气相沉积

合集下载

气相沉积的概念

气相沉积的概念

气相沉积的概念气相沉积(Gas Phase Deposition)是一种常用的薄膜制备技术,它通过在气体相中加入适当的前体物质,利用物质的气相反应来沉积不同材料的薄膜。

气相沉积技术包括化学气相沉积(CVD)和物理气相沉积(PVD)两种。

化学气相沉积是指利用化学反应使气态前体分子发生解离或化学反应,并在衬底表面上生成固态产物的过程。

化学气相沉积可以分为低压化学气相沉积(LPCVD)和大气压化学气相沉积(APCVD)。

前者是在真空或低压环境下进行,后者则是在大气压下进行。

低压化学气相沉积主要通过两种方式进行:热解和气相化学反应。

在热解法中,高压气体通过加热管,被导入反应室中,然后沉积在衬底上。

而在气相化学反应中,通常需要增加催化剂,先生成前体气体,然后进行气相反应,最后在衬底表面上形成固态化合物。

在低压化学气相沉积中,可以制备出包括二氧化硅、多晶硅、金刚石、碳化硅等材料的薄膜。

大气压化学气相沉积常用于较简单的沉积过程,例如氧化物的沉积。

在该方法中,通常将前体分子溶解在溶剂中,形成液体溶液,然后将衬底浸入溶液中,通过加热使溶液中的前体分子析出并沉积在衬底上。

大气压化学气相沉积主要用于制备硅氧薄膜、氮化硅薄膜和锡氧化物薄膜等。

物理气相沉积是通过物理手段将固体物质转变为薄膜。

物理气相沉积包括物理气相淀积(Physical Vapor Deposition, PVD)和分子束外延(Epitaxy, MBE)两种方法。

物理气相沉积的主要特点是沉积温度低、沉积速度快,且可以制备出高纯度的薄膜。

物理气相淀积通常包括蒸发法和溅射法两种技术。

蒸发法是将沉积材料加热至其蒸汽压以上,然后通过进一步冷凝沉积在衬底表面上。

溅射法是将材料制备成靶材,然后用高能粒子轰击靶材,使材料脱离靶材并沉积在衬底上。

物理气相沉积主要用于制备金属和合金材料的薄膜。

分子束外延是一种用于制备高质量晶体薄膜的技术。

在分子束外延中,通过高真空环境下,利用分子束磊晶或分子束蒸镀方法,将具有单晶性的材料沉积在衬底上。

第10章化学气相沉积

第10章化学气相沉积

18
(4)
金属的羰基化合物 金属薄膜
(180 oC)
Ni(CO)4
Ni(s) + 4CO(g)
Pt(CO)2Cl2 Pt(s) + 2CO(g)+Cl2
19
(600 oC)
(5)
金属的单氨配合物
氮化物
GaCl3· NH3 GaN + 3HCl (800~900 oC)
AlCl3· NH3 AlN + 3HCl oC) (800~1000
28
5. 等离子体增强的反应沉积
低真空,利用直/交流电、射频、微波
等实现气体放电产生等离子体
PECVD大大降低沉积温度 例
SiH4+ x N2O
~350º C
通常850º C 350º C
–– SiOx+…
SiH4 ––– -Si + 2H2 用于制造非晶硅太阳能电池
29
6. 其他能源增强的反应沉积
超纯多晶硅的CVD生产装置
37
超纯多晶硅的沉积生产装置


沉积反应室: 钟罩式的常压装置,中间是由三段 硅棒搭成的倒u型,从下部接通电源使硅棒保持 在1150℃左右,底部中央是一个进气喷口,不断 喷人三氯硅烷和氢的混合气,超纯硅就会不断被 还原析出沉积在硅棒上; 最后得到很粗的硅锭或硅块用于拉制半导体硅单 晶。
31
CH4
800~1000º C
–––
C (碳黑)+ 2H2
CH4
热丝或等离子体 800~1000º C
–––
C (金刚石)+ 2H2
32
其它能源增强的反应沉积
其它各种能源,例如: 火焰燃烧法,或热丝法都可以实现增强沉 积反应的目的。 燃烧法主要是增强反应速率。利用外界能 源输入能量,有时还可以改变沉积物的品 种和晶体结构。

