第六讲化学气相沉积CVD技术

合集下载

化学气相沉积CVD

化学气相沉积CVD
离解和离化,从而大大提高了参与反应的物质活性;
这些具有高反应活性的物质很容易被吸附到较低温度的基
体表面上,于是,在较低的温度下发生非平衡的化学反应
沉积生成薄膜,这就大大降低了基体的温度,提高了沉积
速率。
16
3. PECVD装置
普通CVD+高频电源(用于产生等离子体)
用高频产生辉光放电等离子体的卧式反应
主要由反应器(室)、供气系统和加热系统等组成
图8.3.1
Si片PN结构微细加工的CVD装置意示图
6
反应器的类型:
图8.3.2 CVD反应器的类型
7
沉积过程:
① 在主气流区域,反应物从反应器入口到分解区域的质
量输运;
② 气相反应产生膜形成的前驱体和副产物;
③ 成膜前驱体质量输运至生长表面;
④ 成膜前驱体吸附在生长表面;
可有效解决普通CVD基体温度高,沉积速率慢的不足。
1.等离子体
(1)物质的第四态
给物质以能量,即T↗:
固 液 气 电离,离子+自
由电子,等离子体,第四态。
(2)产生
自然界:大气电离层,高温太阳
实验室:气体放电,供给能量,维持;
图8.3.3 物质的四态
15
(3)性质及应用
气体高度电离的状态;
下进行沉积的某些场合,如沉积平面
硅和MOS集成电路的纯化膜。
(2)按照沉积时系统压强的大小分类:
常压CVD(NPCVD),~1atm;
低压CVD(LPCVD),10~100Pa;
LPCVD具有沉积膜均匀性好、台阶覆盖及一致性较好、
针孔较小、膜结构完整性优良、反应气体的利用率高等优
点,不仅用于制备硅外延层,还广泛用于制备各种无定形

化学气相沉积(CVD)技术及应用

化学气相沉积(CVD)技术及应用

CVD的应用-半导体
➢低介电常数薄膜—布线间绝缘用的SiO2系薄膜 (F的加入)
➢微小电容器—铁电体的CVD,良好的台阶涂敷, 适合微细加工,保证高介电常数
➢高容量电容—半球形晶粒多晶Si-CVD
CVD的应用-半导体
➢对高密度LSI的超微细孔(连接孔或通孔)进行 处理—金属CVD,膜层纯度高,深孔埋入和孔 底涂敷效果好
➢高纯度单晶—有机金属CVD
CVD的其他应用
➢TFT(thin film transistor,薄膜晶 体管)
➢大面积且性能一致的低成本薄膜 ➢PCVD温度低,适合连续化生产
S.M. Han, J.H. Park, S.G. Park et al.,Thin Solid Films, 515 (2007) 7442-7445
源瓶 载带 气体
MFC 纯化
MFC 纯化
真空泵
气 瓶
源 气体
气 瓶
置换 气体
排气 处理装置
基板进出
废气排放 (或储存)
热CVD法成膜原理
原料气体 热分解 化学反应
排气
成膜过程:
二次生成物
未反应气体 1.反应气体被基体表面吸附;
2.反应气体向基体表面扩散;
抽取
3.在基体表面发生反应;
吸附 表面反应
脱离 沉积
类金刚石薄膜: 理想的刀具材料,国 内外研究热点,已经 有相关产品。
胡如夫, 孙方宏,制造工艺与制造技术 ,1 (2007)74-76
CVD的应用-半导体
➢LSI(large scale integrated circuit) 大规模集成电路
➢多层布线的层间绝 缘膜,金属布线, 电阻及散热材料等
Y. Akasaka, Thin Solid Films, in press

化学气相沉积(CVD)技术梳理

化学气相沉积(CVD)技术梳理

化学气相沉积(CVD)技术梳理1. 化学气相沉积CVD的来源及发展化学气相沉积(Chemical Vapor Deposition)中的Vapor Deposition意为气相沉积,其意是指利用气相中发生的物理、化学过程,在固体表面形成沉积物的技术。

按照机理其可以划分为三大类:物理气相沉积(Physical Vapor Deposition,简称PVD),化学气相沉积(Chemical Vapor Deposition,简称CVD)和等离子体气相沉积(Plasma Chemical Vapor Deposition,简称PCVD)。

