排列组合与概率含习题答案
MBA联考数学-排列组合与概率初步_真题(含答案与解析)-交互

MBA联考数学-排列组合与概率初步(总分84, 做题时间90分钟)一、条件充分性判断本大题要求判断所给出的条件能否充分支持题干中陈述的结论,阅读条件(1)和(2)后选择:(A) 条件(1)充分,但条件(2)不充分.(B) 条件(2)充分,但条件(1)不充分.(C) 条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.(D) 条件(1)充分,条件(2)也充分.(E) 条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.SSS_FILL1.该问题分值: 3答案:A[解析] 本题应分两步:首先,要选出所用的人,现设男生共有x人,则女生为(8-x)人,由于男生只能从男生中取,故有种.同理,女生的取法有种,故选人的方法为;其次把选出的学生分配出去的方法有=6,故3x(x-1)(8-x)=90,即x(x-1)(8-x)=30=2× 3×5,则x=5或x=3,当x=5为增根(舍);当x=3时,满足题意,故有男生3人,女生5人,即条件(1)充分,条件(2)不充分.此题也可以直接从条件(1)和条件(2)所给的值下手.故正确答案为(A).SSS_FILL2.该问题分值: 3答案:C[解析] 条件(1)和条件(2)分别给出了甲和乙每次击中目标的概率,显然单独都不充分,应联合起来考虑.甲恰好比乙多击中目标2次的情况是:甲击中2次而乙没有击中,或甲击中3次而乙只击中1次.甲击中目标2次而乙没有击中目标的概率为.甲击中目标3次而乙只击中目标1次的概率为所以甲恰好比乙多击中目标2次的概率为,两个条件联合起来充分.故选(C).SSS_FILL3.该问题分值: 3答案:E[解析] 基本事件共有6×6×6个.其中点数之积为奇数的事件,即3颗骰子均出现奇数的事件,共有3×3×3个,所以点数之积为奇数的概率点数之积为奇数的概率,则条件(2)也不充分.故正确答案为(E).SSS_FILL4.该问题分值: 3答案:D[解析] 仔细观察不难发现:条件(1)和条件(2)所构造的事件其实是同一个事件,只是不同的表达方式而已.因此,连续检测三件时都是合格品的概率为(0.9)3=0.729,至少有一件是次品的概率为1-(0.9) 3=1-0.729=0.271.即条件(1)和条件(2)都充分支持题干.故正确答案为(D).SSS_FILL5.该问题分值: 3答案:A[解析] 在条件(1)下,一个学生2本,其他3个学生每人1本,5本书取2本捆在一起作为1本,有C种方法,然后将这捆在一起的书连同其他3本共4个元素分给4个学生,有种分法,根据分步计数原理共有=240种不同的分法,则说明条件(1)是充分的.在条件(2)下,一个学生3本,其他2个学生每人1本;或者一个学生1本,其他两个学生每人2本.前一种情况下,5本书取3本捆在一起作为1本,有种方法,然后将这捆在一起的书连同其他2本共3个元素分给3个学生,有种分法,根据分步计数原理共有种不同的分法;后一种情况下,5本书分成1+2+2本书,有种方法,然后再将其分给三个学生,有种分法,根据分步计数原理共有种不同的分法;再根据分类计数原理共有60+90=150种不同的分法,则说明条件(2)是不充分的.故正确答案为(A).二、问题求解1.某洗衣机生产厂家,为了检测其产品无故障的启动次数,从生产的一批洗衣机中任意抽取了5台,如果测得的每台无故障启动次数分别为11300,11000,10700,10000, 9500,那么这批洗衣机的平均无故障启动次数大约为( ).SSS_SINGLE_SELA ( 10300B ( 10400C ( 10500D ( 10600E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 这5台洗衣机的平均无故障启动次数为故选(C).2.把6个人分配到3个部门去调研,每部门去2人,则分配方案共有( )种.SSS_SINGLE_SELA ( 15B ( 105C ( 45D ( 90E ( A、B、C、D都不正确该问题分值: 3答案:D[解析] 把6人先分为3组,每组2人,共有=15种分法.然后再把这3组分配到3个部门,有=6种分配方法.据乘法原理,总的分配方案有15×6=90种.解这类有组合又有排列的问题,常常用先组合再排列的方法考虑.故选(D).3.某种测验可以随时在网络上报名参加,某人通过这种测验的概率是.若他连续两次参加测验,则其中恰有一次通过的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:C[解析] 这是一个独立重复试验的问题.n次独立重复试验中恰有是次发生的概率为故选(C).如果做两次测验,两次都通过的概率,则有.两次测验都不通过的概率P2(0)也等于.4.SSS_SINGLE_SEL该问题分值: 3答案:A[解析] 依题意事件应该是“一颗骰子掷4次均未出现6点”,其概率应是,而事件表示“掷两颗骰子共2次每次均未出现双6点”,其概率为,因此故正确答案为(A).5.3名医生6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有( )种.SSS_SINGLE_SELA ( 90B ( 180C ( 270D ( 540E ( A、B、C、D都不正确该问题分值: 3答案:D[解析] 设计让3所学校依次挑选,先由学校甲挑选,有种,再由学校乙挑选,有种,余下的到学校丙只有一种,于是不同的方法共有种,故正确答案为(D).6.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人左右不相邻,那么不同的排法有( )种.SSS_SINGLE_SELA ( 234B ( 346C ( 350D ( 363E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 前后两排共23个座位,有3个座位不能坐,故共有20个座位两人可以坐,包括两人相邻的情况,共有种排法;考虑到两人左右相邻的情况,若两人均坐后排,采用捆绑法,把两人看成一体,共有种坐法,若两人坐前排,因中间3个座位不能坐,故只能坐左边4个或右边4个座位,共有种坐法,故题目所求的坐法种数共有,故正确答案为(B).7.盒内有大小相同的4个小球,全红、全白、全蓝的单色球各1个,另一个是涂有红、白、蓝3色的彩球,从中任取1个,记事件A、月、C分别表示取到的球上有“红色”、“白色”、“蓝色”,则一定有( ).SSS_SINGLE_SELA ( A、B、C两两互不相容B ( A、B、C两两互不相容且其和为ΩC ( A、B、C两两独立D ( A、B、C相互独立E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 依题意,P(A)=P(B)=P(C)==0.5,P(AB)-P(BC)-P(AC)= =0.25>0,由计算可看出A、B、C两两独立但是不相互独立,故正确答案为(C).8.设A、B是对立事件,0<P(A)<1,则一定有( ).SSS_SINGLE_SELA ( 0<P(AU<1 ( 0<PB (<1C ( 0<P()<1D ( 0<<1E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] A、B是对立事件,故P(A)+P(B)=1,又因为0<P(A)<1,故0<P(B)< 1,故正确答案为(B).进一步分析知,P(AUB)=1,,P(AB)=0,因此除B外各选项均不正确.9.把两个不同的白球和两个不同的红球任意地排成一列,结果为两个白球不相邻的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D[解析] 总排列数为=24.要使白球不相邻,可以先定两个位置放白球,放法有=2.两白球的左、右端和中间三处空位.若选左端和中间各放一红球,有=2种排法.同理选中间和右端各放一红球,也有2种排法.若选中间放两个红球,也是2种放法.白球不相邻的排法有=12.所求概率为.若考虑两个白球相邻的情况,如果把两个白球作为一整体与两个红球作排列,则有种排法,三个位置中的一个放两个白球,又有种排法,所以两个白球相邻的概率为白球不相邻的概率为.故选(D).10.某区乒乓球队的队员中有11人是甲校学生,4人是乙校学生,5人是丙校学生,现从这20人中随机选出2人配对双打,则此2人不属于同一学校的所有选法共有( )种.SSS_SINGLE_SELA ( 71B ( 119C ( 190D ( 200E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 从20个人中选出2人的所有选法为=190种,2人来自同一学校的所有选法为=55+6+10=71.所以2人不是同一学校的选法共有190-71=119种.故选(B).11.从4名男生和3名女生中挑出3人站成一排,3人中至少有一名男同学的不同排法共有( )种.SSS_SINGLE_SELA ( 29B ( 34C ( 204D ( 209E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 从4名男生和3名女生中挑出3人站成一排的所有不同排法共有=7× 6×5=210种,其中没有男同学的不同排法共有=3×2×1=6种,所以3人中至少有一名男同学的不同排法共有种.故选(C).12.从1,2,3,4,5,6这6个数中任取3个不同的数,使3个数之和能被3整除,则不同的取法有( )种.SSS_SINGLE_SELA ( 6B ( 7C ( 8D ( 9E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 本题讨论取出3个数之和的性质,是与3个数次序无关的组合问题.因为数目不太大,可以将各种情形逐个列出.例如,首先取1,然后取2,第3个可以取3或6.然后再依次(从小到大)考虑,列出{1,2,3),{1,2,6},{1,3,5},{1,5,6},{2,3,4},{2,4,6},{3,4,5), {4,5,6},共8种取法.只要按顺序不遗漏即可.故选(C).13.从正方体的8个顶点中任取3个点为顶点作三角形,其中直角三角形的个数为( ).SSS_SINGLE_SELA ( 56B ( 52C ( 48D ( 40E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 从正方体的每个面中的四个顶点中任取三点,均可构成直角三角形,共有6×个,从正方体的相对两条棱组成的矩形的四个顶点中任选三点,也构成直角三角形,共有个,应用加法原理,有个,故正确答案为(C).14.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )种.SSS_SINGLE_SELA ( 8B ( 12C ( 16D ( 20E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 记正方体的6个面为上、下、左、右、前、后,那么,从中取3个面有两个不相邻者,可分为3类.第一类:选取的3个面不含前、后面,有4种不同取法;第二类:选取的3个面不含左、右面,也有4种不同取法;第三类:选取的3个面不含上、下面,同样有4种不同取法.故应用加法原理,得不同取法数为N=4+4+4=12.故正确答案为(B).15.从12个化学实验小组(每小组4人)中选5人,进行5种不同的化学实验,且每小组至多选1人,则不同的安排方法有( )种.SSS_SIMPLE_SINA B C D E该问题分值: 3答案:B[解析] (1)先选5人,这也是一个两步问题:选5人的过程也分两步:①先确定要选取人的化学实验小组有种选法;②再从选取的小组中每组选取1人.共有:,可得选取人员的方法为:种.(2)把选取的5人安排到5个不同的实验中去,有种方法,所以,总的不同方法是:种,故正确答案为(B).16.设10件产品中有7件正品、3件次品,从中随机地抽取3件,若已发现2件次品,则3件都是次品的概率ρ是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D=“取出的3件产品中有i件次品”,i=0、1、2、3应用古典型[解析] 设Ai概率公式故正确答案为(D).17.k个坛子各装n个球,编号为1,2,…,n,从每个坛中各取一个球,所取到的k个球中最大编号是m(1≤m≤n)的概率p是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:A[解析] 设事件A=“取到的是个球最大编号是m”,如果每个坛子都从1~m号球中取一个,则是个球的最大编号不超过m,这种取法共有m k种等可能取法;如果每个坛子都从1~m-1号球中取一个,则是个球的最大编号不超过m-1,其等可能取法共有(m- 1) k种,因此由计算可知,正确答案为(A).18.任取一个正整数,其平方数的末位数是4的概率等于( ).SSS_SINGLE_SELA ( 0.1B ( 0.2C ( 0.3D ( 0.4E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 只有当所取正整数的末位数是2或8时,其平方数的末位数字才能是4.所有正整数的末位数字只有0,1,2,…,9共10种等可能,于是所要求的概率是.故选(B).19.12名同学分别到3个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )种.SSS_SIMPLE_SINA B C D E该问题分值: 3答案:A[解析] 先分配4个人到第一个路口,再分配4个人到第二个路口,最后分配4个人到第三个路口.由以上分析,得种,故正确答案为(A).20.某车间生产的一种零件中,一等品的概率是0.9.生产这种零件4件,恰有2件一等品的概率是( ).SSS_SINGLE_SELA ( 0.0081B ( 0.0486C ( 0.0972D (0.06E (A、B、C、D都不正确该问题分值: 3答案:B[解析] 4件产品中,2件一等品,2件非一等品的概率为故选(B).21.设A、B是两个随机事件,0<P(A)<1,P(B)>0,P(B|A)+( )=1,则一定有( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:C[解析] 对于任何事件与B,只要>0,定有,结合题设条件可以得出,即故正确答案为(C).22.设某种证件的号码由7位数字组成,每个数字可以是数字0,1,2,…,9中的任一个数字,则证件号码由7个完全不同的数字组成的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D[解析] 所有不同号码的号码数目都是107,即基本事件的总数,其中7个数字完全不相同的排列数是=10×9×8×7×6×5×4.故选(D).注意,基本事件的总数是107,而不是10!.每一位数字的取法都有10种可能10!相当于各位不重复的10位数字号码总数.在“从袋中取不同号码(颜色)的球”等问题中,也有“取后放回”和“取后不放回”的区别.此外,还要注意“7个不同数字”在这里是排列问题,不是组合问题.23.某班组共有员工10人,其中女员工3人.现选2名员工代表,至少有1名女员工当选的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D[解析] 基本事件的总数为,即10名员工选2名的组合数.至少1名女员工当选,其中含的基本事件数目为,于是故选(D).1。
