完整版初中数学定理公式归纳汇总
初中数学公式定理总结汇总归纳大全

初中数学公式定理总结汇总归纳大全
一、代数公式
1、二元一次方程的解法:
解:二元一次方程的解为:x=(-b±√(b2-4ac))/2a
2、单项式的展开式:
解:单项式展开式有(x+y)^n=ΣCn,mx^(n-m)y^m
其中Cn,m为组合数,即Cn,m=n!/(m!(n-m)!)
3、二次函数的一般式:
解:二次函数一般式为:y=ax2+bx+c
其中a,b,c为实数,a≠0
4、分式的乘法:
解:分式相乘法则为:
(a/b)×(c/d)=ac/bd
5、分式的除法:
解:分式相除法则为:
(a/b)÷(c/d)=ad/bc
6、二次函数的极值:
解:当ax2+bx+c=0时,函数的极值为-(b±√(b2-4ac))/2a
7、二次函数的开口方向:
解:a>0时开口向上,a<0时开口向下
8、多项式的展开式:
解:多项式的展开式为:
(x+y)^n=ΣΣ(A)n,mx^(n-m)y^m
其中A)n,m为组合数,即A)n,m=n!/(m!(n-m)!)
9、二次函数的解析式:
解:解析式为:y=a(x-x1)(x-x2)
其中a为系数,x1和x2为极值点
二、几何公式
1、直线与圆的位置关系:
解:直线与圆的位置关系分为内切、外切、相交(内切外切)、切点相离
2、平行线定理:
解:如果两条直线互相垂直,则它们是平行的。
3、垂线定理:。
完整版)初中数学公式大全

完整版)初中数学公式大全一、基础运算法则1.加法法则:a+b=b+a2. 乘法法则:ab = ba3. 结合律:(a+b)+c = a+(b+c);(ab)c = a(bc)4. 分配律:a(b+c) = ab+ac二、整数运算1. 正整数的乘方:a的n次方:an = a × a × ... × a (n个a 连乘)2.负整数的乘方:a的负n次方:a^(-n)=1/(a^n)3.零的乘方:0的n次方(n为正整数):0^n=04.零的乘方:0的0次方:0^0=1三、代数运算1. 同底数幂相乘:ab^n = (ab)^n2. 积的幂:(ab)^n = a^n × b^n3.商的幂:(a/b)^n=(a^n)/(b^n)4.幂的乘方:(a^n)^m=a^(n×m)5.开方:a^(1/n)=n√a6.负指数的表示:a^(-n)=1/(a^n)四、二次方程1. 标准形式:ax^2+bx+c = 0,其中a≠02. 一元二次方程求根公式:x = (-b±√(b^2-4ac))/(2a)3.解的个数:一元二次方程有两个解时,称为有两个不等实数根;有一个解时,称为有两个相等的实数根;无解时,称为无实数根。
4. 判别式:Δ=b^2-4ac当Δ>0时,方程有两个不等实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根。
五、几何公式1.平行线的性质:平行线两边对应角相等、内错角相等、外错角相等、同位角相等。
2.三角形的内角和:三角形的内角和为180°。
3.三角形的边与角的关系:正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a^2 = b^2 + c^2 - 2bc*cosA4.三角形的两边关系:两边之和大于第三边;两边之差小于第三边。
5.等腰三角形的性质:底角相等,腰相等。
六、平面图形1. 长方形:周长P = 2(l + w),面积S = lw2.正方形:周长P=4a,面积S=a^23. 三角形:周长P = a + b + c,面积S = 1/2bh4.梯形:周长P=a+b1+b2+c5.圆:周长C=2πr,面积S=πr^2七、概率与统计1.事件的概率:P(A)=n/N,其中n是事件A发生的次数,N是事件的可能发生的总次数。
初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。
-分配率:a×(b+c)=a×b+a×c。
-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。
-幂的乘法:(a^m)×(a^n)=a^(m+n)。
2.平方根公式-设a≥0,则√a×√a=a。
-若a≥0,则√(a^2)=a。
3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。
- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。
4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。
-三角形内角和定理:一个三角形的内角之和等于180°。
-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。
5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。
-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。
-三角形内角和定理:一个三角形的内角之和等于180°。
-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。
6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。
-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。
