抽屉原理练习题学生版
抽屉原则练习题

抽屉原则练习题抽屉原则,也被称为鸽笼原理,是数学中的一个重要原理。
它指的是,如果有 n+1 个物体放入 n 个抽屉中,那么至少有一个抽屉中必定放入了两个或以上的物体。
这个原理在现实生活中也有很多应用,例如物品分类、待办事项等。
下面是一些抽屉原则的练习题,帮助你更好地理解和应用这个原理。
练习题一:假设某个班级有 40 名学生,每位学生喜欢各异的运动项目,包括足球、篮球、乒乓球和羽毛球。
根据抽屉原则,如果每个学生只能选择一种运动项目,并且任意两个学生不选择相同的项目,那么必然有至少一种运动项目被至少两名学生选择。
请你利用抽屉原理,解答以下问题:1. 最少有几个学生选择足球?2. 最多有几个学生选择羽毛球?3. 如果有 27 名学生选择了篮球,那么至少还有几名学生选择了乒乓球?练习题二:某个班级的学生总数为 n,假设每位学生参加了 m 个俱乐部活动,并且每个俱乐部活动至少有两名学生参加。
请你回答以下问题:1. 如果 n=30,m=4,那么俱乐部活动的总数最多是多少?2. 如果只有两个俱乐部活动的总数达到最大值,那么 n 至少有多少个学生?3. 如果 n=25,俱乐部活动的总数为 40,那么 m 至少是多少?练习题三:某个超市有 n 种商品,每种商品的库存量不同。
根据抽屉原则,如果每个商品的库存量都不超过 m 个,那么必然存在至少一个商品的库存量超过了 m 个。
请你运用抽屉原理,回答以下问题:1. 如果有 15 种商品,每种商品的库存量都不超过 6 个,那么至少有几种商品的库存量是相同的?2. 如果有 20 种商品,每种商品的库存量都不超过 10 个,那么至多有几种商品的库存量是相同的?3. 如果有 12 种商品,至少有 8 种商品的库存量超过 5 个,那么最多有几种商品的库存量不超过 5 个?以上是关于抽屉原理的练习题,通过解答这些题目,相信你对抽屉原理的应用有了更深入的理解。
抽屉原理在数学、计算机科学以及日常生活中都具有广泛的应用价值。
抽屉原理练习题

抽屉原理练习题一、选择题1. 抽屉原理是指,如果有n+1个或更多的物品放入n个抽屉中,至少有一个抽屉中会有2个或更多的物品。
以下哪项不是抽屉原理的表述?A. 每个抽屉至少有一个物品B. 至少有一个抽屉包含多个物品C. 物品数量总是比抽屉数量多1D. 物品和抽屉的数量关系导致至少一个抽屉有多个物品2. 如果有10个苹果要放入9个抽屉中,根据抽屉原理,至少有几个苹果会放在同一个抽屉里?A. 1B. 2C. 3D. 43. 一个班级有50名学生,如果至少有5名学生在同一天过生日,根据抽屉原理,这个班级至少有多少名学生的生日是在同一个月?A. 5B. C. 6D. 7二、填空题4. 如果有13个球要放入12个盒子中,至少有一个盒子里会有______个或更多的球。
5. 一年有12个月,如果有25个人的生日在一年中的不同月份,根据抽屉原理,至少有______个人的生日在同一个月。
6. 一个学校有100名学生,如果至少有10名学生在同一天参加考试,根据抽屉原理,至少有______名学生的考试日期是在同一天。
三、解答题7. 一个班级有36名学生,他们要参加7个不同的兴趣小组。
请证明至少有一个兴趣小组有6名或更多的学生参加。
解答:设有7个兴趣小组,每个小组最多可以有5名学生。
如果每个小组都只有5名学生,那么总共会有7*5=35名学生参加兴趣小组。
但班级有36名学生,这意味着至少有1名学生必须加入到已经满员的小组中,使得至少有一个小组有6名学生。
8. 一个图书馆有10个书架,每个书架最多可以放100本书。
如果图书馆有1000本书需要放置,根据抽屉原理,至少有一个书架上会有多少本书?解答:如果每个书架都放满100本书,那么10个书架可以放1000本书。
但根据抽屉原理,至少有一个书架上会有101本书,因为如果每个书架都只有100本书,那么总共只有1000本书,而实际上有1001本书需要放置。
9. 一个学校有365名学生,他们的生日分布在一年中的不同天。
抽屉原理练习题(精选3篇)