运用排列组合求概率解答题

排列组合求概率解答题1甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92.(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.(04湖南19)解:(Ⅰ)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅.92)()(,121))(1()(,41))(1()(.92)(,121)(,41)(C P A P C P B P B P A P C A P C B P B A P 即由①、③得)(891)(C P B P -=代入②得27[P(C)]2-51P(C)+22=0.解得91132)(或=C P (舍去).将32)(=C P 分别代入③、②可得.41)(,31)(==B P A P 即甲、乙、丙三台机床各加工的零件是一等品的概率分别是.32,41,31(Ⅱ)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则.653143321))(1))((1))((1(1)(1)(=⋅⋅-=----=-=C P B P A P D P D P 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.652.(本小题满分12分)为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P )和所需费用如下表:预防措施甲乙丙丁P 0.90.80.70.6费用(万元)90603010预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.(04湖北21)解:方案1:单独采用一种预防措施的费用均不超过120万元.由表可知,采用甲措施,可使此突发事件不发生的概率最大,其概率为0.9.方案2:联合采用两种预防措施,费用不超过120万元,由表可知.联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为1—(1—0.9)(1—0.7)=0.97.方法3:联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施,此时突发事件不发生的概率为1—(1—0.8)(1—0.7)(1—0.6)=1—0.024=0.976.综合上述三种预防方案可知,在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使此突发事件不发生的概率最大.3.(本小题满分12分)①②③甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)分别求甲、乙两人考试合格的概率;(Ⅱ)求甲、乙两人至少有一人考试合格的概率.(04福建18)解:(Ⅰ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32,P(B)=310381228C C C C +=1205656+=1514.答:甲、乙两人考试合格的概率分别为.151432和(Ⅱ)解法一、因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为P(B A ⋅)=P(A )P(B )=(1-32)(1-1514)=451.∴甲、乙两人至少有一人考试合格的概率为P=1-P(B A ⋅)=1-451=4544.答:甲、乙两人至少有一人考试合格的概率为4544.解法二:因为事件A 、B 相互独立,所以甲、乙两人至少有一人考试合格的概率为P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B)=32×151+31×1514+32×1514=4544.答:甲、乙两人至少有一人考试合格的概率为4544.4.(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。
排列组合习题及答案

排列组合习题及答案排列组合是数学中的一个重要概念,它涉及到数学问题的解决方法和思维方式。
本文将介绍一些排列组合的习题及答案,以帮助读者更好地理解和应用这一概念。
1. 问题一:某班有10名学生,要从中选出3名学生组成一个小组,问有多少种不同的选法?解答:这是一个从10个学生中选出3个学生的组合问题,即C(10,3)。
根据组合的定义,C(n,r)表示从n个元素中选取r个元素的组合数。
因此,C(10,3) = 10! / (3! * (10-3)!) = 10 * 9 * 8 / (3 * 2 * 1) = 120 种不同的选法。
2. 问题二:某班有10名学生,要从中选出3名学生组成一个小组,并且要求其中包含学生A,问有多少种不同的选法?解答:由于题目要求学生A必须在选出的小组中,因此可以将问题转化为从剩下的9名学生中选出2名学生的组合问题,即C(9,2)。
根据组合的定义,C(9,2) = 9! / (2! * (9-2)!) = 9 * 8 / (2 * 1) = 36 种不同的选法。
3. 问题三:某班有10名学生,要从中选出3名学生组成一个小组,并且要求其中不包含学生A,问有多少种不同的选法?解答:由于题目要求学生A不能在选出的小组中,因此可以将问题转化为从剩下的9名学生中选出3名学生的组合问题,即C(9,3)。
根据组合的定义,C(9,3) = 9! / (3! * (9-3)!) = 9 * 8 * 7 / (3 * 2 * 1) = 84 种不同的选法。
4. 问题四:某班有10名学生,要从中选出3名学生组成一个小组,且要求其中至少有一名男生和一名女生,问有多少种不同的选法?解答:这是一个包含男生和女生的组合问题,可以分别计算出只包含男生和只包含女生的选法,然后用总的选法减去这两种情况的选法。
只包含男生的选法可以看作从5名男生中选出3名学生的组合问题,即C(5,3)= 5! / (3! * (5-3)!) = 5 * 4 / (2 * 1) = 10 种不同的选法。
数学概率(排列组合)练习题(含答案)

数学概率(排列组合)练习题(含答案)1.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、文综4科的专题讲座,每科一节课,每节至少有一科,且数学、文综不安排在同一节,则不同的安排方法共有.2.从4名男生4名女生中选3位代表,其中至少两名女生的选法有种.3.用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答).4.将一个白球,一个红球,三个相同的黄球摆放成一排,则白球与红球不相邻的放法有.5.用1、2、3、4、5、6六个数组成没有重复数字的六位数,其中5、6均排在3的同侧,这样的六位数共有个(用数字作答).6.某工厂将4名新招聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲、乙两名员工必须分配至同一车间,则不同的分配方法总数为(用数字作答).7.用4种颜色给一个正四面体的4个顶点染色,若同一条棱的两个端点不能用相同的颜色,那么不同的染色方法共有_____________种。
8.数字1,2,3,4,5,6按如图形式随机排列,设第一行的数为N1,其中N2,N3分别表示第二、三行中的最大数,则满足N1<N2<N3的所有排列的个数是________.9. 4名男生和2名女生站成一排照相,要求男生甲不站在最左端,女生乙不站在最右端,有种不同的站法.(用数字作答)10.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有种(用数字作答)122名女生中选派4人参加社区服务,如果要求至少有1名女11生,那么不同的选派方案种数为.(用数字作答)13.将7个市三好学生名额分配给5个不同的学校,其中甲、乙两校至少各有两个名额,则不同的分配方案种数有 _________ .xx2x?214.方程C17-C16=C16的解集是________.15.从4名男生、3名女生中任选3人参加一次公益活动,其中男生、女生均不少于1人的组合种数为(用数字作答).16.从4名同学中选出3人,参加一项活动,则不同的选方法有种(用数据作答);17.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________种.18.将6位志愿者分配到甲、已、丙3个志愿者工作站,每个工作站2人,由于志愿者特长不同,A不能去甲工作站,B只能去丙工作站,则不同的分配方法共有__________种.19.现有一大批种子,其中优良种占30℅,从中任取8粒,记X为8粒种子中的优质试卷第1页,总9页。
高三数学冲刺专题练习—排列组合概率(含答案详解) (2)

高三数学冲刺专题练习——排列组合概率1. 概率1.已知某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为2125,则该队员每次罚球的命中率p 为 .【分析】根据题意,分析可得两次罚球中两次都名中的概率为21412525-=,由相互独立事件的概率公式可得关于p 的方程,解可得答案.【解答】解:根据题意,该队员在两次罚球中至多命中一次的概率为2125, 则两次罚球中两次都名中的概率为21412525-=, 则有2425p =,解可得25P =. 【点评】本题考查相互独立事件概率乘法公式和互斥事件概率加法公式,注意分析事件之间的关系,属于基础题.2.某市在创建“全国文明城市”活动中大力加强垃圾分类投放宣传.某居民小区设有“厨余垃圾”、“可回收垃圾”、“其它垃圾”、“有害垃圾”四种不同的垃圾桶.一天,居民小陈提着上述分好类的垃圾各一袋,随机每桶投一袋,则恰好有两袋垃圾投对的概率为 . 【分析】根据古典概率模型的概率公式即可求解.【解答】解:4袋不同垃圾投4个不同的垃圾桶有4424A =种不同投法, 而恰好有两袋垃圾投对的投法数为246C =, ∴恰好有两袋垃圾投对的概率61244P ==. 【点评】本题考查古典概率模型的概率公式,属基础题.3.某校为落实“双减”政策.在课后服务时间开展了丰富多彩的体育兴趣小组活动,现有甲、乙、丙、丁四名同学拟参加篮球、足球、乒乓球、羽毛球四项活动,由于受个人精力和时间限制,每人只能等可能的选择参加其中一项活动,则恰有两人参加同一项活动的概率为 .【分析】首先分析得到四名同学总共的选择为44个选择,然后分析恰有两人参加同一项活动的情况为2144C C ,则剩下两名同学不能再选择同一项活动,他们的选择情况为23A ,然后进行计算即可. 【解答】解:每人只能等可能的选择参加其中一项活动,且可以参加相同的项目,∴四名同学总共的选择为44个选择,恰有两人参加同一项活动的情况为2144C C ,剩下两名同学的选择有23A 种,∴恰有两人参加同一项活动的概率为21244349416C C A ⋅⋅=. 【点评】本题考查了古典概型及其概率的计算公式,解题的关键是能用排列组合的知识将满足条件的选择方案数计算出来.4.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,则甲、乙分在同一组的概率是 . 【分析】本题是一道平均分组问题,将7个人(含甲、乙)分成三个组,一组3人,另两组2人,有两个组都是两个人,而这两个组又没有区别,所以分组数容易重复,甲、乙分到同一组的概率要分类计算【解答】解:不同的分组数为3227421052!C C C a ==甲、乙分在同一组的方法种数有(1)若甲、乙分在3人组,有122542152!C C C =种(2)若甲、乙分在2人组,有3510C =种,故共有25种, 所以25510521P ==. 【点评】平均分组问题是概率中最困难的问题,解题时往往会忽略有些情况是相同的5.从1到10这十个自然数中随机取三个数,则其中一个数是另两个数之和的概率是 .【分析】所有的取法有310120C =种,其中一个数是另两个数之和的取法用力矩发求得共计20种,由此求得一个数是另两个数之和的概率.