-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。
-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。
-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。
7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。
-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。
-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。
初中数学所有定理与公式

初中数学所有定理与公式初中数学中的定理与公式有很多,以下是一些重要的定理和公式:一、整数与出列1.整数与负数相乘,结果为负数。
(定理)2.出列法则:同号相乘为正,异号相乘为负。
(公式)二、整式的加减与乘除1.加法交换律:a+b=b+a。
(定理)2.减法可加法运算:a-b=a+(-b)。
(公式)3.乘法交换律:a×b=b×a。
(定理)4.乘法分配律:a×(b+c)=a×b+a×c。
(定理)5.除法公式:a÷b=a×(1/b)。
(公式)6.乘幂公式:a^m×a^n=a^(m+n)。
(公式)三、因式分解与倍数与公约数1.因式分解:将一个多项式写成几个因式相乘的形式。
(规则)2.公约数:能同时整除两个或多个数的数。
(定义)3.最大公约数:一组数的公约数中最大的一个。
(定义)4.最小公倍数:一组数中能被所有数整除的最小整数。
(定义)四、平方根与勾股定理1.平方根的性质:如果a²=b,则√b=,a。
(定理)2.勾股定理:在直角三角形中,a²+b²=c²。
(定理)五、百分数及其应用1.百分比:以百为基数的计数单位。
(定义)2.百分数计算:a%=a/100。
(公式)3.利率计算:利息=本金×利率×时间。
(公式)4.百分数的增减:数据增加或减少的百分比计算。
(公式)六、方程与不等式1. 一元一次方程:ax + b = 0,x = -b/a。
(定理)2. 一元二次方程求解公式:x = (-b ± √(b² - 4ac))/(2a)。
(公式)3.不等式的性质:同意负号,异号取反,非负数平方不小于0。
(定理)七、平行线与相交线1.平行线的性质:同位角相等,内错角相等,外错角相等。
(定理)2.相交线的性质:同位角互补,内错角互补,外错角互补。
(定理)八、三角形与四边形1.三角形内角和为180°。
初中数学公式大全总结归纳

初中数学公式大全总结归纳一、代数部分1. 有理数- 有理数加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( -3)+(-5)=-(3 + 5)=-8。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)=-(5 - 3)=-2,( - 3)+5 = 5-3 = 2。
- 一个数同0相加,仍得这个数。
- 有理数减法法则:减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
- 有理数乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)=-15。
- 任何数同0相乘,都得0。
- 有理数除法法则:- 除以一个不等于0的数,等于乘这个数的倒数。
即adiv b=a×(1)/(b)(b≠0)。
- 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
2. 整式的加减- 合并同类项:同类项的系数相加,所得结果作为系数,字母和指数不变。
例如:3x+2x=(3 + 2)x=5x。
- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。
例如:a+(b - c)=a + b-c。
- 如果括号前面是“-”号,去括号时括号里面各项都变号。
例如:a-(b -c)=a - b + c。
3. 一元一次方程- 一元一次方程的标准形式:ax + b = 0(a≠0)。
- 求解一元一次方程的步骤:- 去分母(方程两边同时乘以各分母的最小公倍数)。
- 去括号。
- 移项(把含未知数的项移到等号一边,常数项移到等号另一边,移项要变号)。
- 合并同类项。
- 系数化为1(方程两边同时除以未知数的系数)。
4. 二元一次方程组- 二元一次方程组的解法:- 代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
初中数学全套公式

初中数学全套公式初中数学是义务教育的基础学科,其公式和概念的学习是这门课程的核心部分。
以下是一套完整的初中数学公式,这些公式涵盖了初中数学的大部分内容,对于理解和应用数学概念具有重要意义。
一、代数公式1、乘法公式:(a+b)(a-b)=a²-b²2、完全平方公式:a²+2ab+b²=(a+b)²3、平方差公式:a²-b²=(a+b)(a-b)4、立方和公式:a³+b³=(a+b)(a²-ab+b²)5、立方差公式:a³-b³=(a-b)(a²+ab+b²)6、两数和乘两数差:2(a+b)(a-b)=2a²-2b²7、两数平方和:a²+b²=(a+b)²-2ab8、两数和的平方:(a+b)²=a²+2ab+b²9、两数差的平方:(a-b)²=a²-2ab+b²10、幂的乘方:anbn=(ab)n11、积的乘方:anbn=(ab)n12、分式的约分:同时分子分母除以公因式。