[1]目前CVD的应用最为广泛,其技术发展及研究也最为成熟,其广泛应用于广泛用于提纯物质、制备各种单晶、多晶或玻璃态无机薄膜材料。

CVD和PVD之间的区别主要是,CVD沉积过程要发生化学反应,属于气相化学生长过程,其具体是指利用气态或者蒸汽态的物质在固体表面上发生化学反应继而生成固态沉积物的工艺过程。

简而言之,即通过将多种气体原料导入到反应室内,使其相互间发生化学反应生成新材料,最后沉积到基片体表面的过程。

CVD这一名称最早在Powell C F等人1966年所著名为《Vapor Deposition》的书中被首次提到,之后Chemical Vapor Deposition才为人广泛接受。

[2]CVD技术的利用最早可以被追溯到古人类时期,岩洞壁或岩石上留下了由于取暖和烧烤等形成的黑色碳层。

现代CVD技术萌芽于20世纪的50年代,当时其主要应用于制作刀具的涂层。

20世纪60~70年代以来,随着半导体和集成电路技术的发展,CVD技术得到了长足的发展和进步。

1968年Nishizawa课题组首次使用低压汞灯研究了光照射对固体表面上沉积P型单晶硅膜的影响,开启了光沉积的研究。

[3] 1972年Nelson和Richardson用CO2激光聚焦束沉积碳膜,开始了激光化学气相沉积的研究。

cvd化学气相沉积原理

cvd化学气相沉积原理

CVD(Chemical Vapor Deposition,化学气相沉积)是一种常用的薄膜生长技术,用于在固体表面上沉积薄膜材料。

CVD的基本原理如下:
原料气体供应:在CVD过程中,需要提供适当的原料气体。

这些气体可以是气态化合物或气体混合物,其中至少包含了所需的元素或化合物。

携带气体:通常需要使用携带气体将原料气体输送到反应室。

携带气体可以是惰性气体(如氮气或氩气),其作用是稀释原料气体并促进其传输。

反应室和基片:原料气体与携带气体混合后,将其引入反应室中。

反应室内的基片(通常是固体材料)是薄膜生长的目标表面。

反应发生:在反应室中,原料气体与基片表面发生化学反应。

这些反应会导致气相中的原子或分子在基片表面上沉积,并形成薄膜结构。

条件控制:CVD过程需要精确控制多个参数,如温度、压力、原料气体浓度和反应时间等。

这些参数的调节可以影响薄膜的生长速率、结构和性质。

化学气相法沉积聚合物

化学气相法沉积聚合物

化学气相法沉积聚合物一、化学气相沉积(CVD)原理1. 基本概念- 化学气相沉积是一种通过气态先驱体在高温、等离子体或其他能量源的作用下发生化学反应,在基底表面沉积出固态薄膜的技术。

对于聚合物的化学气相沉积,先驱体通常是含有碳、氢等元素的有机化合物。

- 在CVD过程中,气态先驱体被输送到反应室中,在基底表面或靠近基底的区域发生分解、聚合等反应,从而形成聚合物薄膜。

2. 反应条件- 温度:不同的先驱体和反应体系需要不同的温度条件。

一般来说,较高的温度有助于先驱体的分解和反应的进行,但对于一些对温度敏感的基底或聚合物结构,需要精确控制温度以避免基底的损坏或聚合物的过度分解。

例如,某些有机硅先驱体在300 - 500°C的温度范围内可以有效地沉积硅基聚合物薄膜。

- 压力:反应室中的压力也是一个关键因素。

低压CVD(LPCVD)和常压CVD (APCVD)是常见的两种压力条件。

LPCVD通常在较低的压力(1 - 100 Pa)下进行,能够提供较好的薄膜均匀性和纯度,因为在低压下,气态分子的平均自由程较长,反应产物更容易扩散离开反应区域。