【解答】解:所有的取法有310120C =种,其中一个数是另两个数之和的取法有(1,2,3)、(1,3,4)、(1,4,5)、(1,5,6)、(1,6,7)、(1,7,8)、(1,9,10)、(2,3,5)、(2,4,6)、(2,5,7)、(2,6,8)、(2,7,9)、(2,8,10)、(3,4,7)、(3,5,8)、(3,6,9)、(3,7,10)、(4,5,9)、(4,6,10),共计20种,故其中一个数是另两个数之和的概率是2011206=. 【点评】本题考主要查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.6.把12枚相同的硬币分给甲、乙、丙三位同学,每位同学至少分到1枚,且他们拿到的硬币数量互不相同,则甲同学恰好拿到两枚硬币的概率为.【分析】利用插空法和古典概型可解决此题.【解答】解:根据插空法得把12枚相同的硬币分给甲、乙、丙三位同学,每位同学至少分到1枚的情况共2 1155C=种,其中甲、乙、丙三位同学拿到硬币有相同情况有(1,1,10),(1,10,1),(10,1,1),(2,2,8),(2,8,2),(8,2,2),(3,3,6),(3,6,3),(6,3,3),(4,4,4),(5,5,2),(5,2,5),(2,5,5)共计13种,故他们拿到的硬币数量互不相同的情况共有551342-=(种),甲同学恰好拿到两枚硬币的情况共有1936C-=(种),∴甲同学恰好拿到两枚硬币的概率为61 427=.【点评】本题考查插空法和古典概型,考查数学运算能力及抽象能力,属于中档题.7.2021年7月,我国河南省多地遭受千年一遇的暴雨,为指导防汛救灾工作,某部门安排甲,乙,丙,丁,戊五名专家赴郑州,洛阳两地工作,每地至少安排一名专家,则甲,乙被安排在不同地点工作的概率为.【分析】分郑州安排1名专家,洛阳安排4名专家,郑州安排2名专家,洛阳安排3名专家,郑州安排3名专家,洛阳安排2名专家,郑州安排4名专家,洛阳安排1名专家,四类分别求出每地至少安排一名专家和甲,乙被安排在不同地点工作的排法种数,从而得出答案.【解答】解:当郑州安排1名专家,洛阳安排4名专家,则有155C=种排法;郑州安排2名专家,洛阳安排3名专家,则有2510C=种排法;郑州安排3名专家,洛阳安排2名专家,则有3510C=种排法;郑州安排4名专家,洛阳安排1名专家,则有455C=种排法;所以每地至少安排一名专家共有51010530+++=种不同的排法,若甲,乙被安排在不同地点工作,当郑州安排1名专家,洛阳安排4名专家,则有122C=种排法;郑州安排2名专家,洛阳安排3名专家,则有11236C C⋅=种排法;郑州安排3名专家,洛阳安排2名专家,则有12236C C⋅=种排法;郑州安排4名专家,洛阳安排1名专家,则有13232C C ⋅=种排法; 所以甲,乙被安排在不同地点工作,共有266216+++=种不同的排法, 所以甲,乙被安排在不同地点工作的概率为1683015=. 【点评】本题考查古典概型及其计算公式,考查学生的分析解决问题的能力,属于中档题.8.为了实施“科技下乡,精准脱贫”战略,某县科技特派员带着A ,B ,C 三个农业扶贫项目进驻某村,对仅有的四个贫困户进行产业帮扶.经过前期走访得知,这四个贫困户甲、乙、丙、丁选择A ,B ,C 三个项目的意向如表:扶贫项目 ABC选择意向贫困户甲、乙、丙、丁甲、乙、丙丙、丁若每个贫困户只能从自己登记的选择意向中随机选取一项,且每个项目至多有两户选择,则甲乙两户选择同一个扶贫项目的概率为 .【分析】由题意可知,甲乙只能选A ,B 项目,丁只能选A ,C 项目,丙则都可以.所以分成三类将所有情况计算出来,套用概率公式计算即可.【解答】解:由题意:甲乙只能选A ,B 项目,丁只能选A ,C 项目,丙则都可以. 由题意基本事件可分以下三类:(1)甲乙都选A ,则丁只能选C ,丙则可以选B ,C 任一个,故共有2种方法;(2)甲乙都选B ,则丁可以选A 或C ,丙也可选A 或C ,故共有11224C C =种方法. (3)甲乙分别选AB 之一,然后丁选A 时,丙只能选B 或C ;丁选C 时,丙则A ,B ,C 都可以选.故有211223()10A C C +=种方法.故基本事件共有241016++=种. 甲乙选同一种项目的共有246+=种. 故甲乙选同一项目的概率63168P ==. 【点评】本题考查了古典概型概率的计算方法,分类求基本事件时有一定难度.属于中档题, 9.在中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到贵州的黄果树瀑布、梵净山、万峰林三个景点旅游参观,其中的每个人只去一个景点,每个景点至少要去一个人,则游客甲去梵净山的概率为 .【分析】分类计算游客甲去梵净山包含的基本事件的个数,代入古典概型的概率计算公式即可.【解答】解:设{A=游客甲去梵净山},则基本事件的总数为112321431236C CC AA⨯=个.事件A发生时①若甲单独去梵净山,有22326C A⨯个基本事件,②去梵净山的游客除甲外还有1人,则有12326C A⨯=个基本事件.P∴(A)661363+==.【点评】本题考查了古典概型的概率计算,在求事件A包含的基本事件个数时,牵扯到了平均分组问题,容易出错,本题为中档题.10.年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数2101-60岁至79岁的人数120133341380岁及以上的人数918149其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,1-代表“生活不能自理”.按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.则被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率是35(用分数作答).【分析】由分层抽样可知,被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.列举出从这五人中抽取3人的选法,列举出恰有1位老龄人的健康指数不大于0的选法,代入古典概型概率公式求出.【解答】解;该小区健康指数大于0的老龄人共有280人,健康指数不大于0的老龄人共有70人,由分层抽样可知,被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.设被抽取的4位健康指数大于0的老龄人为1,2,3,4,健康指数不大于0的老龄人为B.从这五人中抽取3人,结果有10种:(1,2,3),(1,2,4),(1,2,)B,(1,3,4),(1,3,)B,(1,4,)B,(2,3,4),(2,3,)B,(2,4,)B,(3,4,B,),其中恰有一位老龄人健康指数不大于0的有6种:(1,2,)B ,(1,3,)B ,(1,4,)B ,(2,3,)B ,(2,4,)B ,(3,4,B ,),∴被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率为63105= 故答案为:35【点评】本题考查概率的计算,考查学生利用数学知识解决实际问题,考查学生的计算能力,属于中档题. 11.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、候、公,共五级.现有每个级别的诸侯各一人,共五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m 个(m 为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是 .【分析】根据等差数列前n 项和公式得出首项与公差m 的关系,列举得出所有的分配方案,从而得出结论. 【解答】解:由题意可知等级从低到高的5个诸侯所分的橘子个数组成等差为m 的等差数列, 设“男”分的橘子个数为1a ,其前n 项和为n S ,则51545802S a m ⨯=+⨯=, 即1216a m +=,且1a ,m 均为正整数, 若12a =,则7m =,此时530a =, 若14a =,6m =,此时528a =, 若16a =,5m =,此时526a =, 若18a =,4m =,此时524a =, 若110a =,3m =,此时522a =, 若112a =,2m =,此时520a =, 若114a =,1m =,此时518a =, ∴ “公”恰好分得30个橘子的概率为17. 【点评】本题考查了等差数列的性质,古典概型的概率计算,属于中档题.12.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为 .【分析】求出所有的分配方案和符合条件的分配方案,代入概率计算公式计算.【解答】解:将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每所高校至少有一个班级去,则共有42214-=种分配方案.恰有一个文科班和一个理科班分配到上海交通大学的方案共有224⨯=种,42147P ∴==. 【点评】本题考查了古典概型的概率计算,是基础题.13.2022年2月4日第24届冬季奥林匹克运动会在北京盛大开幕,中国冬奥健儿在赛场上摘金夺银,在国内掀起一波冬奥热的同时,带动了奥运会周边产品的热销,其中奥运吉祥物冰墩墩盲盒倍受欢迎,已知冰墩墩盲盒共有7个,6个是基础款,1个是隐藏款,随机购买两个,买到隐藏款的概率为 . 【分析】利用古典概型、排列组合直接求解.【解答】解:冰墩墩盲盒共有7个,6个是基础款,1个是隐藏款,随机购买两个, 基本事件总数2721n C ==,买到隐藏款包含的基本事件个数11166m C C ==, ∴买到隐藏款的概率62217m P n ===. 【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题. 14.抛挪一枚硬币,每次正面出现得1分,反面出现得2分,则恰好得到10分的概率是 6831024. 【分析】分类讨论,依据独立重复试验公式即可求得恰好得10分的概率. 【解答】解:抛掷一枚硬币,得1分的概率为12,得2分的概率为12, 恰好得到10分可分为6种情况:5个2分,共抛掷5次,概率为55511()232C ⨯=; 4个2分,2个1分,共抛掷6次,概率为466115()264C ⨯=; 3个2分,4个1分,共抛掷7次,概率为377135()2128C ⨯=; 2个2分,6个1分,共抛掷8次,概率为28817()264C ⨯=;1个2分,8个1分,共抛掷9次,概率为19919()2512C ⨯=; 10个1分,共抛掷10次,概率为1011()21024=;故恰好得到10分的概率是1153579168332641286451210241024+++++=,故答案为:6831024. 【点评】本题考查了独立重复试验的应用及分类讨论的思想方法应用,属于中档题.15.六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排每人均比前排同学高的概率是120. 【分析】本题是一个等可能事件的概率,试验发生包含的事件是6个人进行全排列,共有66A 种结果,满足条件的事件是后排每人均比其前排的同学身材要高,则身高高的三个同学在后排排列,其余三个同学在前排排列,据概率公式得到结果.【解答】解:由题意知,本题是等可能事件的概率,试验发生包含的事件是6个人进行全排列,共有66720A =种结果, 满足条件的事件是后排每人均比其前排的同学身材要高, 则身高高的三个同学在后排排列,其余三个同学在前排排列,共有3333A A 种结果, ∴后排每人均比前排同学高的概率是36172020=, 故答案为:120【点评】本题考查等可能事件的概率,站队问题是排列组合中的典型问题,解题时要先排限制条件多的元素,把限制条件比较多的元素排列后,再排没有限制条件的元素.2. 排列组合1.五声音阶是中国古乐基本音阶,故有成语“五音不全“,中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上.排成一个五个音阶的音序.且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成 32 种不同的音序.【分析】根据角所在的位置,分两类,根据分类计数原理可得.【解答】解:若角排在一或五,有12A 种方法,再排商、徵,有22A 种方法,排宫、羽用插空法,有23A 种方法,利用乘法原理可得:12222324A A A =种, 若角排在二或四,同理可得:有222228A A =, 根据分类计数原理可得,共有24832+=种,故答案为:32.【点评】本题考查排列排列组合及简单计数问题,本题较抽象,计数时要考虑周详,本题以实际问题为背景,有着实际背景的题在现在的高考试卷上有逐步增多的趋势.2.从0,1,2,3,4,5中选出三个不同数字组成四位数(其中的一个数字用两次),如5224,则这样的四位数共有600个.【分析】根据题意,分当0被选用,且用两次;当0被选用,但用一次;当0没被选用三种情况讨论求解即可.【解答】解:当0被选用,且用两次,则先在个位,十位,百位这3个位置上选2个位置放0,再从剩下的5个数中选2个数字排在其他两个位置上,故有223560C A=个;当0被选用,但用一次,则先在个位,十位,百位这3个位置上选1个位置放0,再从剩下的5个数字中选2个数字,进而从选出的两个数字中选一个为出现两次的数字,最后在剩下的三个位置上选一个位置放置选出的2个数字中出现1次的数字,进而完成任务,故有12113523180C C C C=个;当0没被选用,则从1,2,3,4,5选3个数字,再从中选一个出现两次的数字,最后将其他两个数字选2个位置排序,故有312534360C C A=个所以,一共有60180360600++=个.故答案为:600.【点评】本题考查排列组合,考查学生推理能力,属于中档题.3.某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法数有36种(用数字作答).