13、提公因式法:一般地,如果想要提取一个多项式的公因式,我们把这个多项式的各项都含有的相同字母因式提到括号外面,将多项式化成积的形式,这种分解因式的方法叫做提公因式法。
14、运用公式法:如果一个式子的值等于几个其他式子的值乘积,那么这个式子就叫公式的原式,这几个其他式子就叫这个公式的因式。
如果把一个公式的所有因式分解出来,那么它们就都叫这个公式的因式分解。
二、几何公式1、勾股定理:在一个直角三角形中,斜边的平方等于两条直角边的平方和。
2、平行线间的距离公式:如果两条直线平行,那么一条直线上任意一点到另一条直线的距离相等。
3、三角形的面积公式:一个三角形的面积等于底边乘以高再除以2。
初中数学必背公式及定理

初中数学必背公式及定理数学是一门重要的学科,也是一门需要掌握公式和定理的学科。
初中数学中的公式和定理是学习数学的基础,掌握了这些公式和定理,能够更好地解题和理解数学知识。
下面是初中数学必背的公式和定理。
一、代数中的公式1. 二次方程的求根公式:对于一元二次方程ax²+bx+c=0,其根可以通过以下公式求得:x = (-b ± √(b²-4ac))/(2a)2. 平方差公式:(a±b)² = a²±2ab+b²3. 二次完全平方公式:a²+2ab+b²=(a+b)²4. 立方差公式:(a±b)³=a³±3a²b+3ab²±b³5.平方根的乘法公式:√a*√b=√(a*b)二、几何中的公式1.矩形的周长和面积:对于矩形,其周长C=2(l+w),面积S=l*w,其中l表示矩形的长度,w表示矩形的宽度。
2.三角形的周长和面积:对于三角形,其周长C=a+b+c,面积S=1/2*b*h,其中a、b、c表示三角形的三边长,h表示三角形的高。
3.圆的周长和面积:对于圆,其周长C=2πr,面积S=πr²,其中π取近似值3.14,r表示圆的半径。
4.直角三角形的勾股定理:对于直角三角形,设c为斜边,a、b为两直角边,则满足a²+b²=c²。
5.同心圆弦的等分定理:如果两条弦(或弦和直径)在同一个圆的同一边相交,那么它们所夹的弧(或弧和弦所夹的角)相等。
三、概率与统计中的公式1.事件的概率:设S为一个随机试验的样本空间,E为S的子集(即事件),则事件E的概率P(E)定义为E中的样本点数除以S中的样本点数。
2.互斥事件的概率:设A、B为两个事件,如果A和B不可能同时发生,称A和B为互斥事件,概率计算公式为P(A∪B)=P(A)+P(B)。
27条初中数学公式定理集锦

一、有理数1、相反数与绝对值(1)数a的相反数是-a。
若a、b互为相反数,则a+b=0;反之,若a+b=0,则a、b互为相反数.a(a>0),(2)绝对值计算∣a∣= 0(a=0),-a(a<0),a(a≧0),a(a>0),或∣a∣=或∣a∣=-a(a<0),-a(a≦0)2、两个有理数大小的比较(1)在数轴上,右边的数总比左边的数大.(2)正数大于0,负数小于0,正数大于一切负数.(3)两个负数比较,绝对值大的负数反而小.3、有理数的运算4、有理数运算律5、科学记数法把一个大于10的数记作a ×10n的形式,其中a 大于或等于1且小于10,即1 ≤| a| <10,n 是正整数.二、整式的加减1、合并同类项的法则合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变.2、去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直到结果中没有同类项为止.三、一元一次方程1、等式的基本性质(1)如果a=b ,那么a+c=b+c ,a-c=b-c(2)如果a=b ,那么ac=bc ;如果a=b ,那么a c =bc (c ≠0)2、解一元一次方程的步骤四、几何图形初步1、直线、线段公理(1)直线公理:两点确定一条直线. (2)线段公理:两点之间,线段最短. 2、角五、相交线与平行线1.相交线与垂线2.平行线3.命题、定理、证明六、实数1、平方根和立方根2、实数的性质(1)数a的相反数是-a,这里a表示任意一个实数.(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.七、平面直角坐标系各象限内点的坐标特点P(a,b)①点在第一象限,则a>0,b>0; ②点在第二象限,则a<0,b>0;○3点在第三象限,则a<0,b<0; ④点在第四象限,则a>0,b<0 角平分线上点的特点 P(a,b)①在一、三象限的角平分线上,a=b ; ②在二、四象限的角平分线上,a=-b平面直角坐标系中对称点的坐标特点 P(a,b) ①关于x 轴对称,横坐标相同,纵坐标互为相反数,即(a,-b );○2关于y 轴对称,横坐标互为相反数, 纵坐标相同,即(-a ,b ); ○3关于坐标原点对称,横纵坐标都互为相反数,即(-a,-b ) 与坐标轴平行的直线上的点的坐标特点○1与x 轴平行的直线上的所有点的纵坐标相同; ○2与y 轴平行的直线上的所有点的横坐标相同 八、二元一次方程组a 1x+b 1y=c 1, 对于二元一次方程组a 2x+b 2y=c 2.(1) 当a 1a 2 ≠b 1b 2(a 2,b 2≠0)时,方程组有唯一解.(2) 当a 1a 2 =b 1b 2 =c 1c 2 (a 2,b 2,c 2≠0)时,方程组有无数组解.(3) 当a 1a 2 =b 1b 2 ≠c 1c 2(a2,b2,c2≠0)时,方程组无解.