化学气相沉积法

化学气相沉积法

时间与速率
要点一
总结词
时间和沉积速率在化学气相沉积过程中具有重要影响,它 们决定了薄膜的厚度和均匀性。
要点二
详细描述
时间和沉积速率决定了化学气相沉积过程中气体分子在反 应器中的停留时间和沉积时间。较长的停留时间和较慢的 沉积速率有利于气体分子充分反应和形成高质量的薄膜。 然而,过长的停留时间和过慢的沉积速率可能导致副反应 或降低沉积速率。因此,选择合适的时间和沉积速率是实 现均匀、高质量薄膜的关键。
05
化学气相沉积法优 缺点
优点
适用性广
涂层性能优良
化学气相沉积法适用于各种材料表面改性 和涂层制备,如金属、陶瓷、玻璃等。
通过控制化学气相沉积的条件,可以制备 出具有高硬度、高耐磨性、高抗氧化性的 涂层。
环保
高效
化学气相沉积法使用的原料在高温下分解 ,不会对环境造成污染。
化学气相沉积法具有较高的沉积速率,可 实现快速涂层制备。
应用领域
半导体产业
用于制造集成电路、微 电子器件和光电子器件
等。
陶瓷工业
制备高性能陶瓷材料, 如氧化铝、氮化硅等。
金属表面处理
在金属表面形成耐磨、 防腐、装饰等功能的涂
层。
其他领域
在航空航天、能源、环 保等领域也有广泛应用

02
化学气相沉积法分 类
热化学气相沉积法
原理
在较高的温度下,使气态的化 学反应剂与固态表面接触,通 过气相反应生成固态沉积物。
缺点
高温要求
化学气相沉积法需要在高温下进行,这可能会对 基材产生热损伤或变形。
操作难度大
化学气相沉积法需要精确控制反应条件,操作难 度较大。
ABCD
设备成本高

化学气相沉积CVD

化学气相沉积CVD
离解和离化,从而大大提高了参与反应的物质活性;
这些具有高反应活性的物质很容易被吸附到较低温度的基
体表面上,于是,在较低的温度下发生非平衡的化学反应
沉积生成薄膜,这就大大降低了基体的温度,提高了沉积
速率。
16
3. PECVD装置
普通CVD+高频电源(用于产生等离子体)
用高频产生辉光放电等离子体的卧式反应
主要由反应器(室)、供气系统和加热系统等组成
图8.3.1
Si片PN结构微细加工的CVD装置意示图
6
反应器的类型:
图8.3.2 CVD反应器的类型
7
沉积过程:
① 在主气流区域,反应物从反应器入口到分解区域的质
量输运;
② 气相反应产生膜形成的前驱体和副产物;
③ 成膜前驱体质量输运至生长表面;
④ 成膜前驱体吸附在生长表面;
可有效解决普通CVD基体温度高,沉积速率慢的不足。
1.等离子体
(1)物质的第四态
给物质以能量,即T↗:
固 液 气 电离,离子+自
由电子,等离子体,第四态。
(2)产生
自然界:大气电离层,高温太阳
实验室:气体放电,供给能量,维持;
图8.3.3 物质的四态
15
(3)性质及应用
气体高度电离的状态;
下进行沉积的某些场合,如沉积平面
硅和MOS集成电路的纯化膜。
(2)按照沉积时系统压强的大小分类:
常压CVD(NPCVD),~1atm;
低压CVD(LPCVD),10~100Pa;
LPCVD具有沉积膜均匀性好、台阶覆盖及一致性较好、
针孔较小、膜结构完整性优良、反应气体的利用率高等优
点,不仅用于制备硅外延层,还广泛用于制备各种无定形