【分析】根据题意,分3步进行分析:①,先在4个社团中任选2个,有学生报名,②、将3名学生分为2组,③,进而将2组全排列,对应2个社团,分别求出每一步的情况数列,由分步计数原理计算可得答案.【解答】解:根据题意,分3步进行分析:①,根据题意,4个社团中恰有2个社团,即只有2个社团有人报名,则先在4个社团中任选2个,有学生报名,有246C=种选法,②、将3名学生分为2组,有233C=种分法,③,进而将2组全排列,对应2个社团,有222A=种情况,则恰有2个社团没有同学选报的报法数有63236⨯⨯=种; 故恰有2个社团没有同学选报的报法数有36种; 故答案为:36【点评】本题考查排列、组合的应用,涉及分步计数原理的应用,关键是正确进行分步分析.4.设集合1{(A x =,2x ,3x ,4x ,5)|{1i x x ∈-,0,1},1i =,2,3,4,5},则集合A 中满足条件“123451||||||||||3x x x x x ++++”元素个数为 130 .【分析】从条件“123451||||||||||3x x x x x ++++”入手,讨论i x 所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由{1i x ∈-,0,1},1i =,2,3,4,5},集合A 中满足条件“123451||||||||||3x x x x x ++++”, 由于||i x 只能取0或1,因此5个数值中有2个是0,3个是0和4个是0三种情况: ①i x 中有2个取值为0,另外3个从1-,1中取,共有方法数:2352⨯; ②i x 中有3个取值为0,另外2个从1-,1中取,共有方法数:3252⨯; ③i x 中有4个取值为0,另外1个从1-,1中取,共有方法数:452⨯.∴总共方法数是:23324555222130⨯+⨯+⨯=.故答案为:130.【点评】本题考查了组合数的计算公式及其思想、集合的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.5.从1,2,3,4,5,6这6个数中随机取出5个数排成一排,依次记为a ,b ,c ,d ,e ,则使a b c d e +为奇数的不同排列方法有 180 种.【分析】按照分类讨论,先选后排的步骤,求出结果. 【解答】解:(分类讨论:先选后排)若a b c 为奇数,d e 为偶数时,有323336A A ⨯= 种; 若a b c 为偶数,d e 为奇数时,有2334144A A ⨯= 种; 故a b c d e +为奇数的不同排列方法有共36144180+=种, 故答案为:180.【点评】本题主要考查排列组合的应用,属于中档题.6.现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有 40 种.【分析】根据题意,先排好7个空车位,注意空车位是相同的,其中有6个空位符合条件,考虑顺序,将3车插入6个空位中,注意甲必须在乙、丙两车之间,由倍分法分析可得答案.【解答】解:先排7个空车位,由于空车位是相同的,则只有1种情况,其中有6个空位符合条件,考虑三车的顺序,将3辆车插入6个空位中,则共有361120A ⨯=种情况, 由于甲车在乙、丙两车之间,则有符合要求的坐法有1120403⨯=种;故答案为:40.【点评】本题考查排列、组合的应用,对于不相邻的问题采用插空法.7.某翻译处有8名翻译,其中有小张等3名英语翻译,小李等3名日语翻译,另外2名既能翻译英语又能翻译日语,现需选取5名翻译参加翻译工作,3名翻译英语,2名翻译日语,且小张与小李恰有1人选中,则有 29 种不同选取方法【分析】据题意,对选出的3名英语教师分5种情况讨论:①若从只会英语的3人中选3人翻译英语,②若从只会英语的3人中选2人翻译英语,(包含小张),③若从只会英语的3人选小张翻译英语,④、若从只会英语的3人中选2人翻译英语,(不包含小张),⑤、若从只会英语的3人中选1人翻译英语,(不包含小张),每种情况中先分析其余教师的选择方法,由分步计数原理计算每种情况的安排方法数目,进而由分类计数原理,将其相加计算可得答案. 【解答】解:根据题意,分5种情况讨论: ①、若从只会英语的3人中选3人翻译英语,则需要从剩余的4人(不含小李)中选出2人翻译日语即可,则不同的安排方案有246C =种, ②、若从只会英语的3人中选2人翻译英语,(包含小张)则先在既会英语又会日语的2人中选出1人翻译英语,再从剩余的3人(不含小李)中选出2人翻译日语即可,则不同的安排方案有11222312C C C ⨯⨯=种, ③、若从只会英语的3人选小张翻译英语,则先在既会英语又会日语的2人中选出2人翻译英语,再从剩余的2人(不含小李)中选出2人翻译日语即可,则不同的安排方案有22221C C⨯=种,④、若从只会英语的3人中选2人翻译英语,(不包含小张)则先在既会英语又会日语的2人中选出1人翻译英语,再从剩余的4人(小李必选)中选出2人翻译日语即可,则不同的安排方案有2112236C C C⨯⨯=种,⑤、若从只会英语的3人中选1人翻译英语,(不包含小张)则先在既会英语又会日语的2人中选出2人翻译英语,再从剩余的3人(小李必选)中选出2人翻译日语即可,则不同的安排方案有1212224C C C⨯⨯=种,则不同的安排方法有61216429++++=种.故答案为:29.【点评】本题考查排列、组合的运用,注意根据题意对“既会英语又会日语”的教师的分析以及小张与小李恰有1人选中,是本题的难点所在.8.有6张卡片分别写有数字1,1,1,2,3,4,从中任取3张,可排出不同的三位数的个数是34.(用数字作答)【分析】根据题意,按取出3张的卡片中写有1的卡片的张数分4种情况讨论,求出每种情况下排出不同的三位数的个数,由加法原理计算可得答案.【解答】解:根据题意,分4种情况讨论:①、取出3张的卡片全部是写有数字1的,有1种情况,②,取出3张的卡片有2张写有数字1的,有11339C C=种情况,③,取出3张的卡片有1张写有数字1的,有223318C A=种情况,④,取出3张的卡片没有写有数字1的,有336A=种情况,则一共有1918634+++=种情况,即可以排出34个不同的三位数;故答案为:34.【点评】本题考查排列、组合的应用,注意6张卡片中相同的情况.9.分配4名水暖工去3个不同的民居家里检查暖气管道,要求4名水暖工部分配出去,并每名水暖工只能去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有36种(用数字作答).【分析】根据题意,分2步分析:①,将4名水暖工分成3组,②,将分好的三组全排列,对应3个不同的居民家,由分步计数原理计算可得答案.【解答】解:根据题意,分2步分析:①,将4名水暖工分成3组,有246C=种分组方法,②,将分好的三组全排列,对应3个不同的居民家,有336A=种分配方法,则有6636⨯=种不同的分配方案;故答案为:36.【点评】本题考查排列、组合的应用,注意要先分组,再进行排列.10.3名男生和3名女生站成一排,要求男生互不相邻,女生也互不相邻且男生甲和女生乙必须相邻,则这样的不同站法有40种(用数字作答).【分析】根据题意,分2种情况讨论:①,六名学生按男女男女男女排列,②,六名学生按女男女男女男排列,分析每种情况的安排方法数,由加法原理计算可得答案.【解答】解:根据题意,要求3名男生和3名女站成一排,男生、女生各不相邻,则有2种情况;①,六名学生按男女男女男女排列,若男生甲在最左边的位置时,女生乙只能在其右侧,有1种情况,剩下的2名男生和女生都有222A=种情况,此时有1224⨯⨯=种安排方法,若男生甲不在最左边的位置时,女生乙可以在其左侧与右侧,有2种情况,剩下的2名男生和女生都有222A=种情况,此时有222216⨯⨯⨯=种安排方法;则此时有41620+=种安排方法;②,六名学生按女男女男女男排列,同理①,也有20种安排方法,则符合条件的安排方法有202040+=种;故答案为:40【点评】本题考查排列组合的应用,注意优先分析受到限制的元素.11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为.【分析】不考虑特殊情况,共有316C 种取法,其中每一种卡片各取三张,有344C 种取法,两种红色卡片,共有21412C C 种取法,由此可得结论. 【解答】解:由题意,不考虑特殊情况,共有316C 种取法,其中每一种卡片各取三张,有344C 种取法,两种红色卡片,共有21412C C 种取法, 故所求的取法共有332116441245601672472C C C C --=--= 故选:C .【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.12.因演出需要,身高互不相等的8名演员要排成一排成一个“波浪形”,即演员们的身高从最左边数起:第一个到第三个依次递增,第三个到第六个依次递减,第六、七、八个依次递增,则不同的排列方式有 .种【分析】依题意,重点要先排好3号位和6号位,余下的分类讨论分析即可. 【解答】解:上面的数字表示排列的位置,必须按照上图的方式排列,其中3号位必须比12456要高,1,6两处是排列里最低的,3,8两处是最高点,设8个演员按照从矮到高的顺序依次编号为1,2,3,4,5,6,7,8, 则 3号位最少是6,最大是8,下面分类讨论:①第3个位置选6号:先从1,2,3,4,5号中选两个放入前两个位置,余下的3个号中放入4,5,6号顺序是确定的只有一种情况,然后7,8号放入最后两个位置也是确定的,此时共2510C =种情况;②第3个位置选7号:先从1,2,3,4,5,6号中选两个放入前两个位置, 余下的4个号中最小的放入6号位置,剩下3个选2个放入4,5两个位置, 余下的号和8号放入最后两个位置,此时共226345C C =种情况;。
数学模块2-3排列组合概率测试含答案

.故选:D.
∴Eξ= (a+b+c);
设 t= (a+b+c),则 Dξ= [(a-t)2+(b-t)2+(c-t)2]
= [a2+b2+c2-2(a+b+c)t+3t2]= [a2+b2+c2-6t+3t2];
随机变量 η 取值为
的概率都是 ,
∴Eη= ( + + )= (a+b+c),
Dη= [
则 P(A)= = ,P(AB)=
=,
∴在第一次抽到次品的条件下,第二次抽到次品的概率 P(A|B)=
= = .故选 A.
11.【答案】D 解:∵E(X)= ,∴由随机变量 X 的分布列的性质得:
,解得 x= ,y= ,
∴D(X)=(1- )2×0.5+(2- )2× +(3- )2× = 12.【答案】B 解:随机变量 ξ 取值为 a,b,c 的概率都是 ,
=
第 4 页,共 9 页
故选 C. 9.【答案】C 解:∵甲、乙、丙三人独立地去译一个密码,分别译出的概率为 , , ,
∴此密码不能译出的概率(1- )(1- )(1- )= ,
故此密码能译出的概率 P=1- = , 故选:C 10.【答案】A 解:设第一次抽到次品为事件 A,第二次抽到次品为事件 B,
)
A. −4
B. −3
C. 2
D. 3
5. 设有编号为 1,2,3,4,5 的五个茶杯和编号为 1,2,3,4,5 的五个杯盖,将五个杯盖盖在五个茶杯
上,至少有两个杯盖和茶杯的编号相同的盖法有( )
A. 30 种
(完整版)排列组合概率练习题(含答案)

排列与组合练习题1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是(A )37 (B )47 (C )114 (D )1314 答案:D解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A )6种 (B )9种 (C )11种 (D )13种答案:B解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有(A )30个 (B )20个 (C )35个 (D )15个答案:A解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最多有30个交点.推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有22m n C C ⋅个变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.答案:412C4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A )15 (B )25 (C )35 (D ) 45答案:B111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34答案:A解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =A .18B .14C .25D .12答案:B 解析:2()5P A =,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34 答案:D解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224P =+⋅=.所以选D . 8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为KA 2A 1A .0.960B .0.864C .0.720D .0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B.9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A )136 (B )19 (C )536 (D )16 答案:D解析:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =( ) (A )415 (B )13 (C )25 (D )23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12D .23答案:C解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .12.在204(3)x y +展开式中,系数为有理数的项共有 项.答案:6解析:二项式展开式的通项公式为20204412020(3)(3)(020)r r r r r r r r T C x y C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.答案:35解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因此这样的集合P 共有4735C =个.14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.答案:732解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以()()()0.50.30.8P A B P A P A B =+=+=答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8. (II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)XB ,所以()20E X =.所以X 的期望()20E X =.。
