图形的旋转
23.1 图形的旋转(9大题型)

23.1 图形的旋转旋转的概念将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.注意:旋转的三要素:旋转中心、旋转方向和旋转角度;图形的旋转不改变图形的形状、大小.题型1:旋转中的概念及对应元素1.下列运动中,属于旋转运动的是( )A.小明向北走了4 米B.一物体从高空坠下C.电梯从1 楼到12 楼D.小明在荡秋千【答案】D【解析】【解答】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,A不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,B不合题意;C. 电梯从1 楼到12 楼,是平移,不属于旋转运动,C不合题意;D. 小明在荡秋千,是旋转运动,D符合题意.故答案为:D.【分析】根据图形旋转的定义求解即可。
【变式1-1】如图,线段AB绕着点O旋转一定的角度得线段A'B',下列结论错误的是( )A.AB=A'B'B.∠AOA'=∠BOB'C.OB=OB'D.∠AOB'=100°【答案】D【解析】【解答】∵线段AB绕着点O旋转一定的角度得线段A'B',∴AB=A′B′,∠AOA′=BOB′,OB=OB′,故A,B,C选项正确,∵∠AOB和∠BOB′的度数不确定,∴∠AOB′≠100°,故D选项错误.故答案为:D.【分析】由旋转的性质可得AB=A′B′,∠AOA′=BOB′,OB=OB′,据此判断.【变式1-2】如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.旋转的性质一个图形和它经过旋转所得到的图形中:(1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 注意:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.题型2:旋转的性质及旋转中心的确定2.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )A.(1,1)B.(0,1)C.(-1,1)D.(2,0)【答案】B【解析】【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为:B.【分析】连接AD、BE,作线段AD、BE的垂直平分线,根据旋转的性质即可求解。
小学五年级数学图形的旋转

小学五年级数学图形的旋 转
目 录
• 旋转的基本概念 • 平面图形的旋转 • 立体图形的旋转 • 图形旋转的实践 • 旋转在数学中的应用
01
旋转的基本概念
旋转的定义
旋转是图形的运动,即绕着某一点转动一定的角度。
旋转的主体是图形,客体是点或线段。
旋转的要素
旋转中心
图形旋转的固定点。
旋转方向
矩阵运算
在矩阵运算中,旋转矩阵可以表示为特定的矩阵,通过矩阵 的乘法可以实现图形的旋转。
在概率论中的应用
随机试验
在随机试验中,每次试验的结果具有随机性,对应于图形旋转的每一个角度 ,可以通过概率的加法和乘法原理计算出旋转后图形某一点落在某个区域内 的概率。
样本空间
在样本空间中,每个样本点对应于图形旋转的一个角度,通过对样本空间的 研究,可以确定旋转后图形的分布情况。
04
图形旋转的实践
利用旋转设计图案
总结词
通过旋转基本图形,可以设计出复杂的图案。
详细描述
旋转基本图形,如正方形、三角形、圆形等,可以设计出美丽的图案。例如,将 一个正方形沿中心点旋转90度,可以得到一个“风车”形状的图案;将一个圆形 沿中心点旋转360度,可以得到一个“球体”形状的图案。
利用旋转解决问题
顺时针或逆时针。
旋转角度
旋转的大小,通常用角度 表示。
旋转的性质
旋转前后图形的形 状和大小不变,仅 位置发生变化。
旋转后的图形与原 图形对应线段相等 且平行。
旋转后的图形与原 图形重合,即旋转 中心对称。
02
平面图形的旋转
旋转的公式
旋转中心
图形旋转的圆心称为旋转中心 。
旋转角度
图形的旋转

图形的旋转知识要点1、旋转:将一个图形绕着某点O转动一个角度的变换叫做旋转。
其中,O叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质①旋转后的图形与原图形全等②对应线段与O形成的角叫做旋转角③各旋转角都相等3、平移:将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。
其中,该直线的方向叫做平移方向,该距离叫做平移距离。
4、平移性质①平移后的图形与原图形全等②两个图形的对应边连线的线段平行相等(等于平行距离)③各组对应线段平行且相等5、中心对称与中心对称图形①中心对称:若一个图形绕着某个点O旋转180°,能够与另一个图形完全重合,则这两个图形关于这个点对称或中心对称。
其中,点O叫做对称中心、两个图形的对应点叫做关于中心的对称点。
②中心对称图形:若一个图形绕着某个点O旋转180°,能够与原来的图形完全重合,则这个图形叫做中心对称图形。
其中,这个点叫做该图形的对称中心。
6、轴对称与轴对称图形(1)轴对称:若两个图形沿着某条轴对折,能够完全重合,则这两个图形关于这条轴对称或它们成轴对称。
其中,这条轴叫做对称轴。
注:轴对称的性质:①两个图形全等;②对应点连线被对称轴垂直平分(2)轴对称图形:若一个图形沿着某条轴对折,能够完全重合,则这个图形叫做轴对称图形。
7、点的对称变换(1)、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y)(2)、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x 轴的对称点为P'(x,-y)(3)、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y 轴的对称点为P'(-x,y)注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四象限的角平分线。
综合练习1(1)将一个平面图形F上的每一点,绕这个平面一_____ 点旋转,得到图形F’,图形的这种变换就叫做旋转。
《图形的旋转》教案14篇