气相沉积技术

气相沉积技术
①反应气体向工件表面扩散并被吸附; ②吸附于工件表面的各种物质发生表面化学反应; ③生成物质点聚集成晶体并增大; ④表面化学反应中产生的气体产物脱离工件表面返回气相; ⑤沉积层与基体的界面发生元素的互扩散,形成镀层。
物理气相沉积
物理气相沉积(简称PVD)是将金属、合金或化合物放在真空室中蒸发(或称溅射)。使这些气相原子或分子在 一定条件下沉积在工件表面上的工艺。物理气相沉积可分为真空蒸镀、真空溅射和离子镀互类。与CVD相比,PVD 法的主要优点是处理温度较低,沉积速度较快,无公害等,因而有很高的实用价值。它的不足之处是沉积层与工 件的结合力很小,镀层的均匀性稍差。此外它的设备造价高,操作维护的技术要求也较高。
涂层的特点
①涂层具有很高的硬度、低的摩擦系数和自润滑性能,所以耐磨损性能良好。 ②涂层具有很高的熔点、化学稳定性好,基体金属在涂层中的溶解度小,摩擦系数较低,因而具有很好的抗 黏着磨损能力。使用中发生冷焊和咬合的倾向也很小,而且TiN比TiC更好。 ③涂层具有较强的耐蚀能力。 ④涂层在高温下也具有良好的抗大气氧化能力。
③方法的复合。较先进的气相沉积工艺多是各种单一PVD,CVD方法的复合。它们不仅采用各种新型的加热源, 而且充分运用各种化学反应高频电磁(脉冲、射频、微波等)及等离子体等效应来激活沉积粒子。如反应蒸镀、反 应溅射、离子束溅射、多种等离子体激发的CVD等。
化学气相沉积
化学气相沉积(简称CVD)是利用气态物质在一定温度下于固体表面进行化学反应,并在其表面上生成固态沉 积膜的过程。其过程如下:
气相沉积技术
利用气相中发生的物理、化学过程,改变工件表面成分
01 应用
目录
02 发展前景
03 化学气相沉积
04 物理气相沉积