排列组合概率统计(答案)

排列组合二项式定理概率统计(理科适用)1.某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为() A.85B.86 C.91 D.90解析:由题意,可分三类考虑:(1)男生甲入选,女生乙不入选:C13C24+C23C14+C33=31;(2)男生甲不入选,女生乙入选:C14C23+C24C13+C34=34;(3)男生甲入选,女生乙入选:C23+C14C13+C24=21,∴共有入选方法种数为31+34+21=86.答案:B2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种解析:将标号为1,2的卡片放入1个信封,有C13=3种方法,将剩下的4张卡片放入剩下的2个信封中,有C22·C24=6种方法,共有C13C24·C22=3×6=18种.答案:B3.从5张100元,3张200元,2张300元的运动会门票中任选3张,则选取的3张中至少有2张价格相同的不同的选法共有()A.70种B.80种C.90种D.100种解析:基本事件的总数是C310,在三种价格的门票中各自选取1张的方法数是C15C13C12,故其对立事件“选取的3张中至少有2张价格相同”的不同的选法共有C310-C15C13C12=90种.答案:C4.2012年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有()A.1 440种B.1 360种C.1 282种D.1 128种解析:采取对丙和甲进行捆绑的方法:如果不考虑“乙不在正月初一值班”,则安排方案有:A66·A22=1 440种,如果“乙在正月初一值班”,则安排方案有:C11·A14·A22·A44=192种,若“甲在除夕值班”,则“丙在初一值班”,则安排方案有:A55=120种.则不同的安排方案共有1 440-192-120=1 128(种).答案:D5.霓虹灯的一个部位由7个小灯泡并排组成,每个灯泡均可以亮出红色或黄色,现设计每次变换只闪亮其中的三个灯泡,且相邻的两个灯泡不同时亮,则一共可以呈现出不同的变换形式的种数为()A.20 B.30 C.50 D.80解析:按照三个灯泡同色、三个灯泡两红一黄、三个灯泡一红两黄将问题分为三类:第一类:三个灯泡同色时,可以呈现出不同的变换形式的种数为C35×2=20种;第二类:三个灯泡两红一黄时,可以呈现出不同的变换形式的种数为C35×C23=30种;第三类:三个灯泡一红两黄时,可以呈现出不同的变换形式的种数为C35×C23=30种.故呈现出满足条件的不同的变换形式的种数为20+30+30=80.答案:D二、填空题6.(2012·本溪模拟)5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有________种.(以数字作答)解析:①只有1名老队员的排法有C12·C23·A33=36种.②有2名老队员的排法有C22·C13·C12·A22=12种;所以共48种.答案:487.(2012·北京模拟)三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为________.解析:法一:根据题意,两端的座位要空着中间六个座位坐三个人,再空三个座位,这三个座位之间产生四个空,可以认为是坐后产生的空,故共有A34=24种.法二:让人占座位之间的空,因有五个座位,它们之间四个空,人去插空,共有A34=24种.答案:24三、解答题8.将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他盒子中球的颜色齐全的不同放法共有多少种?解:先选1空盒:C14,将4白、5黑、6红分别放入其余三个盒中,每盒1个,剩1个白球有3种放法,剩2个黑球有3+C23=6种放法,剩3个红球有3+1+A23=10种放法,由分步乘法原理,得C14×6×3×10=720种.9.某中学高三年级共有12个班级,在即将进行的月考中,拟安排12个班主任老师监考数学,每班1人,要求有且只有8个班级是自己的班主任老师监考,则不同的监考安排方案共有多少种?解:先从12个班主任中任意选出8个到自己的班级监考,有C812种安排方案,设余下的班主任为A、B、C、D,自己的班级分别为1、2、3、4,安排班主任A有三种方法,假定安排在2班监考,再安排班主任B有三种方法,假定安排在3班监考,再安排班主任C、D有一种方法,因此安排余下的4个班主任共有9种方法,所以安排方案共有C812·9=4 455种.10.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙二人至少有一人参加,有多少种选法?(4)医疗队中至少有一名内科医生和一名外科医生,有几种选法?解:(1)只需从其他18人中选3人即可,共有C318=816种;(2)只需从其他18人中选5人即可,共有C518=8 568种;(3)分两类:甲、乙中有一人参加;甲、乙都参加.共有C12C418+C318=6 936种;(4)法一:(直接法):至少一名内科一名外科的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C112C48+C212C38+C312C28+C412C18=14 656种.法二:(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C520-(C58+C512)=14 656种.1.甲:A1、A2是互斥事件;乙:A1、A2是对立事件.那么()A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 解析:由互斥、对立事件的含义知选B 答案:B2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175 cm 的概率为( )A .0.2B .0.3C .0.7D .0.8解析:因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3.答案:B3.(2012·皖南八校联考)某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.115B.35C.815D.1415解析: 记4听合格的饮料分别为A 1、A 2、A 3、A 4,2听不合格的饮料分别为B 1、B 2,则从中随机抽取2听有(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共15种不同取法,而至少有一听不合格饮料有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共9种,故所求概率为P =915=35.答案:B4.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为( )A.16B.15C.13D.25解析:由题意可知,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为55+4+3+2+1=13.答案:C5.(2012·合肥模拟)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,A =30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a 、b ,则满足条件的三角形有两个解的概率是( )A.16B.13C.12D.34解析:要使△ABC 有两个解,需满足的条件是⎩⎪⎨⎪⎧a >b sin A ,b >a 因为A =30°,所以⎩⎪⎨⎪⎧b <2a ,b >a满足此条件的a ,b 的值有b =3,a =2;b =4,a =3;b =5,a =3;b =5,a =4;b =6,a =4;b =6,a =5,共6种情况,所以满足条件的三角形有两个解的概率是636=16.答案:A 二、填空题6.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为________.答案:357.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.解析:P =1-0.2×0.25=0.95. 答案:0.95 三、解答题8.已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止.(1)求检验次数为3的概率; (2)求检验次数为5的概率.解:(1)设“在3次检验中,前2次检验中有1次检到次品,第3次检验到次品”为事件A ,则检验次数为3的概率为P (A )=C 12C 15C 27·1C 15=221.(2)记“在5次检验中,前4次检验中有1次检到次品,第5次检验到次品”为事件B ,记“在5次检验中,没有检到次品”为事件C ,则检验次数为5的概率为P =P (B )+P (C )=C 12C 35C 47·1C 13+C 55C 57=521.9.已知向量a =(x 、y ),b =(1,-2),从6张大小相同、分别标有号码1、2、3、4、5、6的卡片中,有放回地抽取两张,x 、y 分别表示第一次、第二次抽取的卡片上的号码.(1)求满足a·b =-1的概率; (2)求满足a·b >0的概率.解:(1)设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、…、(6,5)、(6,6),共36个.用A 表示事件“a·b =-1”,即x -2y =-1,则A 包含的基本事件有(1,1)、(3,2)、(5,3),共3个,P (A )=336=112.(2)a·b >0,即x -2y >0,在(1)中的36个基本事件中,满足x -2y >0的事件有(3,1)、(4,1)、(5,1)、(6,1)、(5,2)、(6,2),共6个,所以所求概率P =636=16.10.某次会议有6名代表参加,A 、B 两名代表来自甲单位,C 、D 两名代表来自乙单位,E 、F 两名代表来自丙单位,现随机选出两名代表发言,问:(1)代表A 被选中的概率是多少?(2)选出的两名代表“恰有1名来自乙单位或2名都来自丙单位”的概率是多少? 解:(1)从这6名代表中随机选出2名,共有15种不同的选法,分别为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).其中代表A 被选中的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),共5种,则代表A 被选中的概率为515=13.(2)法一:随机选出的2名代表“恰有1名来自乙单位或2名都来自丙单位”的结果有9种,分别是 (A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).则“恰有1名来自乙单位或2名都来自丙单位”这一事件的概率为915=35.法二:随机选出的2名代表“恰有1名来自乙单位”的结果有8种,概率为815;随机选出的2名代表“都来自丙单位”的结果有1种,概率为115.则“恰有1名来自乙单位或2名都来自丙单位”这一事件的概率为815+115=35.1.下列4个表格中,可以作为离散型随机变量分布列的一个是( ) A.B.C.D.解析:利用离散型随机变量的分布列的性质检验即可. 答案:C2.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( )A .ξ=4B .ξ=5C .ξ=6D .ξ≤5解析:由条件知“放回5个红球”事件对应的ξ为6. 答案:C3.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为( )A.23B.34C.45D.56解析:由(11×2+12×3+13×4+14×5)×a =1.知45a =1 ∴a =54. 故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案:D4.(2012·福州模拟)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A.1220B.2755C.27220D.2125解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:C5.