APCVD则在常压(约101.3 kPa)下进行,设备相对简单,但可能会存在薄膜均匀性较差的问题。

- 载气:载气用于将气态先驱体输送到反应室中。

常用的载气有氮气(N₂)、氩气(Ar)等惰性气体。

载气的流速会影响先驱体在反应室中的浓度分布,进而影响聚合物的沉积速率和薄膜质量。

二、聚合物沉积的先驱体1. 有机硅先驱体- 如四甲基硅烷(Si(CH₃)₄)等有机硅化合物是常用的先驱体。

在CVD过程中,四甲基硅烷在高温下会发生分解反应,硅 - 碳键断裂,释放出甲基基团,然后硅原子之间相互连接形成硅基聚合物的骨架结构。

反应式大致为:Si(CH₃)₄→Si + 4CH₃(高温分解),随后硅原子发生聚合反应形成聚合物。

- 有机硅先驱体沉积得到的聚合物具有良好的热稳定性、化学稳定性和电绝缘性等特点,在电子、航空航天等领域有广泛的应用。

化学气相沉淀法(CVD)

化学气相沉淀法(CVD)

随着工业生产要求的不断提高,CVD的工艺及设备得到不断改进,不 仅启用了各种新型的加热源,还充分利用等离子体、激光、电子束等 辅助方法降低了反应温度,使其应用的范围更加广阔。与此同时交叉、 综合地使用复合的方法,不仅启用了各种新型的加热源,还充分运用 了各种化学反应、高频电磁( 脉冲、射频、微波等) 及等离子体等效应 来激活沉积离子,成为技术创新的重要途径。但是,目前CVD工艺中 常用的NH3、H2S等气体,或有毒性、腐蚀性,或对空气、湿度较为 敏感。因此,寻找更为安全、环保的生产工艺以及加强尾气处理的研 究在环境问题日益突出的今天有着尤其重要的意义。

三、CVD设备
四、CVD制备超细粉特点

(1)沉积物众多,它可以沉积金属、碳化物、氮化物、氧化物和硼化物 等,这是其他方法无法做到的; (2)产物粒子细,形貌单一 ; (3)具有良好的单分散性; (4) 粒子具有较高的纯度 (5) 设备简单、操作维护方便、灵活性(Chemical vapor deposition,简称CVD)是近几十年发展起 来的制备无机材料的新技术。化学气相沉积法已经广泛用于提纯物质、研制 新晶体、沉积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化 物、硫化物、氮化物、碳化物,也可以是二元或多元的元素间化合物,而且 它们的物理功能可以通过气相掺杂的沉积过程精确控制。目前,用CVD技术 所制备的材料不仅应用于宇航工业上的特殊复合材料、原子反应堆材料、刀 具材料、耐热耐磨耐腐蚀及生物医用材料等领域,而且还被应用于制备与合 成各种粉体料、新晶体材料、陶瓷纤维及金刚石薄膜等。

1、制备超细陶瓷材料 超细粉表面积大, 烧结温度降低,可以使其成为一种有效的烧结添加 剂。 2、制备晶体或晶体薄膜 CVD最主要的应用之一是在一定的单晶基体上沉积外延单晶层。 3、制备梯度功能材料

化学气相沉积法cvd

化学气相沉积法cvd

化学气相沉积法cvd1. 什么是化学气相沉积法(CVD)?CVD是chemical vapor deposition的缩写,是一种用于有机薄膜或无机薄膜制造的技术。

它是一种通过将溶剂热散发形成薄膜的过程。

在溶剂中添加了几种原料,其原理是热释放过程中会产生气态原料。

当这些气态化合物沉积(即固化)在共晶材料表面(如金属和绝缘体表面)上,就形成了膜。

2. CVD的工艺流程CVD的工艺流程大体由以下几步组成:(1)预处理:为了提高沉积物的附着性,之前必须进行表面清洁处理,以去除表面杂质或灰尘,在清洁过程中包括清洁、光饰、腐蚀等工艺;(2)CVD反应:使用适当的存在溶解性的原料制成气相,并将其放入加热的真空容器中,使存在的气态原料发生反应,被吸附在真空容器中的易沉积材料上,以形成膜;(3)膜层检测:膜厚测量或影像技术,横断面或芯片的扫描电子显微镜技术或接触角测量等方法;(4)产品评估:分析能够表明膜的界面强度,膜厚,抗划痕性能,耐腐蚀性以及相关介电性质等,为满足不同产品要求,对CVD参数进行适当调整,确保产品达到规定的质量。