《图形的旋转》教案14篇《图形的旋转》教案篇1一、游戏创设情景,导入新课。
幸运大转盘:转一转转盘上的指针,你想玩哪一种,看看你幸运吗?师:盼望每个同学都能拥有健康的身体,学会聪慧地思索,在学习数学的过程中体验胜利的欢乐。
转盘上指针的运动方式,在三班级我们已经有肯定了解,叫旋转。
请看大屏幕〔转杆的关和合〕,在小区门口看过这个转杆吗?转杆的运动方式是〔同学一起说〕师:对了,转杆的打开和关闭也是旋转。
今日我们一起来讨论旋转。
〔揭示课题:旋转〕二、探究线段旋转,体会旋转三要素1、对比讨论转杆的运动〔1〕用手势来比划转杆的运动转杆的打开、关闭是旋转运动,今日我们就以这个为例来讨论。
举起右手,用手臂来表示转杆,一起来做做打开、关闭的运动。
〔2〕争论:转杆的打开与关闭这两次旋转运动的相同点与不同点。
你们觉的打开、关闭的运动完全一样吗?想想有哪些地方是相同的。
哪些地方是不同的?同桌沟通。
不同点:这两次旋转的方向不同。
你们知道转杆关闭的方向叫〔顺时针方向〕为什么叫顺时针方向呢?〔显示钟面是时针的运动〕那和钟面上相反呢?叫逆时针方向,这里转杆的打开是什么方向啊?伸出手一起来表示这两个方向。
相同点:都围着一个点在旋转,这个点就是旋转的中心点。
都旋转了90度。
〔3〕小结刚才我们学了旋转重要的三个特点:中心、方向、角度。
其实全部的物体的旋转都是这样围绕中心不是顺时针就是逆时针旋转的,都转有肯定的角度,角度有大有小〔显示旋转的图片时钟、折扇、风车〕2.巩固练习刚才我们认识了顺时针或逆时针旋转90度,你们能利用这些知识解决下面的问题吗?a、:多重的物品可以使台称上的指针按顺时针方向旋转90度。
〔演示将一袋盐放入盘中〕取出物品指针又是怎样旋转的呢?b、请看,老师这里还有一个转盘呢!谁情愿和老师合作玩“我说你转”的游戏:〔老师提要求,同学转动转盘〕请把指针从A点顺时针旋转90,转到〔〕,再把指针从B点逆时针旋转90,转到〔〕。
要想清晰地知道一个物体是怎样旋转的,就得把这三方面说清晰。
小学数学知识归纳旋转的性质

小学数学知识归纳旋转的性质旋转是小学数学中一个重要的概念,它涉及到图形的变化和性质。
在本文中,我们将归纳总结小学数学中与旋转有关的一些重要性质。
希望通过本文的阅读,读者能够更加深入地理解旋转的概念,提升数学能力。
1. 旋转的定义旋转是指以某个点为中心,将图形绕着这个点旋转一定角度。
我们常常使用“顺时针”和“逆时针”来描述旋转的方向。
顺时针旋转是指图形向右旋转,逆时针旋转是指图形向左旋转。
2. 旋转的角度旋转可以是90度、180度、270度,也可以是任意角度。
根据旋转的角度,我们可以将旋转分为四个类别:顺时针旋转90度、逆时针旋转90度、顺时针旋转180度、逆时针旋转180度。
需要注意的是,顺时针旋转n度等价于逆时针旋转360度-n度。
3. 旋转的特点旋转不改变图形的大小和形状,但会改变图形的方向。
如果将一个图形旋转180度,得到的仍然是与原图形完全相同的图形,只是位置发生了变化。
如果将一个图形旋转90度或270度,得到的图形是与原图形完全相同的镜像图形。
4. 图形的旋转对称性有些图形在旋转一定角度后,仍然与原图形相同。
这种性质称为旋转对称性。
正方形、圆、正多边形都具有旋转对称性,它们旋转一定角度后可以得到与原图形完全相同的图形。
5. 图形的旋转中心图形的旋转中心是旋转过程中的固定点,也是旋转的中心轴。
对于圆,旋转中心是圆心;对于正方形,旋转中心是正方形的中心点;对于正多边形,旋转中心是正多边形的中心。
图形的旋转中心对于保持图形形状不变很重要。
6. 旋转的应用旋转在日常生活中有很多应用。
比如,钟表上的指针就是旋转运动,它们以钟表的中心点为旋转中心,通过旋转来指示时间。
另外,旋转还广泛应用于机械领域、建筑设计等方面。
通过以上对小学数学中旋转的性质的归纳,我们可以更好地理解旋转的概念和特点。
旋转不仅仅是一种图形变化,更是一种思维的训练和观察力的培养。
希望读者通过学习旋转的知识,能够在解决问题时灵活运用旋转的性质,提高数学解题的能力。
23.1图形的旋转教学课件(共35张PPT)