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( ) A .P (ξ=3) B .P (ξ≥2) C .P (ξ≤3)D .P (ξ=2)解析:由超几何分布知P (ξ=2)=(n -m )A 2mA 3n 答案:D 二、填空题6.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=______. 解析:∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案:237.设随机变量X 只能取5、6、7、…、16这12个值,且取每个值的概率相同,则P (X >8)=________,P (6<X ≤14)=________.解析:P (X >8)=23,P (6<X ≤14)=23.答案:23 23三、解答题8.(2012·扬州模拟)口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值; (2)X 的分布列.解:(1)由P (X =2)=730知C 13C 1n +3×C 1nC 1n +2=730, ∴90n =7(n +2)(n +3).∴n =7.(2)X =1,2,3,4 且P (X =1)=710,P (X =2)=730,P (X =3)=7120,P (X =4)=1120.∴X 的分布列为9.一项试验有两套方案,每套方案试验成功的概率都是23,试验不成功的概率都是13.甲随机地从两套方案中选取一套进行这项试验,共试验了3次,且每次试验相互独立.(1)求3次试验都选择了同一套方案且都试验成功的概率;(2)记3次试验中,都选择了第一套方案并试验成功的次数为X ,求X 的分布列. 解:(1)记事件“一次试验中,选择第i 套方案并试验成功”为A i ,i =1,2,则P (A i )=1C 12×23=13. 3次试验选择了同一套方案且都试验成功的概率 P =P (A 1·A 1·A 1+A 2·A 2·A 2)=⎝⎛⎭⎫133+⎝⎛⎭⎫133=227.(2)由题意知X 的可能取值为0,1,2,3,则X ~B (3,23), P (X =k )=C k 3⎝⎛⎭⎫133-k ⎝⎛⎭⎫23k,k =0,1,2,3. X 的分布列为10.在某射击比赛中,比赛规则如下:每位选手最多射击3次,射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i (i =1,2,3)次射击时击中目标得4-i 分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.(1)求甲恰好射击两次的概率;(2)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列.解:(1)记“选手甲第i 次击中目标的事件”为A i (i =1,2,3),则P (A i )=0.8,P (A i )=0.2, 依题意可知:A i 与A j (i ,j =1,2,3,i ≠j )相互独立, 所求的概率为P (A 1A 2)=P (A 1)P (A 2)=0.8×0.2=0.16. (2)ξ的可能取值为0,3,5,6.P (ξ=0)=0.2,P (ξ=3)=0.8×0.2=0.16, P (ξ=5)=0.82×0.2=0.128,P (ξ=6)=0.83=0.512. 所以ξ的分布列为:1.若随机变量X 的分布列如下表,则E (X )等于( )A.118B.19C.209D.920解析:由分布列的性质可得2x +3x +7x +2x +3x +x =1,∴x =118.∴E (X )=0×2x +1×3x+2×7x +3×2x +4×3x +5x =40x =209.答案:C2.(2012·潍坊模拟)设X 为随机变量,X ~B ⎝⎛⎭⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X =2)等于( )A.1316B.4243C.13243D.80243解析:∵X ~B ⎝⎛⎭⎫n ,13,∴E (X )=n3=2.∴n =6. ∴P (X =2)=C 26⎝⎛⎭⎫132⎝⎛⎭⎫234=80243. 答案:D3.已知随机变量X ~B (6,22),则P (-2≤X ≤5.5)=( )A.78B.18C.6364D.3132解析:依题意,P (-2≤X ≤5.5)=P (X =0,1,2,3,4,5)=1-P (X =6)=1-C 66×(22)6=78. 答案:A4.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧.其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,若随机变量X =|a -b |的取值,则X 的数学期望E (X )=( )A.89B.35C.25D.13解析:对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126条,X 的可能取值有0,1,2.P (X =0)=6×7126=13,P (X =1)=8×7126=49,P (X =2)=4×7126=29,E (X )=89.答案:A5.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为( )A.148B.124C.112D.16解析:依题意得3a +2b +0×c =1,∵a >0,b >0,∴3a +2b ≥26ab ,即26ab ≤1,∴ab ≤124.当且仅当3a =2b 即a =25,b =35时等式成立.答案:B 二、填空题6.某射手射击所得环数ξ的分布列如下:已知ξ的期望E (ξ)=8.9,则y 的值为________.解析:依题意得⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎪⎨⎪⎧x +y =0.6,7x +10y =5.4,由此解得y =0.4. 答案:0.47.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则数学期望E (X )=________(结果用最简分数表示).解析:首先X ∈{0,1,2}.∵P (X =0)=C 25C 27=1021,P (X =1)=C 12C 15C 27=1021,P (X =2)=C 22C 27=121.∴E (X )=0×1021+1×1021+2×121=1221=47.答案:47三、解答题8.某品牌汽车的4S 店,对最近100位采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S 店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)若以频率作为概率,求事件A :“购买该品牌汽车的3位顾客中,至多有1位采用分3期付款”的概率P (A );(2)求η的分布列及其数学期望E (η).解:(1)由题意可知“购买该品牌汽车的3位顾客中有1位采用分3期付款”的概率为0.2,所以P (A )=0.83+C 13×0.2×(1-0.2)2=0.896.(2)由a100=0.2得a =20, ∵40+20+a +10+b =100,∴b =10. 记分期付款的期数为ξ,依题意得: P (ξ=1)=40100=0.4,P (ξ=2)=20100=0.2,P (ξ=3)=20100=0.2,P (ξ=4)=10100=0.1,P (ξ=5)=10100=0.1.由题意知η的可能取值为:1,1.5,2(单位:万元). P (η=1)=P (ξ=1)=0.4,P (η=1.5)=P (ξ=2)+P (ξ=3)=0.4; P (η=2)=P (ξ=4)+P (ξ=5)=0.1+0.1=0.2. ∴η的分布列为:∴η的数学期望E (η)=1×0.4+1.5×0.4+2×0.2=1.4(万元).9.(2012·广州调研)某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.(1)若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?(2)若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ,求E (ξ)的值.解:(1)法一:设事件A 表示“甲厂生产的灯泡”,事件B 表示“灯泡为一等品”,依题意有P (A )=0.6,P (B |A )=0.9,根据条件概率计算公式得P (AB )=P (A )·P (B |A )=0.6×0.9=0.54.法二:该商店储存的50个灯泡中,甲厂生产的灯泡有50×60%=30个,乙厂生产的灯泡有50×40%=20个,其中是甲厂生产的一等品有30×90%=27个,故从这50个灯泡中随机抽取出一个灯泡,它是甲厂生产的一等品的概率为2750=0.54.(2)依题意,ξ的取值为0,1,2,P (ξ=0)=C 223C 250=2531 225,P (ξ=1)=C 127C 123C 250=6211 225,P (ξ=2)=C 227C 250=3511 225,∴ξ的分布列为∴E (ξ)=0×2531 225+1×6211 225+2×3511 225=1.08.10.(2012·冀州模拟)今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量.例如:家居用电的碳排放量(千克)=耗电度数×0.785,汽车的碳排放量(千克)=油耗公升数×0.785等.某班同学利用寒假在两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.这二族人数占各自小区总人数的比例P 数据如下:(1)如果甲、乙来自A 小区,丙、丁来自B 小区,求这4人中恰有2人是低碳族的概率; (2)A 小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A 小区中任选25人,记ξ表示25个人中低碳族人数,求E (ξ).解:(1)记这4人中恰好有2人是低碳族为事件A , P (A )=12×12×15×15+4×12×12×45×15+12×12×45×45=33100.(2)设A 小区有a 人,2周后非低碳族的概率P =a ×12×(1-15)2a =825,2周后低碳族的概率P =1-825=1725, 依题意ξ~B (25,1725),所以E (ξ)=25×1725=17.1.二项式6)12(xx -的展开式中的常数项是( ) A .20 B .-20 C .160D .-160解析:二项式(2x -1x )6的展开式的通项是T r +1=C r 6·(2x )6-r ·⎝⎛⎭⎫-1x r =C r 6·26-r ·(-1)r ·x 6-2r .令6-2r =0,得r =3,因此二项式(2x -1x)6的展开式中的常数项是C 36·26-3·(-1)3=-160. 答案:D 2.若二项式nxx )2(2+的展开式中所有项的系数之和为243,则展开式中x -4的系数是( )A .80B .40C .20D .10解析:令x =1,则3n =243,解得n =5.二项展开式的通项公式是T r +1=C r 5x5-r ·2r ·x -2r=2r ·C r 5·x 5-3r ,由5-3r =-4,得r =3.故展开式中x -4的系数是23C 35=80.答案:A3.(1-x )8展开式中不含x 4项的系数的和为( ) A .-1 B .0 C .1D .2解析:二项式(1-x )8各项系数和为(1-1)8=0,二项式(1-x )8展开式的通项公式为(-1)r ·C r 8·2rx ,当r =8时,可得x 4项的系数为(-1)8·C 88=1,由此可得二项式(1-x )8展开式中不含x 4项的系数的和为0-1=-1.答案:A4.若nxx )2(+的展开式中的第5项为常数,则n =( ) A .8 B .10 C .12D .15解析:∵T 4+1=C 4n (x )n -4⎝⎛⎭⎫2x 4=C 4n 24122n x -为常数,∴n -122=0,n =12. 答案:C5.若(x +y )9按x 的降幂排列的展开式中,第二项不大于第三项,且x +y =1,xy <0,则x 的取值范围是( )A .(-∞,15)B .[45,+∞)C .(-∞,-45]D .(1,+∞)解析:二项式(x +y )9的展开式的通项是T r +1=C r 9·x 9-r ·y r 依题意有 ⎩⎪⎨⎪⎧C 19·x 9-1·y ≤C 29·x 9-2·y 2,x +y =1,xy <0.由此得⎩⎪⎨⎪⎧x 8·(1-x )-4x 7·(1-x )2≤0x (1-x )<0,由此解得x >1,即x 的取值范围是(1,+∞). 答案:D 二、填空题6.设二项式6)(xa x -(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________.解析:对于T r +1=C r 6x 6-r 12ra x ⎛⎫- ⎪ ⎪⎝⎭=C r 6(-a )r 362rx -,B =C 46(-a )4,A =C 26(-a )2.∵B =4A ,a >0,∴a =2. 答案:27.(1+x )3(1+1x )3的展开式中1x的系数是________.解析:利用二项式定理得(1+x )3⎝⎛⎭⎫1+1x 3的展开式的各项为C r 3x r ·C n 3x -n =C r 3C n 3x r -n,令r -n =-1,故可得展开式中含1x 项的是C 03·C 13x +C 13·C 23x +C 23·C 33x =15x,即(1+x )3⎝⎛⎭⎫1+1x 3的展开式中1x 的系数是15. 