气相沉积原理

气相沉积原理

气相沉积原理气相沉积(CVD)是一种重要的薄膜制备技术,广泛应用于半导体、光电子、纳米材料等领域。

其原理是通过在高温下将气体中的化合物分解或反应,使其沉积在基底表面上,形成薄膜或涂层。

气相沉积技术具有高纯度、均匀性好、厚度可控等优点,因此受到了广泛的关注和应用。

气相沉积原理的核心是气体中的化合物在高温下发生化学反应,生成固体产物并沉积在基底表面上。

这一过程主要包括气体输运、表面吸附、化学反应和沉积四个基本步骤。

首先,气体通过输运系统输送到反应室中,然后在基底表面发生吸附,形成反应物质的吸附层。

接着,在高温条件下,吸附层中的化合物发生化学反应,生成固体产物并沉积在基底表面上。

最后,通过控制气体输送和反应条件,可以实现对薄膜厚度、成分和结构的精确控制。

气相沉积技术主要分为化学气相沉积(CVD)和物理气相沉积(PVD)两种类型。

其中,CVD是指在高温条件下,气体中的化合物发生化学反应并沉积在基底表面上,形成薄膜或涂层。

而PVD则是通过物理手段,如溅射、蒸发等,将固体材料沉积在基底表面上。

相比之下,CVD技术可以实现更高的纯度和均匀性,因此在半导体、光电子等领域得到了广泛的应用。

在实际应用中,气相沉积技术需要考虑多个因素,如反应气体的选择、反应温度、压力、基底表面状态等。

不同的反应条件会影响薄膜的成分、结构和性能,因此需要精确控制这些参数。

此外,还需要考虑反应室的设计、气体输送系统、基底表面处理等方面的问题,以确保薄膜的质量和稳定性。

总的来说,气相沉积技术是一种重要的薄膜制备技术,具有高纯度、均匀性好、厚度可控等优点,因此在半导体、光电子、纳米材料等领域得到了广泛的应用。

通过精确控制反应条件和参数,可以实现对薄膜的精确控制,满足不同领域的需求。

随着科学技术的不断发展,相信气相沉积技术在未来会有更广阔的应用前景。

气相法沉积

气相法沉积气相法沉积是一种重要的化学气相沉积(CVD)技术,它利用气体在高温高压条件下产生化学反应,形成固态薄膜。

气相法沉积具有高效、快速、成本低等优点,因此广泛应用于半导体、光学、电子、材料等领域。

气相法沉积过程中,首先需要将反应物气体通过进气阀进入反应器中。

反应器内通常在高温高压条件下进行,以满足反应的需要。

此时,反应物气体与反应器内已有的基底表面(或底物)发生化学反应,形成固态薄膜。

最终,可得到具有特定性质的薄膜。

气相法沉积技术主要有以下几种类型:1.化学气相沉积(CVD),即利用气体反应形成薄膜的技术。

2.物理气相沉积(PVD),即使用蒸发、溅射等技术将固态材料转化为气态,并在基板表面上通过凝聚从而形成薄膜。

3.分子束外延(MBE),是一种高真空下的气相沉积技术,利用超高真空下喷射出高能的分子束瞄准样品表面,让该物质分子精确地沉积在目标表面。

4.原子层沉积(ALD),是一种基于气相化学反应的表面修饰技术。

在该技术中, 反应物以单层分子的形式逐层地沉积在表面,从而形成一层厚度非常均匀的薄膜。

上述气相法沉积技术均可以在高温高压下进行,并且能够形成具有不同性质的固态薄膜。

但它们在反应机理、反应条件、反应物等方面存在差异,因此应根据不同的需求选择合适的方法。

值得注意的是,气相法沉积技术在实际应用中也存在一些问题,比如薄膜的质量不稳定、反应设备的维护难度大等。

针对这些问题,目前已有许多研究工作展开,以进一步提高气相法沉积技术的应用价值和性能表现。

总之,气相法沉积技术是一种十分重要的化学气相沉积技术,具有诸多优点,并且在半导体、光学、电子、材料等多个领域得到广泛应用。

虽然该技术存在一些问题,但仍然有很大的发展前景。

化学气相沉积

起反应室内的微粒或
微尘,使沉积薄膜的
品质受到影响
2、CVD技术的热动力学原理
输送现象:
动量传递
以“雷诺数”作为流体以何种
方式进行流动的评估依据:
Re
d v

流速与流向均
平顺者称为“层
流”;
其中,d为流体流经的管径,ρ为流体的密度,
流动过程中产
生扰动等不均
匀现象的流动
形式,则称为
“湍流”。
21
4.2 化学气相沉积原理
二、化学气相沉积法原理
2、CVD技术的热动力学原理
输送现象:
质量传递
反应气体或生成物通过边界层是以扩散的方式来进行的,而使气体分子进
行扩散的驱动力则是来自于气体分子局部的浓度梯度。CVD反应的质量传递用
Fick第一扩散定律描述:
扩散流量 = = −(
22

)
Si 4 HCl
1150~12000 C
10
4.2 化学气相沉积原理
化学合成反应:
由两种或两种以上的反应原料气在沉积反应器中相互作用合成得到所需要的
无机薄膜或其它材料形式的方法。与热分解法比,这种方法的应用更为广泛,
因为可用于热分解沉积的化合物并不很多,而无机材料原则上都可以通过合
适的反应合成得到。
在气体中生成粒子。
3
4.2 化学气相沉积原理
一、基本概念
CVD技术要求:
反应剂在室温或不太高的温度下最好是气态或有较高的蒸气压而易于挥发成
蒸汽的液态或固态物质,且有很高的纯度;
通过沉积反应易于生成所需要的材料沉积物,而其他副产物均易挥发而留在
气相排出或易于分离;
反应易于控制。

5.2 气相沉积法

5.2 气相沉积法 2023最新整理收集 do something
气相沉积技术是一种在基体上形成一层功能膜 的技术,它是利用气相中发生的物理、化学反应在 材料表面沉积单层或多层薄膜,从而使材料获得所 需的各种优异性能。 例:用TiN、TiC等超硬镀层涂敷刀具、模具等表 面,由于化学稳定性好,摩擦系数小,具有优良的 耐热、耐磨、抗氧化、耐冲击等性能,既可以提高 刀具、模具等的工作特性,又可以提高寿命,一般 可使刀具寿命提高3-10倍。
岛 薄膜
成膜机理
真空蒸发所得到的薄膜,一般都是多晶膜或无定形膜,经历 成核和成膜两个过程。
• 蒸发的原子(或分子)碰撞到基片时,或是永久附着在 基片上,或是吸附后再蒸发而离开基片,其中有一部分 直接从基片表面反射回去。
• 粘附在基片表面的原子(或分子)由于热运动可沿表面 移动,如碰上其它原子便积聚成团。这种团最易于发生 在基片表面应力高的地方,或在晶体衬底的解理阶梯上, 因为这使吸附原子的自由能最小。这就是成核过程。
Heat decomposition
金属有机化合物与氢化物体系的热分解
Ga(CH3)3 AsH3 630-675℃ GaAs 3CH4 Zn(C2H5)2 H2Se 725750℃ ZnSe 2C2H6
广泛用于制备化合物半导体薄膜。
33
氢还原反应 ---利用氢气将一些元素从其卤化物中还原出来
例如二氧化硅可采用下面几个反应: SiCl4 (g) O2 (g) SiO2 (s) 2Cl2 (g) SiH4 (g) O2 (g) SiO2 (s) 2H2 (g)
SiCl4 (g) 2CO2 (g) 2H2 (g) SiO2 (s) 4HCl(g) 2CO(g)
Chapter5 Preparation of Materials