抽屉原理练习题〔精选3篇〕篇1:抽屉原理练习题抽屉原理练习题抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,假设蒙眼去摸,为保证取出的球中有两个球的颜色一样,那么最少要取出多少个球?2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有一样的点数?3.有11名学生到教师家借书,教师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型一样4.有50名运发动进展某个工程的单循环赛,假如没有平局,也没有全胜。
试证明:一定有两个运发动积分一样。
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?6.某校有55个同学参加数学竞赛,将参赛人任意分成四组,那么必有一组的女生多于2人,又知参赛者中任何10人中必有男生,那么参赛男生的人数为多少人?7.有黑色、白色、蓝色手套各5只〔不分左右手〕,至少要拿出多少只〔拿的时候不许看颜色〕,才能使拿出的手套中一定有两双是同颜色的。
8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了假设干堆,后来发现无论怎么分,总能从这假设干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?9.从1,3,5,……,99中,至少选出多少个数,其中必有两个数的和是100。
10.某旅游车上有47名乘客,每位乘客都只带有一种水果。
假如乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。
11.某个年级有202人参加考试,总分值为100分,且得分都为整数,总得分为01分,那么至少有多少人得分一样?12.名营员去游览长城,颐和园,天坛。
规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全一样?13.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,那么至少有多少人植树的株数一样?答案:1.将红、黄、蓝三种颜色看作三个抽屉,为保证取出的球中有两个球的颜色一样,那么最少要取出4个球。
小学数学抽屉原理例题

小学数学抽屉原理例题篇一:抽屉原理公式及例题抽屉原理公式及例题“至少??才能保证(一定)?最不利原则抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。
例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。
这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。
15+1=16 例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1个“抽屉”里有6张花色一样。
答案选C.例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人?每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25 例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。
小学奥数抽屉原理习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是⽆忧考为⼤家整理的《⼩学奥数抽屉原理习题及答案【三篇】》供您查阅。
【篇⼀】【例 1】向阳⼩学有730个学⽣,问:⾄少有⼏个学⽣的⽣⽇是同⼀天? 【解析】⼀年最多有366天,可看做366个抽屉,730个学⽣看做730个苹果.因为,所以,⾄少有1+1=2(个)学⽣的⽣⽇是同⼀天. 【巩固】试说明400⼈中⾄少有两个⼈的⽣⽇相同. 【解析】将⼀年中的366天或天视为366个或个抽屉,400个⼈看作400个苹果,从最极端的情况考虑,即每个抽屉都放⼀个苹果,还有个或个苹果必然要放到有⼀个苹果的抽屉⾥,所以⾄少有⼀个抽屉有⾄少两个苹果,即⾄少有两⼈的⽣⽇相同.【篇⼆】【例 2】三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩. 【解析】⽅法⼀: 情况⼀:这三个⼩朋友,可能全部是男,那么必有两个⼩朋友都是男孩的说法是正确的; 情况⼆:这三个⼩朋友,可能全部是⼥,那么必有两个⼩朋友都是⼥孩的说法是正确的; 情况三:这三个⼩朋友,可能其中男⼥那么必有两个⼩朋友都是⼥孩说法是正确的; 情况四:这三个⼩朋友,可能其中男⼥,那么必有两个⼩朋友都是男孩的说法是正确的.所以,三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩的说法是正确的; ⽅法⼆:三个⼩朋友只有两种性别,所以⾄少有两个⼈的性别是相同的,所以必有两个⼩朋友都是男孩或者都是⼥孩.【篇三】【例 3】“六⼀”⼉童节,很多⼩朋友到公园游玩,在公园⾥他们各⾃遇到了许多熟⼈.试说明:在游园的⼩朋友中,⾄少有两个⼩朋友遇到的熟⼈数⽬相等. 【解析】假设共有个⼩朋友到公园游玩,我们把他们看作个“苹果”,再把每个⼩朋友遇到的熟⼈数⽬看作“抽屉”,那么,个⼩朋友每⼈遇到的熟⼈数⽬共有以下种可能:0,1,2,……,.其中0的意思是指这位⼩朋友没有遇到熟⼈;⽽每位⼩朋友最多遇见个熟⼈,所以共有个“抽屉”.下⾯分两种情况来讨论: (1)如果在这个⼩朋友中,有⼀些⼩朋友没有遇到任何熟⼈,这时其他⼩朋友最多只能遇上个熟⼈,这样熟⼈数⽬只有种可能:0,1,2,……,.这样,“苹果”数(个⼩朋友)超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. (2)如果在这个⼩朋友中,每位⼩朋友都⾄少遇到⼀个熟⼈,这样熟⼈数⽬只有种可能:1,2,3,……,.这时,“苹果”数(个⼩朋友)仍然超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. 总之,不管这个⼩朋友各遇到多少熟⼈(包括没遇到熟⼈),必有两个⼩朋友遇到的熟⼈数⽬相等.。
抽屉原理十个例题