答案:15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014高三暑期保送复习《排列组合与概率》专题第一讲 排列组合与二项式定理【基础梳理】 1.排列(1)排列的概念:从n 个不同元素中,任取m (m ≤n )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:从n 个不同元素中,任取m (m ≤n )个元素的所有排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示. (3)排列数公式 A mn =(4)全排列数公式 A nn =(叫做n 的阶乘). 2.组合(1)组合的定义:一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C mn 表示. (3)组合数公式C m n =(n ,m ∈N *,且m ≤n ).特别地C 0n =1. (4)组合数的性质:①C m n =C n -m n ;②C m n +1=C m n +C m -1n . 3.二项式定理 (1)(a +b )n=C 0n a n+C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n的其中的系数C rn (r =0,1,…,n )叫. 式中的C r n an -r b r叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n a n -r b r. (2).二项展开式形式上的特点 ①项数为.②各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为.③字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C nn . (3).二项式系数的性质①对称性:与首末两端“等距离”的两个二项式系数即②增减性与最大值: 二项式系数C kn ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项取得最大值; 当n 是奇数时,中间两项取得最大值.③各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=.【基础自测】1.8名运动员参加男子100米的决赛.已知运动场有从内到外编号依次为1,2,3,4,5,6,7,8的八条跑道,若指定的3名运动员所在的跑道编号必须是三个连续数字(如:4,5,6),则参加比赛的这8名运动员安排跑道的方式共有( ). A .360种 B .4 320种 C .720种D .2 160种2.以一个正五棱柱的顶点为顶点的四面体共有( ). A .200个 B .190个 C .185个 D .180个3.(2010·山东)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( ). A .36种 B .42种 C .48种 D .54种4.如图,将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有( ).A .6种B .12种C .24种D .48种 5.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法种数是________(用数字作答).6.(2011·福建)(1+2x )5的展开式中,x 2的系数等于( ). A .80 B .40 C .20 D .107.若(1+2)5=a +b 2(a ,b 为有理数),则a +b =( ). A .45 B .55 C .70 D .808.(人教A 版教材习题改编)若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ).A.9 B.8 C.7 D.69.(2011·重庆)(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=().A.6 B.7 C.8 D.9【例题分析】考向一排列问题【例1】►六个人按下列要求站成一排,分别有多少种不同的站法?(1)甲不站在两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间恰有两人;(5)甲不站在左端,乙不站在右端;(6)甲、乙、丙三人顺序已定.【巩固练习1】用0,1,2,3,4,5六个数字排成没有重复数字的6位数,分别有多少个?(1)0不在个位;(2)1与2相邻;(3)1与2不相邻;(4)0与1之间恰有两个数;(5)1不在个位;(6)偶数数字从左向右从小到大排列.考向二组合问题【例2】►某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?【巩固练习2】甲、乙两人从4门课程中各选修2门,(1)甲、乙所选的课程中恰有1门相同的选法有多少种?(2)甲、乙所选的课程中至少有一门不相同的选法有多少种?考向三排列、组合的综合应用【例3】►(1)7个相同的小球,任意放入4个不同的盒子中,试问:每个盒子都不空的放法共有多少种?(2)计算x +y +z =6的正整数解有多少组; (3)计算x +y +z =6的非负整数解有多少组.【巩固练习3】 有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式? (1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本; (3)分成每组都是2本的三组; (4)分给甲、乙、丙三人,每人2本.【巩固练习4】► 有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有多少种?【巩固练习5】 在10名演员中,5人能歌,8人善舞,从中选出5人,使这5人能演出一个由1人独唱4人伴舞的节目,共有几种选法?考向四 二项展开式中的特定项或特定项的系数【例4】►已知在⎝ ⎛⎭⎪⎪⎫3x -33x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.【训练6】(2011·山东)若⎝⎛⎭⎫x -a x 26展开式的常数项为60,则常数a 的值为________.考向五 二项式定理中的赋值【例7】►二项式(2x -3y )9的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和.【训练7】 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.考向六 二项式的和与积【例8】►(1+2x )3(1-x )4展开式中x 项的系数为________.【训练8】(2011·广东)x ⎝⎛⎭⎫x -2x 7的展开式中,x 4的系数是________(用数字作答).【巩固作业】一、选择题11 .(2013年普通高等学校招生统一考试山东数学(理)试题)用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( ) A .243 B .252 C .261 D .279 22 .(2013年普通高等学校招生统一考试福建数学(理)试题)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .1033.(2013年普通高等学校招生统一考试辽宁数学(理)试题)使得()3nx n N n+⎛∈⎝的展开式中含有常数项的最小的为()A.4B.5C.6D.744.(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b,共可得到lg lga b-的不同值的个数是()A.9B.10C.18D.2055 .(2013年高考陕西卷(理))设函数61,.,()x xf x xx⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩, 则当x>0时, [()]f f x表达式的展开式中常数项为()A.-20 B.20 C.-15 D.1566.(2013年高考江西卷(理))(x2-32x)5展开式中的常数项为()A.80 B.-80 C.40 D.-40二、填空题77.(2013年上海市春季高考数学试卷()36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________88.(2013年高考四川卷(理))二项式5()x y+的展开式中,含23x y的项的系数是_________.(用数字作答)99.(2013年上海市春季高考数学试卷()从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).1010.(2013年普通高等学校招生统一考试浙江数学(理)试题)将FEDCBA,,,,,六个字母排成一排,且BA,均在C的同侧,则不同的排法共有________种(用数字作答)1111.(2013年普通高等学校招生统一考试重庆数学(理)试题)从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有人的选派方法种数是___________(用数字作答)1212.(2013年普通高等学校招生统一考试天津数学(理)试题)6x⎛⎝的二项展开式中的常数项为______.第二讲离散型随机变量和其分布列【知识梳理】1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. (3)分布列设离散型随机变量X 可能取得值为x 1,x 2,…,x i ,…x n ,X 取每一个值x i (i =1,2,…,n )的概率为P (X =x i )=p i ,则称表为随机变量X 的概率分布列,简称(4)分布列的两个性质①p i ≥0,i =1,2,…,n ;②p 1+p 2+…+p n =_1_. 2.两点分布如果随机变量X 的分布列为其中0<p <1,q =1-p ,则称离散型随机变量X 3.超几何分布列在含有M 件次品数的N 件产品中,任取n 件,其中含有X 件次品数,则事件{X =k }发生的概率为:P (X =k )=C k M C n -kN -MC n N (k=0,1,2,…,m ),其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,则称分布列为超几何分布列. 【基础自测】1.抛掷均匀硬币一次,随机变量为( ). A .出现正面的次数 B .出现正面或反面的次数 C .掷硬币的次数 D .出现正、反面次数之和2.如果X 是一个离散型随机变量,那么下列命题中假命题是( ). A .X 取每个可能值的概率是非负实数 B .X 取所有可能值的概率之和为1C .X 取某2个可能值的概率等于分别取其中每个值的概率之和D .X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和3.已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于()A.316 B.14 C.116 D.5164.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ).A .25B .10C .7D .65.设某运动员投篮投中的概率为P =0.3,则一次投篮时投中次数的分布列是________.考点一 由统计数据求离散型随机变量的分布列【例1】►(2011·北京改编)以下茎叶图记录了甲、乙两组各四名同学的植树棵数分别从甲、乙两组中各随机选取一名同学 (1)求这两名同学的植树总棵数y 的分布列;(2)每植一棵树可获10元,求这两名同学获得钱数的数学期望.【练习1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后可获收益的分布列是________. 考点二 由古典概型求离散型随机变量的分布列【例2】►袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用X 表示取球终止时所需要的取球次数. (1)求袋中原有白球的个数;(2)求随机变量X 的分布列;(3)求甲取到白球的概率.【练习2】 (2011·江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力. (1)求X 的分布列;(2)求此员工月工资的期望.投资成功 投资失败 192次8次考点三 由独立事件同时发生的概率求离散型随机变量的分布列【例3】►(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________.【练习3】 某地有A 、B 、C 、D 四人先后感染了甲型H 1N 1流感,其中只有A 到过疫区.B 肯定是受A 感染的.对于C ,因为难以断定他是受A 还是受B 感染的,于是假定他受A 和受B 感染的概率都是12.同样也假定D 受A 、B 和C 感染的概率都是13.在这种假定之下,B 、C 、D 中直接受A 感染的人数X 就是一个随机变量.写出X 的分布列(不要求写出计算过程),并求X 的均值(即数学期望).【练习4】►(本题满分12分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x 、y ,记ξ=|x -2|+|y -x |. (1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率; (2)求随机变量ξ的分布列.