化学气相沉积CVD


围以及避免了基片变形问题。
SEIEE
化学气相沉积——基本原理
(3)氢化物和金属有机化合物系统
630 675℃ Ga(CH3 )3 + AsH3 GaAs + 3CH4 475℃ Cd(CH3 )2 + H2S CdS + 2CH4
广泛用于制备化合物半导体薄膜。 ( 4 )其它气态络合物、复合物(贵金属、过渡金属沉积)
原则上可制备任一种无机薄膜。
SEIEE
化学气相沉积——基本原理
化学输运反应
将薄膜物质作为源物质(无挥发性物质),借助适当 的气体介质(输运剂)与之反应而形成气态化合物,这种 气态化合物经过化学迁移或物理输运到与源区温度不同的 沉积区,在基片上再通过逆反应使源物质重新分解出来, 这种反应过程称为化学输运反应。
1000 ℃ SiCl 2 H Si 4HCl 4 2
H、Cl、Si三元体系
SEIEE
化学气相沉积——基本原理
CVD的(化学反应)动力学
反应动力学是一个把反应热力学预言变为现实,使反 应实际进行的问题;它是研究化学反应的速度和各种因素 对其影响的科学。 动力学的因素决定了上述过程发生的速度以及他在有限时 间内可进行的程度 CVD 反应动力学分析的基本任务是:通过实验研究薄 膜的生长速率,确定过程速率的控制机制,以便进一步调 整工艺参数,获得高质量、厚度均匀的薄膜。
其自由能变化
ΔGr=cGc-bGb-aGa
Gi Gi0 RT ln ai
SEIEE
化学气相沉积——基本原理
Gr 与反应系统的化学平衡常数K有关
G RT ln K
K Pi (生成物)iBiblioteka 1 n或m j 1 j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学气相沉积
气相沉积技术是一种发展迅速、应用广泛的表面成膜技术,它不仅可以用来制备各种特殊力学性能(如超硬、高耐蚀、耐热和抗氧化等)的薄膜涂层,而且还可以用来制备各种功能薄膜材料和装饰薄膜涂层等。

气相沉积技术可以分为物理气相沉积(Physical Vapor Deposition,简称PVD)和化学气相沉积(Chemical Vapor Deposition,简称CVD)。

其中化学气相沉积应用最为广泛,技术发展及研究最为成熟。

化学气相沉积的古老原始形态可以追朔到古人
类在取暖或烧烤时熏在岩洞壁或岩石上的黑色碳
层。

作为现代CVD技术发展的开始阶段在20世纪
50年代,主要着重于刀具涂层的应用。

从20世纪
60~70年代以来由于半导体和集成电路技术发展和
生产的需要,CVD技术得到了更迅速和更广泛的发
展。

目前CVD技术在电子、机械等工业部门中发挥
了巨大作用,特别对一些如氧化物、碳化物、金刚石和类金刚石等功能薄膜和超硬薄膜的沉积。

化学气相沉积是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的技术。

简单来说就是:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互
之间发生化学反应,形成一种新的材
料,沉积到基片表面上。

CVD和PVD
相比,沉积过程要发生化学反应,是
一个气象化学生长的过程。

从气相中析出的固体的形态主要
有下列几种:在固体表面上生成薄
膜、晶须和晶粒,在气体中生成粒
子。

一、CVD技术的基本要求:
为适应CVD技术的需要,选择原料、产物及反应类型等通常应满足以下几点基本要求:
(1)反应剂在室温或不太高的温度下最好是气态或有较高的蒸气压而且易于挥发成蒸汽的液态或固态物质,且有很高的纯度
(2)通过沉积反应易于生成所需要的材料沉积物,而其他副产物均易挥发而留在气相排出或易于分离
(3)反应易于控制
二、CVD技术的基本原理:
CVD是建立在化学反应基础上的,要制备特定性能材料首先要选定一个合理的沉积反应。

用于CVD技术的通常有如下所述五种反应类型。

(1)热分解反应
热分解反应是最简单的沉积反应,利用热分解反应沉积材料一般在简单的单温区炉中进行,其过程通常是首先在真空或惰性气氛下将衬底加热到一定温度,然后导入反应气态源物质使之发生热分解,最后在衬底上沉积出所需的固态材料。