抽屉原理十个例题1.有5个红球和7个蓝球放在一个抽屉里,如果随机取出3个球,那么至少会拿到两个是同色球的概率是多少?解析:使用反面计算。
首先,计算取出3个球都是不同色球的概率。
当第一个球被取出后,有5个红球和7个蓝球剩下。
那么取出第二个球时就只剩下4个红球和7个蓝球,概率为(5/12)*(7/11)。
同理,取出第三个球时只剩下3个红球和7个蓝球,概率为(5/12)*(4/11)。
因此,取出3个球都是不同色球的概率为(5/12)*(7/11)*(4/11)。
所以,至少会拿到两个是同色球的概率为1-(5/12)*(7/11)*(4/11)。
2.一组音乐会有10个乐手,其中3个会弹钢琴,4个会吹号,2个会弹吉他,1个会敲鼓。
从中随机选出4个人组成一个小号乐队,求至少会有一位会弹钢琴和一位会吹号的概率是多少?解析:首先,计算四个人都不弹钢琴的概率。
在10个乐手中,只能选出7个人(除去3个弹钢琴的乐手),然后从这7个人中选出4个组成小号乐队,概率为(7选择4)/(10选择4)。
同理,计算四个人都不会吹号的概率为(6选择4)/(10选择4)。
然后计算四个人都不弹钢琴且不会吹号的概率为(4选择4)/(10选择4)。
所以,至少会有一位会弹钢琴和一位会吹号的概率为1-[(7选择4)/(10选择4)+(6选择4)/(10选择4)-(4选择4)/(10选择4)]。
3.有一个箱子里有10双袜子,其中5双是黑色的,3双是蓝色的,2双是灰色的。
如果从箱子中随机取出3只袜子,那么至少会拿到一双是蓝色的概率是多少?解析:计算没有蓝色袜子的概率。
当从箱子中取出第一只袜子后,有10只袜子剩下,其中3只是蓝色的。
所以,没有蓝色袜子的概率为(7/10)*(6/9)*(5/8)。
所以,至少会拿到一双是蓝色的概率为1-(7/10)*(6/9)*(5/8)。
4.一个袋子里有20个糖果,其中3个是巧克力的,7个是草莓味的,10个是薄荷味的。
如果从袋子中随机取出5个糖果,那么至少会拿到两个是草莓味的概率是多少?解析:计算没有草莓味糖果的概率。
抽屉原理专题练习(含答案)2023-2024学年下学期小学数学六年级 人教版

2023-2024学年下学期小学数学人教新版六年级专题练习之抽屉原理一.选择题(共5小题)1.在一副扑克牌中取出大小王,从剩余的52张牌中至少要抽出()张,才能保证其中有3张红桃.A.9B.13C.422.李叔叔给正方体的六个面涂上不同的颜色,结果至少有两个面的颜色一致,颜料的颜色至少有()种.A.3B.4C.53.把7本书放进2个抽屉,有一个抽屉至少放()本书.A.3B.4C.54.教室里有10名学生正在写作业,今天有语文、数学、英语和科学四科作业,至少有( )名学生在做同一科作业。
A.3B.4C.65.把红、黄、蓝、绿四种同样大小的小球各5个放在同一箱子里,一次至少要摸出()个球才能保证摸出2个红球.A.5B.20C.17二.填空题(共5小题)6.黑、白两种颜色的袜子各8只混在一起,闭上眼睛随便拿,至少要拿只,才能保证一定有一双同色袜子;至少要拿只才能保证有4只同色袜子。
7.英才小学六(2)班有29名男同学,20 名女同学,至少有名同学是同一个月过生日。
8.黑桃、梅花两种花色的扑克牌各8张混放在一起,从中至少取出张,才能保证取出的牌中一定有梅花。
9.盒子有相同大小的红和蓝球各4个,要摸出的球一定有2个同色,至少要摸出个。
10.用红、黄、蓝、白四种颜色的球各4个,把它们放在一个不透明的盒子里,至少摸出个球,可以保证摸到两个颜色相同的球。
摸到红球的概率为%。
三.解答题(共5小题)11.把16支铅笔最多放入几个铅笔盒里,才能保证至少有一个铅笔盒里的笔不少于6支?12.把5只兔子放进3个笼子里,可以怎样放?我发现:无论怎样放,总有一个笼子里至少放进只兔子。
13.盒子里有同样大小的红球和黄球各10个.(1)要想摸出的球一定有2种颜色,至少要摸出几个球?(2)要想摸出的球一定有3个颜色相同,至少要摸出几个球?(3)要想摸出的球一定有5个颜色相同,至少要摸出几个球?14.在一个盒子里有30个红色、30个蓝色和30个绿色的圆球,它们除颜色外都相同。
小学数学抽屉原理完整版题型训练+详细答案