【练习5】 某射手进行射击练习,假设每次射击击中目标的概率为35,且各次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答); (2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答); (3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列. 【巩固作业】1、如果X 是一个离散型随机变量,则假命题是( )A.X 取每一个可能值的概率都是非负数;B.X 取所有可能值的概率之和为1;C.X 取某几个值的概率等于分别取其中每个值的概率之和;D.X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2①某寻呼台一小时内收到的寻呼次数X ;②在(0,1)区间内随机的取一个数X ;③某超市一天中的顾客量X 其中的X 是离散型随机变量的是( )A .①;B .②;C .③;D .①③3、设离散型随机变量ξ的概率分布如下,则a 的值为( )X1 2 3 4P16 1316a A .12 B .16 C .13 D .144、设随机变量X 的分布列为()()1,2,3,,,k P X k k n λ===⋯⋯,则λ的值为( )A .1;B .12; C .13; D .145.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量; ②在一段时间内,某侯车室内侯车的旅客人数是随机变量; ③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量. 其中正确的个数是( D )A.1 B.2 C.3 D.46、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )A. 4B. 6C. 10D. 无法确定7、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A. 一枚是3点,一枚是1点B. 两枚都是2点C. 两枚都是4点D. 一枚是3点,一枚是1点或两枚都是2点8.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的9.(2007年湖北卷第1题) 如果nx x ⎪⎭⎫ ⎝⎛-3223 的展开式中含有非零常数项,则正整数n 的最小值为A.3B.5C.6D.1010.(2007年湖北卷第9题)连掷两次骰子得到的点数分别为m 和n ,记向量a =(m,n)与向量b =(1,-1)的夹角为θ,则⎥⎦⎤ ⎝⎛π∈θ20,的概率是A.125 B.21 C.127D.6511.(2007年北京卷第5题)记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一行,2位老人相邻但不排在两端,不同的排法共有A .1440种 B.960种 C .720种 D.480种12.(2007年全国卷Ⅱ第10题) 从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有 (A)40种 (B) 60种 (C) 100种 (D) 120种13 、下列表中能成为随机变量X 的分布列的是(把全部正确的答案序号填上)()2,1,2,3,,21n P X k k n ===-14、已知2Y X =为离散型随机变量,Y 的取值为1,2,3,,10,则X 的取值为 15、一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为16.(2007年重庆卷第4题)若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为_____18、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.分析:欲写出ξ的分布列,要先求出ξ的所有取值,以和ξ取每一值时的概率.19.(2007年重庆卷第6题) 从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率20.(2007年辽宁卷) 一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为多少21、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n 21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X ≤.22.(本题满分12分)(2010·浙江杭州高二检测)甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的分布列.X -10 1 p 0.3 0.4 0.4X 1 2 3 p 0.4 0.7 -0.1 X 5 0 -5 p 0.3 0.6 0.1 ()1,2,3,4,5,P X k k k === ④ ⑤高中数学系列2—3单元测试题(2.1)参考答案一、选择题:1、D2、D3、C4、B5、D6、C7、D8、C9、B 10、C 11、B 12、B 二、填空题: 13、 ③④ 14、13579,1,,2,,3,,4,,52222215、 3,4,5 16、 20三、解答题:17、解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2 (2)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟. 18、解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. X 10 -1 P74 71 72 19、解从总数为10的门票中任取3张,总的基本事件数是C 310=120,而“至少有2张价格相同”则包括了“恰有2张价格相同”和“恰有3张价格相同”,即C 25+C 9033351822172315=++⋅+⋅⋅C C C C C C (种). 所以,所求概率为.4312090= 20解P (A )=112211122232562122326=⨯⨯-⨯=-C C C .21、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为X2 4 8 16 ...n 2 ... P21 41 81 161 ... n 21 ...∴(10)(2)(4)(8)P X P X P X P X ≤==+=+==8842=++.22. [解析] (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33C 25A 44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P (E )=A 44C 25A 44=110.所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服务,则P (X =2)=C 25A 33C 25A 44=14.所以P (X =1)=1-P (X =2)=34,X 的分布列为:X 1 2 P3414第三讲 随机变量的数字特征【基础梳理】 1.条件概率和其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )= (2)条件概率具有的性质: ①0≤P (B |A )≤1;② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称 (2)若A 与B 相互独立,则P (B |A )=,P (AB )=(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则 3.独立重复试验与二项分布 (1)独立重复试验独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是的. (2)二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=,此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.4.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为三种分布(1)若X 服从两点分布,则E(X)=p ,D(X)=p(1-p); (2)X ~B(n ,p),则E(X)=np ,D(X)=np(1-p); (3)若X 服从超几何分布, 则E(X)=n MN .期望和方差性质 (1)E (C )=C (C 为常数)(2)E (aX +b )=aE (X )+b (a 、b 为常数) (3)E (X 1+X 2)=EX 1+EX 2(4)D (aX +b )=a 2·D (X ) 【基础自测】1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65 B.65C. 2 D .2 2.(2010·湖北)某射手射击所得环数ξ的分布列如下:(1)均值 称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值 或 ,它反映了离散型随机变量取值的 . (2)方差 称D (X )=∑i =1n [x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均 ,其算术平方根D (X )为随机变量X 的标准差.已知ξ的期望E (ξ)=8.9,则y 的值为A .0.4 B .0.6 C .0.7 D .0.9 3.(2010·上海)随机变量ξ的概率分布列由下表给出:该随机变量ξ的均值是________.4.小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ).A.49B.29C.427D.2275.如果X ~B ⎝ ⎛⎭⎪⎫15,14,则使P (X =k )取最大值的k 值为( ).A .3B .4C .5D .3或46.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ). A.12 B.14 C.16 D.18 考点一 离散型随机变量的均值和方差【例1】►A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是A 1、A 2、A 3,B 队队员是B 1、B 2、B 3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:Y (1)求X ,Y 的分布列;(2)求E (X ),E (Y ).【练习1】 (2011·四川)本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列和数学期望E (ξ).考点二 均值与方差性质的应用【例2】►设随机变量X 具有分布P (X =k )=15,k =1,2,3,4,5,求E (X +2)2,D (2X -1),DX -1.【练习2】 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号. (1)求X 的分布列、期望和方差;(2)若η=aX +b ,E (η)=1,D (η)=11,试求a ,b 的值.考点三 均值与方差的实际应用【例3】►(2011·福建)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下所示: 且X 1的数学期望E (X 1)=6,求a ,b 的值;(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望.(3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.X 1 5 6 7 8 P0.4a b0.1注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.【练习3】 某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为12,14,14;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用X 表示投资收益(收益=回收资金-投资资金),求X 的概率分布和E (X ); (2)若把10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.考点四 条件概率【例4】►(2011·辽宁)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ). A.18 B.14 C.25 D.12【练习4】 (2011·湖南高考)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则 (1)P (A )=________;(2)P (B |A )=________.考点五 独立事件的概率【例5】►(2011·全国)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率; (2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【练习5】 (2011·山东)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B ,丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ).考点六 独立重复试验与二项分布【例6】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.【练习6】 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.【巩固作业】1.已知X 的分布列为。