括沿程压降和局部压降,是水力平衡计算中不可 或缺的一部分。
水力平衡原理
水力平衡原理指在保证采暖系统各散热器需求流量的前提下,通过调整管道直径、阀门开 度等手段,使得各支路之间的压力损失达到平衡状态,以确保系统的正常运行和高效供暖 。
节阀门的开度来改变环路的水力阻力,从而达到水力平衡。 • 采用自力式平衡装置:这种装置能够根据环路的水流量自动
调节环路的水力阻力,从而实现自动的水力平衡。 • 采用水力计算软件进行模拟与优化:通过水力计算软件对采
暖系统进行建模,模拟系统的运行状况,并根据模拟结果对 系统进行优化,从而达到水力平衡。这种方法能够更精确地 实现水力平衡,提高系统的整体性能。
05
采暖系统水力平衡计算的优化和 改进
采暖系统水力平衡计算的优化和改进
• 采暖系统作为建筑能源消耗的主要部分,其设计效率至关重要 。其中,水力平衡计算是采暖系统设计的核心技术,决定了系 统的运行效果和能源效率。下面,我们将深入探讨采暖系统水 力平衡计算的优化和改进,以及展望未来的发展趋势。
THANKS
3. 水力平衡调节 比较各环路阻力,选择合适的平衡调节方法(如:安装平衡阀)。
滴灌系统水力计算公式(沐禾)

2.设计灌水定额计算公式m=0.1γzp(θmax-θmin)/η
Z土壤计划 θ max为田间 θ min为田 田间持水率 P设计土壤湿 最大持水率 间最大持水 γ 土壤容重g/cm3 湿润层深 θ 田 润比 度m 的90% 率的65% 1.45 0.5 65.00% 90 65 25.5 求T 求区允 [q v ] 许的偏差率 水 头 偏 差 率 [h v ]
0.2 8 0.412
一次灌水延续 时间t (h/组)
3.8
):A=Qηt/10*Ia
t一次灌水 延续时间 22 求灌溉面 积,亩 6.27
1.水量平衡计算公式(以地定水):Q=10*Ia*A/ηt
已知 灌溉面积 常数 10 Ia设计耗水 强度mm/d 4.5 A灌溉面 积,hm2 50.53 η 灌溉水利 t一次灌水延 用系数 续时间 0.95 22 求Q 108.80
1.水量平衡计算公式(以水定地):A=Qηt/10*Ia
已知 灌溉面积 常数 10 Ia设计耗水 强度mm/d 5.0 Q,m3/h 1 η 灌溉水利 用系数 0.95
31.62 6.68
21.09
3.设计灌水周期T=(m/Ia)*η 4.一次灌水延续时间t=m*Se*Sl/qd
m设计灌水定额 (mm) 31.62 qd滴头设计 Se滴头间 Sl毛管间距m 距m 流量L/h 0.3 1.2 3
求t 3.8
系统设计参数表
序号 1 2 3 参数名称 灌溉补充强度I a (mm/d) 系统初定总供水流量 Q (m3/h) 灌溉水有效利用率η 参数值 5 50 0.95 序号 5 6 7 参数名称 参数值 土 壤 湿 润 比 65 p (%) 设计 灌水 定额 31.62/21. 08 m (mm)/(m3/亩) 设计 灌水 周期 6.5 T (d)
图论在供水管网水力计算的应用