3. CVD的优缺点(1)优点:(a)CVD制备的膜可以用于制备多种复合薄膜,可以使用单种原料或多个原料来改变所需的膜功能;(b)CVD可以成功地在某些维持低工作温度、低原料充放温度的薄膜制备中,能够有效地防止薄膜退化及基材损坏;(c)比较适合制备大区域的膜,且制备的膜厚度一致性良好,沉积膜所需时间比较短;除此之外,CVD还有改变膜特性可控性高,维护简单等优点。

(2)缺点:(a)制备多金属复合膜时易出现困难;(b)CVD由多个立体结构构成的微纳米膜在活度调节和温度控制方面难以得到一致的条件;(c)当原料遇到有机结构时,很容易产生氧化,从而减弱了其膜性能;(d)还容易出现沉积反应系统中氧化物及污染阴离子等杂质污染物,影响膜层的清洁性及性能。

4. CVD的应用范围CVD非常适合制备有机薄膜以实现有效阻挡载流子(如氧)和气体(如水蒸气)的分子穿过,保护容器不受环境污染。

化学气相沉积法CVD

化学气相沉积法CVD

MOCVD设备
MOCVD 系统
气体处理 系统
反应腔
计算机控制
真空及排气 系统
气体处理系统
气体处理系统的功能是混合与测量进入反应室的 气体。调节进入反应室气体的速率与成分将决定 外延层的结构。
气路的密封性至关重要。 阀门的快速转换对薄膜和突变界面结构的生长很
重要。 流速,压强和温度的精确控制能保证生长薄膜的
Metal Organic Chemical Vapor Deposition
(MOCVD)
概述
• 外延工艺:在衬底上生长单晶薄膜的技术。新生单晶层按衬底晶 向延伸生长,并称此为外延层。长了外延层的衬底称为外延片。
• 同质外延:Si-Si, GaAs-GaAs, GaN-GaN • 异质外延:GaAs-AlGaAs, Sapphire-GaN
(1)热量传递-对流
对流是第三种常见的传热方式,流体通过自身各部的宏 观流动实现热量传递的过程。它主要是借着流体的流动 而产生。
依不同的流体流动方式,对流可以区分为强制对流及自 然对流两种。
(2)动量传递
两种常见的流体流动的形式。其中流速与流向均平顺者 称为“层流”;而另一种于流动过程中产生扰动等不均 匀现象的流动形式,则称为“湍流”。
在层状-岛状生长模式中,在最开始一两个原子层厚度的层 状生长之后,生长模式转化为岛状模式。导致这种模式转变的物 理机制比较复杂,原因是由于薄膜生长过程中各种能量的相互消 长。
导致生长模式转变的物理机制
1、虽然开始时的生长是外延式的层状生长,但是由于薄膜与衬底之 间晶格常数不匹配,因而随着沉积原子层的增加,应变能(应力) 逐渐增加。为了松弛这部分能量,薄膜在生长到一定厚度之后, 生长模式转化为岛状模式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SiCl4(g)+2H2(g) Si(s)+4HCl(g), Si
图中并没有包
括分压最高的
H2 的曲线和以
固相存在的Si
从各曲线的走势可知,气相中 Si 的含量在1300K以上时开 始下降。表明,高于1300K的沉积温度有利于Si 的快速沉积
第二个例子:由 SiH4 + BCl3 + H2 制备 Si-B 薄膜
但即使存在着局限性,热力学分析对于选择、 确定、优化一个实际的 CVD 过程仍具有重要 的意义
CVD过程热力 学分析的依据: 物质的标准生 成自由能G 随温度的变化
G<0,即反应可沿正 方向自发进行。反之, G>0,反应可沿反方
向自发进行
相应的元素更活泼
复习: CVD 过程的热力学
一般来讲, CVD 过程的化学反应总可以简单地表达为
一般,CVD 过程要涉及气相传输、表面沉积两个阶段
CVD 过程的动力学(一) 气相传输的阶段
气体传输的阶段涉及 气体的宏观流动 气相内发生的化学反应 气体组分的扩散
等三个基本过程
这些过程的速率都会成为薄膜沉积过程的控制环节 如: 宏观气流的不均匀性、反应时间过短、气体扩散困难等