小学数学抽屉原理完整版题型训练+详细答案抽屉原理例题讲解:板块一:基础题型1.将60个红球、8个白球排成一条直线,至少会有多少个红球连在一起?答案:7详解:60÷(8+1)=6……6,6+1=7个。
2.17名同学参加一次考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题目的答案.请问:至少有几名同学的答案是一样的?答案:3详解:答案的结果有23=8种情况,即8个抽屉。
17÷8=2……1,2+1=3名。
3.任意写一个由数字1、2组成的六位数,从这个六位数中任意截取相邻两位,可得一个两位数,请证明:在从各个不同位置上截得的所有两位数中,一定有两个相等.详解:两位数的情况共4种:12,21,11,22。
六位数可以截取出5个两位数,所以必有重复。
4.将1至6这6个自然数随意填在图2,图中的六个圆圈中,试说明:图中至少有一行的数字之和不小于8。
详解:1+2+3+4+5+6+7=21,21÷3=7,图形总共有3行,第一行只有一个数,最大填6,那么后两行至少有一行是大于7的整数,即不小于8。
5.从l,2,3,…,99,100这100个数中任意选出51个数,请说明:(1)在这51个数中,一定有两个数的差等于50;详解:构造差为50的抽屉:(1,51)、(2,52)、……、(50,100),共50个抽屉。
选出51个数,必有两数来自一组,即差为50.(2)在这51个数中,一定有两个数差1.详解:构造差为1的抽屉:(1,2)、(3,4)、……、(99,100),共50个抽屉。
必有两数来自一组,即差为1.6.从1,2,3,…,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?答案:12详解:构造差为4的抽屉:(1,5)、(2,6)、(3,7)、(4,8)、(9,13)、(10,14)、(11,15)、(12,16)、(17,21)、(18)、(19)、(20)共12个抽屉,最多取12个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理练习题
1、光明小学有367名2000年出生的学生,请问是否有生日相同的学生?
2、用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.
3、三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.
4、试说明400 人中至少有两个人的生日相同
5、证明:任取6 个自然数,必有两个数的差是 5 的倍数
6 从1 , 4, 7, 10,…,37, 40这14个数中任取8个数,试证:其中至少有2 个数的和是41.
7、从1,2,3,L ,100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50 。
8、从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.
9、有10只鸽笼,为保证至少有1只鸽笼中住有2只或2只以上的鸽子.请问:至少需要有几只鸽子?
10、三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?
11 、篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?
12、学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有 4 位小朋友前来借阅,每人都借了 2 本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗?
13、11 名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的
书的类型相同
14、有一个布袋中有 5 种不同颜色的球,每种都有20 个,问:一次至少要取出多少个小球,才能保证其中至少有 3 个小球的颜色相同?
15、有红、黄、白三种颜色的小球各10 个,混合放在一个布袋中,一次至少摸出个,才能保证有 5 个小球是同色的?
16、把9 条金鱼任意放在8 个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.
17、证明:任取8 个自然数,必有两个数的差是7 的倍数.
18、袋中有外形安全一样的红、黄、蓝三种颜色的小球各10 个,每个小朋友只能从中摸出1 个小球,至少有 ______ 个_ 小朋友摸球,才能保证一定有两个人摸的
球颜色一样.
19、班上有28 名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?
20、一次测验共有10 道问答题,每题的评分标准是:回答完全正确,得 5 分;回答不完全正确,得 3 分,回答完全错误或不回答,得0 分.至少 ______ 人参加这次测验,才能保证至少有 3 人得得分相同.
21、在一只口袋中有红色与黄色球各 4 只,现有 4 个小朋友,每人从口袋中任意取出2 个小球,请你证明:必有两个小朋友,他们取出的两个球的颜色完全一
样.
22、证明:在从 1 开始的前10个奇数中任取6个,一定有 2 个数的和是20.
23、有形状、长短都完全一样的红筷子、黑筷子、白筷子、黄筷子、紫筷子和花
筷子各25 根。
在黑暗中至少应摸出 _____ 根筷子,才能保证摸出的筷子至少有8
双(每两根花筷子或两根同色的筷子为一双)。