热分解发可应用于制备金属、半导体以及绝缘材料等。

(2)氧化还原反应沉积
一些元素的氢化物、有机烷基化合物常常是气态的或者是易于挥发的液体或固体,便于使用在CVD技术中。

如果同时通入氧气,在反应器中发生氧化反应时就沉积出相应于该元素的氧化物薄膜。

许多金属和半导体的卤化物是气体化合物或具有较高的蒸气压,很适合作为化学气相沉积的原料,要得到相应的该元素薄膜就常常需采用氢还原的方法。

氢还原法是制取高纯度金属膜的好方法,工艺温度较低,操作简单,因此有很大的实用价值。

(3) 化学合成反应沉积
化学合成反应沉积是由两种或两种以上的反应原料气在沉积反应器中相互作用合成得到所需要的无机薄膜或其它材料形式的方法。

这种方法是化学气相沉积中使用最普遍的一种方法。

与热分解法比,化学合成反应沉积的应用更为广泛。

因为可用于热分解沉积的化合物并不很多,而无机材料原则上都可以通过合适的反应合成得到。

(4)化学输运反应沉积
把所需要沉积的物质作为源物质,使之与适当的气体介质发生反应并形成一种气态化合物。

这种气态化合物经化学迁移或物理载带而输运到与源区温度不同的沉积区,再发生逆向反应生成源物质而沉积出来。

这样的沉积过程称为化学输运反应沉积。

其中的气体介质成为输运剂,所形成的气态化合物称为输运形式。

这类反应中有一些物质本身在高温下会汽化分解然后在沉积反应器稍冷的地方反应沉积生成薄膜、晶体或粉末等形式的产物
(5)等离子体增强的反应沉积
在低真空条件下,利用直流电压(DC)、交流电压(AC)、射频(RF)、微波(MW)或电子回旋共振(ECR)等方法实现气体辉光放电在沉积反应器中产生等离子体。

由于等离子体中正离子、电子和中性反应分子相互碰撞,可以大大降低沉积温度,例如硅烷和氨气的反应在通常条件下,约在850℃左右反应并沉积氮化硅,但在等离子体增强反应的条件下,只需在350℃左右就可以生成氮化硅。

三、CVD装置:
化学气相沉积的工艺装置主要由反应室、供气系统和加热系统组成。

反应室是CVD中最基本的部分,常采用石英管制成,其器壁可为热态或冷态,依实
际情况而定。

反应室可以采用电阻加热或高频感应加热。

四、CVD流程:
五、CVD特点:
(1)沉积反应如在气固界面上发生则沉积物将按照原有固态基底(又称衬底)的形状包覆一层薄膜。

(2)涂层的化学成分可以随气相组成的改变而改变,从而获得梯度沉积物或得到混合镀层。

(3)采用某种基底材料,沉积物达到一定厚度以后又容易与基底分离,这样就可以得到各种特定形状的游离沉积物器具。

(4)在CVD技术中也可以沉积生成晶体或细粉状物质,或者使沉积反应发生在气相中而不是在基底表面上,这样得到的无机合成物质可以是很细的粉末,甚至是纳米尺度的微粒称为纳米超细粉末。

(5)CVD工艺是在较低压力和温度下进行的,不仅用来增密炭基材料,还可增强材料断裂强度和抗震性能是在较低压力和温度下进行的。

CVD主要缺点是需要在较高温度下进行反应,基片温度高,沉积速率较低(一般每小时只有几微米到几百微米),基体难以进行局部沉积,参加沉积反应的气源和反应后的余气都有一定的毒性等
六、CVD的发展:
目前,CVD反应沉积温度的更低温化是一个发展方向,金属有机化学气相沉积技术(MOCVD)是一种中温进行的化学气相沉积技术,采用金属有机物作为沉积的反应物,通过金属有机物在较低温度的分解来实现化学气相沉积。

近年来发展的等离子体增强化学气相沉积法(PECVD)也是一种很好的方法,最早用于半导体材料的加工,即利用有机硅在半导体材料的基片上沉积SiO2。

PECVD将沉积温度从1000℃降到600℃以下,最低的只有300℃左右,等离子体增强化学气相沉积技术除了用于半导体材料外,在刀具、模具等领域也获得成功的应用。

随着激光的广泛应用,激光在气相沉积上也都得到利用,激光气相沉积(LCVD)通常分为热解LCVD和光解LCVD两类,主要用于激光光刻、大规模集成电路掩膜的修正以及激光蒸发-沉积。

在向真空方向发展方面在向真空方向发展方面,出现了超高真空/化学气相沉(UHV/CVD)法。

此外,化学气相沉积制膜技术还有射频加热化学气相沉积(RF/CVD)、紫外光能量辅助化学气相沉积(UV/CVD)等其它新技术不断涌现。

相关文档
最新文档