气相的传输过程——宏观流动
和由六氟化物制备难熔金属 W、Mo 薄膜的反应
WF6(g)+3H2(g)W(s)+6HF(g) (300C)
化学气相沉积反应的类型
氧化反应
如利用 O2 作为氧化剂制备 SiO2 薄膜的氧化反应
SiH4(g)+O2(g)SiO2(s)+2H2(g)
(450C)
和由 H2O 作为氧化剂制备 SiO2 薄膜的氧化反应
由G= -846kJ/mol,可得 O2 的平衡分压为 p0=210-30Pa
由于O2的活度值就等于其分压 p,p>p0 时, G < 0, Al 就可能
氧化。因此:
在技术上,尚不可能获得这样高的真空度。因而根据热 力学的计算结果,Al 在 1000C 蒸发时一定要被氧化
但这不意味着实际蒸发沉积 Al 时,只能获得氧化物薄
在CVD系统中,气体的流动多处于粘滞流的状态 (气压较 PVD 时为高) 而一般的CVD过程,气体又多处于层流态 (但, 有时为了促进气体对流,也使用紊流态)
气体的宏观流动也分为两种:
气流压力梯度造成的强制对流 气体温度的不均匀性引起的自然对流
气体的强制流动: CVD 容器与气流
外形渐变 强制对流
(1400C)
化学气相沉积反应的类型
气相输运
如将某一物质先在高温处升华
2CdTe(s)2Cd(g)+Te2(g) 然后使其在低温处冷凝的可逆反应
(T1, T2 )
显然,这实际上是一种利用物理现象的 PVD 过程,但它在 设备、物质传输及反应的热力学、动力学分析方面却完全与 CVD 过程相类似
就象沉积太阳能电池CdTe薄膜的密闭容器升华技术 (Close-Spaced Sublimation,CSS)
Si-B-Cl-H 体系中沉积相与组元浓度、温度的关系
————
由 BCl3、SiH4 沉积 Si-B 化合物薄膜时,可形成的固相不只一 个,而是四个。气相中B 的比例越高,越有利于富B 相的出现
CVD 过程中的动力学: 各个动力学环节
————
——
热力学预测了过程的方向与限度,而动力学条件则决 定了过程发生的速度和它在有限时间内可进行的程度
薄膜的微观结构可以是:
多晶的薄膜 单晶的薄膜 非晶态的薄膜
CVD 过程热力学分析的作用
CVD 过程热力学分析的作用 预测薄膜 CVD 反应的可能性、限度 提供优化高温、可逆的 CVD 反应环境的途径
CVD 过程热力学分析的局限性
反应的可能性并不能保证反应过程一定会高效 率地发生,即它不能代替动力学方面的考虑
SiCl4(g)+2H2O(g)SiO2(s)+4HCl(g) (1500C)
岐化反应
如 GeI2 变价为另一种更稳定的化合物和 Ge 的反应
2GeI2(g)Ge(s)+GeI4(g)
(300600C)
置换反应
如不同化合物中的元素改变结合对象得到 SiC 的反应
SiCl4(g)+CH4(g)SiC(s)+4HCl(g)
化学气相沉积的温度范围
与 PVD 时不同,CVD 过程的温度一般 也比较高(随需求不同而不同),因为较高 的温度有助于提高薄膜的沉积速率。此时
高温可提供化学反应所需要的激活能 化学反应不仅发生在薄膜表面,而且发生在
所有温度条件合适的地方 即使是在高温下,化学反应所涉及的过程也
很复杂:化学反应方向、化学平衡、可逆反 应等都是需要考虑的因素
化学气相沉积化学反应平衡的计算
热力学计算不仅可预测CVD过程进行的方向, 还可提供化学平衡的详细信息,这提供了对过程 进行优化的可能性
为此,需要给定温度T、压力P、初始化学组成 x0,求解反应在化学平衡时各组分的分压 pi 或 浓度 xi
但在这种计算中,需要加以考虑的物质种类往往很 多
化学气相沉积化学反应平衡的计算
气相的传输过程——自然对流
温度的不均匀分布会 导致气体的自然对流
将高温区设置在上, 可以避免自然对流
降低工作压力、保持 温度的均匀性有助于 减少自然对流
强制对流
自然对流
气相的不均匀性
右侧的自然对流可以依靠提高气体流速的方法得到抑制