九、不等式与不等式组1.不等式性质性质1:不等式的两边同时加(或减)同一个数或同一个含有字母的式子,不等号的方向不变,即如果a>b ,那么a ±m>b ±m.性质2:不等式的两边同时乘(或除)同一个正数,不等号的方向不变,即如果a>b 且m>0,那么am>bm 或a m >bm.性质3:不等式的两边同时乘(或除)同一个负数,不等号的方向改变,即如果a>b 且m<0,那么am<bm 或a m <bm.2.一元一次不等式组的解集不等式组(a<b )数轴表示解集口诀x>a ,x>bx>b同大取大x<a ,x<bx<a同小取小ababa ba b十、三角形1、三角形的分类2、三角形三边关系三角形中任意两边的和大于第三边,三角形中任意两边的差小于第三边.3、三角形内角和定理三角形三个内角的和等于180°.4、直角三角形的性质与判定性质;直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.5、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.6、多边形的内角和与外角和(1)n边形的内角和是(n-2)×180°.(2)n边形的外角和为360°.十一、全等三角形1.全等三角形角形的判定2.角平分线的性质及判定(1)性质:角的平分线上的点到角的两边的距离相等.(2)判定:角的内部到角的两边距离相等的点在角的平分线上.十二、轴对称1.轴对称和线段垂直平分线的性质及判定2.三角形的性质及判定十三、整式的乘法与因式分解1.幂的有关法则2.乘法公式3.因式分解十四、分式1.分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即 A B =A ·M B ·M ,A B = A ÷M B ÷M (其中M 是不等于0的整式) 2.分式的运算法则(1) 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.即b a ·d c =bdac .(2) 除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘.即b a ÷d c =b a ·c d =bcad.(3) 乘方法则:把分子、分母分别乘方.为正整数).(4) 加减法法则:①同分母的分式相加减,分母不变,把分子相加减.即a c ±b c =a ±bc:②异分母分式相加减,先通分,变为同分母分式,再加减.即a b ±d c =ac bc ±bd bc =ac ±bdbc.十五、二次根式十六、勾股定理1.勾股定理如果直角三角形的两条直角边长分别是a ,b,斜边长为c,那么a 2+b 2=c 2.2.勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么 这个三角形就是直角三角形.十七、平行四边形1.几种特殊四边形常用的判定方法2.中位线三角形的中位线平行于第三边,并且等于第三边的―半.十八、一次函数1.正比例函数的图象和性质2.—次函数的图象和性质Oxy OxyOxyOxy Oxy Oxy十九、数据的分析1. 平均数(1) 平均数: 对于n 个数n 个数的平均数. (2) 加权平均数:若n 则x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n叫做这n 个数的加权平均数 2. 数据的波动程度(1) 极差:一组数据的最大值与最小值的差(2) 方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用s 2来表示,计算公式x 1-⎺x )2+(x 2-⎺x )2+…+(x n -⎺x )2]. (3) 标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.公式:. 二十、一元二次方程1. 一元二次方程的解法2. —元二次方程根的判别式ax 2+bx+c=0(a ≠0) 的判别式△= b 2-4ac .(1) △>0,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根.(2) △=0,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3) △<0,一元二次方程ax 2+bx+c=0(a ≠0) 没有实数根.3. 一元二次方程根与系数的关系已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2, 则有二十—、二次函数2. 二次函斂y=a(x-h)+k(a ≠0)的性质3. 二次函数y=ax +bx+c 的性质(1) a 的符号:由抛物线的开口方向确定 ○1开口向上○2开口向下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题知识讲座学案复习中考总初中数学定理、公式归纳汇总、过两点有且只有一条直线。
1 、两点之间线段最短。
2 、同角或等角的补角相等;同角或等角的余角相等。
3 、过一点有且只有一条直线和已知直线垂直。
4 、直线外一点与直线上各点连接的所有线段中,垂线段最短。
5 、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
6 、如果两条直线都和第三条直线平行,这两条直线也互相平行。
7 、同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