图论在供水管网水力计算的应用摘要图论理论是网络分析的主要工具,现用于管网的水力平衡计算,既充分发挥了图论理论的优势,使计算变得简便、迅捷,又可将管网附件加入计算,使结果更准确、更符合实际。
文中采用峰阵输入管网结构,使输入数据的工作量大大减少,易于编制程序,计算大型的复杂管网。
关键词供水管网,水力计算,图论法。
前言供水管网的水力平衡计算是供水系统规划设计、经济评价和运行管理的基础。
水力平衡计算的目的就是在确定管径的情况下求出满足连续方程和能量方程的各节点压力水头和各管段流量。
目前常用的水力平衡计算方法有哈代-克罗斯法(Hardy-Cross),牛顿-莱福逊法(New ton-Raphson),线性理论法(Linear-Theory),有限元法(Finite Element)等等。
所有这些方法各有所长,适用范围各不相同,有的还需人工假设管段流量,使输入数据工作量增大,且未考虑管网附件的影响。
本文介绍的图论法将复杂的管网处理为相应的“网络图”,并建立相应的数学模型,用峰阵输入原始数据来描述管网结构,输入的数据量最少,不易出错,易于计算大型的复杂管网。
其计算过程可同时考虑管网附件,如控制阀、加压泵、逆止阀、减压阀等,使计算结果更符合实际。
1 图论原理将供水管网中的管段概化成一条线段(即图中的边),将有附件的管段看成图中的特殊管段,边与边由节点相连。
这样,一个供水系统的管网图就转化为图论中的网络图。
而且管道中的水流是有方向的,所以管网图是有向图。
根据以上所述原则,可将图1所示管网系统,转化为图2所示的网络图。
图1图2图1中有一水库A,三个给水点B、C、D,Q1表示水库节点供水量,Q2\,Q3\,Q4分别表示B、C、D节点的用水量。
管段视为网络图中的对应边,管段的直径、管长、管道流量、摩损系数等作为管段对应边的权。
至此,与管网同构的网络图生成了。
图中箭头表示各条边的方向,即管段中水流方向。
网络图中节点与边的关联函数可以用完全关联矩阵I4×5表示如式(1)所示。
工程水文与水力计算

工程水文与水力计算工程水文与水力计算是研究水文过程和水力计算方法在工程设计中的应用的一门学科。
它主要涉及到水文学、水力学和统计学等多个学科的知识,旨在对水文数据进行分析和处理,为工程设计提供合理的水文参数和水力计算结果。
在工程水文中,主要包括以下内容:1. 水文观测与数据处理:对水文过程中的降雨、径流、蒸发等数据进行观测、记录和处理,确保可靠的水文数据。
2. 频率分析:利用统计学方法对水文数据进行频率分析,推断出不同概率水文事件的发生可能性,如洪水频率分析、干旱频率分析等。
3. 水文径流计算:通过模型和方法计算出不同流域的径流量,包括单位线和集合单位线的计算。
4. 水文参数计算:通过统计方法对流域特征进行分析,计算出流域面积、地表粗糙度、地形坡度等水文参数。
5. 水量平衡计算:通过对流域内降水、蒸发、地表流、地下水等水文过程的计算和分析,得出水量平衡结果,为工程设计提供参考。
6. 水文模拟与预测:利用水文模型对不同水文过程进行模拟和预测,预测未来一段时间内的水文情况,为工程设计提供更准确的数据支持。
在水力计算中,主要包括以下内容:1. 水力学基础:涉及流体力学的基本原理和公式,如连续方程、伯努利方程、阻力公式等。
2. 水力计算公式:根据流体力学原理,建立各种类型流体流动的计算公式,如液体管道的流量计算、水力输沙计算等。
3. 渠道水力计算:根据渠道特性和水流情况,利用水力学原理计算渠道中水流的流速、压力、能量损失等参数,为渠道设计提供依据。
4. 水力机械计算:对水力机械设备,如水轮机、泵等进行水力计算,确定其性能和运行参数,为水利工程设计提供技术支持。
5. 水力模型测试:利用水力模型进行实验室或现场测试,验证水力计算结果的准确性和可靠性。
通过工程水文与水力计算,可以为水利工程的设计、规划和管理提供科学依据,确保工程的安全、经济和有效性。
(完整版)水力计算