气相传输过程中的化学反应
在 CVD 系统中,气体在到达衬底表面之前 ,其温度已经升高,并开始了分解、发生化 学反应的过程
的存在限制了薄膜的沉积速率
提高
Re(雷诺 Reynolds 准数
Re vD
),即提
高气体的流速和压力、降低气体的粘度系数,
有利于减小边界层的厚度 ,提高薄膜的沉积
速率
但 Re 过高时,气体的流动状态会变为紊流态, 破坏气体流动及薄膜沉积过程的稳定性,使薄 膜内产生缺陷
气体的强制流动: CVD 过程中的边界层
第六讲
薄膜材料的CVD方法
Preparation of thin films by CVD methods
提要
CVD 过程中典型的化学反应 CVD 过程的热力学 CVD 过程的动力学 CVD 过程的数值模拟技术 CVD 薄膜沉积装置
化学气相沉积
化学气相沉积(chemical vapor deposition, CVD)是经由气态的先驱物, 通过气相原子、分子间的化学反应,生 成薄膜的技术手段
SiCl4+2H2Si+4HCl SiCl3H+H2Si+3HCl SiCl2H2Si+2HCl SiClH3Si+HCl+H2 SiCl2+H2Si+2HCl SiH4Si+2H2
6个反应,6个平衡常数 K
化学气相沉积化学反应平衡的计算
将各反应的平衡常数记为 K1、K2 至 K6,写出 G 与各组元活度(压力 pi)的关系;固态 Si 的活度可认为等于 1
化学气相沉积的气压环境
与 PVD 时不同,CVD 过程的气压一般 比较高(随需求不同而不同),因为较高的 气压有助于提高薄膜的沉积速率。此时
气体的流动状态多处于粘滞流状态 气体分子的运动路径不再是直线 气体分子在衬底上的沉积几率不再是接近
100%,而是取决于气压、温度、气体组成、 气体激发状态、薄膜表面状态等多个因素 这也决定了 CVD 薄膜可被均匀地涂覆在复 杂零件的表面,而较少受到 PVD 时阴影效 应的影响
倾斜设置
扩散困难
轴对称的反应容器:在衬底表面附近提供的流场最均匀 水平式的反应容器:具有较大的装填效率,但在容器的下游处,反应
物的有效浓度逐渐降低 管式的反应容器:装填效率高,但样品间反应气体的对流效果差 三种容器的几何尺寸都呈渐变式的变化,因为这样可以避免由于几何尺寸
的突变而产生的气流涡旋
制备(Ga,In)(As,P)半导体薄膜的CVD装置 的示意图
载气
CVD气体原料
CVD固态源
CVD沉积室
压力控制部分
温度控制部分 搀杂气体原料
废气处理
CVD薄膜的种类
利用 CVD 方法制备的薄膜可以是:
单质(包括金属、半导体,但多数金属宜采用蒸 发、溅射方法制备)
化合物(如氧化物、硼化物、碳化物、硫化物、 氮化物、III-V、II-VI 化合物等)
因此,多数情况下希望将气体的流动状态维持 在层流态。此时,气流的平稳流动有助于保持 薄膜沉积过程的平稳进行
在个别情况下,也采用提高 Re 的方法,将气 体的流动状态变为紊流态,以减少衬底表面边 界层的厚度 ,以提高薄膜的沉积速率
但, 气体流速过高又会使气体分子、尤其是活 性基团在衬底附近的停留时间变短、气体的利 用效率下降,CVD 过程的成本上升
aA bB cC
其自由能的变化为
G c G C a G A b G B
其中,a、b、c 是反应物、反应产物的摩尔数。由此
GGRTlnaA aaC acB b
GRTlnK
ai 为物质的活度,它相当于其有效浓度。G是反应的标 准自由能变化。
由G,可确定 CVD 反应进行的方向。
例: CVD 过程的热力学考虑
例如,考虑下述的薄膜沉积反应的可能性
(4/3)Al+O2(2/3)Al2O3
可据此对 Al 在 1000C 时的 PVD 蒸发过程中被氧化的可 能性予以估计。由于 Al2O3 和 Al 都是纯物质,其活度为 1 。同时,令 p0 表示氧的平衡分压,则有
G RT lnp0
G = RT ln( p/p0)
相关文档
最新文档