8 9、两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
10、定理:三角形两边的和大于第三边。
推论:三角形两边的差小于第三边。
三角形三个内角的和等于180°。
11、三角形内角和定理:直角三角形的两个锐角互余。
1推论:三角形的一个外角等于和它不相邻的两个内角的和。
推论2 :三角形的一个外角大于任何一个和它不相邻的内角。
推论3 、全等三角形的对应边、对应角相等。
12SAS、边角边公理():有两边和它们的夹角对应相等的两个三角形全等。
13ASA):有两角和它们的夹边对应相等的两个三角形全等。
14、角边角公理(AAS推论():有两角和其中一角的对边对应相等的两个三角形全等。
SSS、边边边公理():有三边对应相等的两个三角形全等。
15HL):有斜边和一条直角边对应相等的两个直角三角形全等。
16、斜边、直角边公理(、定理:在角的平分线上的点到这个角的两边的距离相等。
17 逆定理:到一个角的两边的距离相同的点,在这个角的平分线上。
角的平分线是到角的两边距离相等的所有点的集合。
1专题知识讲座学案习总复中考、等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。
18 1推论:等腰三角形顶角的平分线平分底边并且垂直于底边。
2:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
推论:等边三角形的各角都相等,并且每一个角都等于60°。
推论3 19、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 1:三个角都相等的三角形是等边三角形。
推论:有一个角等于60°的等腰三角形是等边三角形。
推论2 、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
20 21、直角三角形斜边上的中线等于斜边上的一半。
22、定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
:关于某条直线对称的两个图形是全等形。
23、轴对称性质定理1 :如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
定理2 :两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
定理3 逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
222ca b ca?b?。
24、勾股定理:直角三角形两直角边、的平方,即的平方和等于斜边222ca b cb?a?有关系勾股定理的逆定理:如果三角形的三边长,那么这个三角形是直角三角形、、 360°。
360°;四边形的外角和等于25、定理:四边形的内角和等于n??180(n?2)边形的内角的和等于。
、多边形内角和定理:26 360°。
推论:任意多边的外角和等于 1:平行四边形的对角相等。
、平行四边形性质定理27 :平行四边形的对边相等。
平行四边形性质定理2 推论:夹在两条平行线间的平行线段相等。
:平行四边形的对角线互相平分。
平行四边形性质定理32专题知识讲座学案复总习中考1:两组对角分别相等的四边形是平行四边形。
28、平行四边形判定定理 2:两组对边分别相等的四边形是平行四边形。
平行四边形判定定理 3:对角线互相平分的四边形是平行四边形平行四边形判定定理 4:一组对边平行相等的四边形是平行四边形。
平行四边形判定定理:矩形的四个角都是直角。
29、矩形性质定理1 :矩形的对角线相等。
矩形性质定理2 :有三个角是直角的四边形是矩形。
30、矩形判定定理1 :对角线相等的平行四边形是矩形。
矩形判定定理2 :菱形的四条边都相等。
、菱形性质定理131 、菱形的对角线互相垂直,并且每一条对角线平分一组对角。
菱形性质定理21ab?S。
32、菱形面积=对角线乘积的一半,即2 1:四边都相等的四边形是菱形。
33、菱形判定定理 2:对角线互相垂直的平行四边形是菱形。
菱形判定定理:正方形的四个角都是直角,四条边都相等。
34、正方形性质定理1 :正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
正方形性质定理2 :关于中心对称的两个图形是全等的。
、中心对称性质定理135 :关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
定理2逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
1:等腰梯形在同一底上的两个角相等。
36、等腰梯形性质定理:等腰梯形的两条对角线相等。
等腰梯形性质定理2 1、等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形。
37 :对角线相等的梯形是等腰梯形2等腰梯形判定定理平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也、38相等。
3专题知识讲座学案复习中考总:经过梯形一腰的中点与底平行的直线,必平分另一腰。
推论1推论:经过三角形一边的中点与另一边平行的直线,必平分第三边。
、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