室内热水供暖系统的水力计算本章重点? 热水供热系统水力计算基本原理。
? 重力循环热水供热系统水力计算基本原理。
? 机械循环热水供热系统水力计算基本原理。
本章难点? 水力计算方法。
? 最不利循环。
第一节热水供暖系统管路水力计算的基本原理一、热水供暖系统管路水力计算的基本公式当流体沿管道流动时,由于流体分子间及其与管壁间的摩擦,就要损失能量;而当流体流过管道的一些附件 ( 如阀门、弯头、三通、散热器等 ) 时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量。
前者称为沿程损失,后者称为局部损失。
因此,热水供暖系统中计算管段的压力损失,可用下式表示:Δ P =Δ P y + Δ P i =R l + Δ P i Pa 〔 4 — 1 〕式中Δ P ——计算管段的压力损失, Pa ;Δ P y ——计算管段的沿程损失, Pa ;Δ P i ——计算管段的局部损失, Pa ;R ——每米管长的沿程损失, Pa / m ;l ——管段长度, m 。
在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。
任何一个热水供暖系统的管路都是由许多串联或并联的计算管段组成的。
每米管长的沿程损失 ( 比摩阻 ) ,可用流体力学的达西.维斯巴赫公式进行计算Pa/m ( 4 — 2 )式中一一管段的摩擦阻力系数;d ——管子内径, m ;——热媒在管道内的流速, m / s ;一热媒的密度, kg / m 3 。
在热水供暖系统中推荐使用的一些计算摩擦阻力系数值的公式如下:( — ) 层流流动当 Re < 2320 时,可按下式计算;( 4 — 4 )在热水供暖系统中很少遇到层流状态,仅在自然循环热水供暖系统的个别水流量极小、管径很小的管段内,才会遇到层流的流动状态。
( 二 ) 紊流流动当 Re < 2320 时,流动呈紊流状态。
在整个紊流区中,还可以分为三个区域:? 水力光滑管区摩擦阻力系数值可用布拉修斯公式计算,即( 4 — 5 )当雷诺数在 4000 一 100000 范围内,布拉修斯公式能给出相当准确的数值。
水力计算书

水力计算书水力计算是涉及到水流、水体运动以及水力学原理的一门学科,广泛应用于水力工程、水资源管理、水利规划等领域。
水力计算的目的是通过各种计算方法来研究水体流动的各种参数,如流速、水位、水压等,并对水力结构和工程进行设计和优化。
水力计算的基本原理包括质量守恒定律和能量守恒定律。
质量守恒定律表明,在封闭的系统中,流入的水量必须等于流出的水量,即入流=出流。
能量守恒定律则表明在流体运动中,流体的总能量保持不变,包括动能和势能。
根据这两个基本原理,可以推导出一系列水力计算的公式和方法。
在水力计算中,常用的参数包括流量、流速、水位和水压等。
流量是单位时间内通过某一横截面的水量,通常用Q表示,单位为m³/s或m³/h。
流速是单位时间内通过某一横截面的水流速度,通常用v表示,单位为m/s。
水位是指水面的高度或者压力水头,通常用H表示,单位为m。
水压是单位面积上受到的水力作用力,通常用P表示,单位为Pa。
根据质量守恒定律,可以得到流量计算公式:Q = Av,其中A 是横截面的面积,v是水流的速度。
根据能量守恒定律,可以得到水位和流速之间的关系:v = (2gH)^(1/2),其中g是重力加速度。
通过这些公式,可以相互计算不同的水力参数。
在水力计算中,还经常需要考虑一些特殊情况,如管道阻力、水库泄洪等。
管道阻力是由于水在管道内运动而产生的阻力,可以根据Darcy-Weisbach公式来计算。
水库泄洪是指水库在超过一定水位后,通过泄洪口排放多余水量,通常需要根据水库的形状和放水能力来进行计算。
除了上述基本原理和方法,水力计算还涉及一些复杂的计算模型和数值计算方法,如有限元法、计算流体力学等。
这些方法可以用来模拟和计算复杂的水力现象,如水力振荡、水波传播等。
总之,水力计算是研究水流、水体运动以及水力学原理的一门学科,通过质量守恒定律和能量守恒定律,可以得到一系列水力计算的公式和方法。
水力计算在水力工程、水资源管理、水利规划等领域具有重要的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水力平衡计算方法
室内热水供暖管路水力计算的主要任务;
1.按已知系统各管段的流量和系统的循环作用压力,确定各管段的管径。
为了各循环环路易于平衡,最不利循环环路的平均比摩阻Rpj不易选得过大,目前一般取值60~120Pa/m。
2.按已知系统各管段的流量和各管段的管径,确定系统所必需的循环作用压力。
水力计算的计算要求:
管径25mm,v<1.2m/s,
3.热水供暖系统的循环压力,一般宜保持在10~40kPa左右。
4.对于单层家用采暖系统,一般最不利环路与最有利环路仅靠管径的调整仍然会超过压力损失的最大允许差值,此时需加设自动恒温控制阀,保证满足所开房间的热量。