39 梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。
40、caac bc?bcadad???,那么,那么41、(1)比例的基本性质:如果;如果。
dbbdd?bcaca???,那么(2)合比性质:如果。
ddbb L m??e?a?cmeack??L???k?0?n?f?L?b?d。
)3等比性质:)如果(,那么(L ndfbn?d?f??b 42、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等。
、定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于43 三角形的第三边。
所截得的三角形的三边与原三角形三边对应成比例。
、平行于三角形的一边,并且和其他两边相交的直线,44、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
45 :两角对应相等,两三角形相似。
、相似三角形判定定理146 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
2:两边对应成比例且夹角相等,两三角形相似。
判定定理 3:三边对应成比例,两三角形相似。
判定定理、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,47 那么这两个直角三角形相似。
1、相似三角形性质定理:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。
48 :相似三角形周长的比等于相似比。
2性质定理 3性质定理:相似三角形面积的比等于相似比的平方。
、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。
494专题知识讲座学案习总复中考、圆是到定点的距离等于定长的点的集合。
50圆的内部可以看作是圆心的距离小于半径的点的集合。
圆的外部可以看作是圆心的距离大于半径的点的集合。
51、同圆或等圆的半径相等。
、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
52和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线。
到已知角的两边距离相等的点的轨迹,是这个角的平分线。
到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线。
、定理:不在同一直线上的三点确定一个圆。
53 、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
54 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
:①推论1 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
②平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
③:圆的两条平行弦所夹的弧相等。
推论2 55、圆是以圆心为对称中心的中心对称图形。
56、定理、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
、定理:一条弧所对的圆周角等于它所对的圆心角的一半。
57 :同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论1 90°的圆周角所对的弦是直径。
:半圆(或直径)所对的圆周角是直角; 2推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
推论3 58、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
r?Odl59、①直线和⊙;相交:rdO?l;和⊙②直线相切:5专题知识讲座学案习总中考复r?Odl和⊙③直线。
相离:、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
60 、切线的性质定理:圆的切线垂直于经过切点的半径。
61 :经过圆心且垂直于切线的直线必经过切点。
推论1 :经过切点且垂直于切线的直线必经过圆心。
推论2、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹62 角。
、圆的外切四边形的两组对边的和相等。
63 弦切角定理:弦切角等于它所夹的弧对的圆周角。
64、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
65、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
66推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
67、如果两个圆相切,那么切点一定在连心线上。
rR?d?、①两圆外离:68;rR?d?②两圆外切:;)r(R??d?R?rR?r③两圆相交:;)rR??R?r(d④两圆内切:;)?r?r(R?dR。
⑤两圆内含:69、定理:相交两圆的连心线垂直平分两圆的公共弦。
3)?n(n 70、定理:把圆分成n 1)依次连结各分点所得的多边形是这个圆的内接正边形。