线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。
《图形的旋转》平移旋转和轴对称

这种组合在实际生活中并不常见,因为在实际应用中,旋转和轴对 称两种操作通常会分开进行。
应用
在几何学中,旋转轴对称组合常用于研究图形的旋转对称性质,如 圆形、椭圆形的性质等。
05
实际应用案例
平移旋转在机械制造中的应用
平移旋转在机械制造中有着广泛的应用。通过平移和旋转,可以方便地对机械零件 进行精确加工和调整。
《图形的旋转》平移旋转和 轴对称
2023-11-08
目 录
• 平移 • 旋转 • 轴对称 • 平移旋转和轴对称的组合应用 • 实际应用案例
01
平移
定义
平移是指在平面内,将一个图形沿某个方向移动一定的距离 。
平移不改变图形的形状、大小和方向,只改变图形的位置。
性质
平移前后,图形的对应线段平行且相等,对应角相等,对应点所连接的线段平行 且相等。
描述
这种组合在实际生活中很常见,比 如汽车在公路上行驶,除了位置的 移动,车身也会围绕自己的轴线旋 转,保持方向不变。
应用
在几何学中,平移旋转组合常用于 研究图形的性质和变化,如平行四 边形的性质、三角形的稳定性等。
平移轴对称组合应用
定义
平移轴对称组合是指将平移和轴 对称两种操作结合起来,使图形 在平面上进行移动的同时,绕某
应用
在几何学中,旋转被广泛应用于图形 的位置和形状的变换。
在物理学中,旋转运动被广泛应用于 物体的运动和平衡状态的研究。
在机械工程中,旋转运动被广泛应用 于机器人的关节和传动装置。
在艺术领域,旋转被广泛应用于舞蹈 、音乐和绘画的表现形式。
03
轴对称
定义
轴对称是指一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线是 它的对称轴。
图形的旋转和翻转操作技巧

图形的旋转和翻转操作技巧一、图形的旋转1.旋转的概念:在平面内,将一个图形绕着某一个点旋转一个角度的图形变换叫做旋转。
2.旋转的性质:a.旋转不改变图形的形状和大小,只是改变图形的位置。
b.旋转前后的图形全等。
c.旋转中心即为图形的对称中心。
3.旋转的公式:若将一个图形绕着点O旋转θ度,得到的新图形为O’,则有:O’ = O + (O -> O’) * θ4.旋转的应用:a.在实际生活中,如风扇、汽车方向盘等的转动都是旋转的应用。
b.在计算机图形学中,旋转用于实现图形的变换和动画效果。
二、图形的翻转1.翻转的概念:在平面内,将一个图形沿着某一条直线翻转一定角度,使得翻转后的图形与原图形关于这条直线对称,这种图形变换叫做翻转。
2.翻转的类型:a.水平翻转:将图形沿着x轴翻转。
b.垂直翻转:将图形沿着y轴翻转。
c.对称翻转:将图形沿着任意直线翻转,使得翻转后的图形与原图形关于这条直线对称。
3.翻转的性质:a.翻转不改变图形的形状和大小,只是改变图形的位置。
b.翻转前后的图形全等。
c.翻转的中心线即为图形的对称轴。
4.翻转的应用:a.在实际生活中,如镜子、穿衣镜等的翻转都是翻转的应用。
b.在计算机图形学中,翻转用于实现图形的变换和动画效果。
三、操作技巧1.旋转操作技巧:a.确定旋转中心:通常选择图形的某个顶点或重心作为旋转中心。
b.确定旋转方向:顺时针或逆时针旋转。
c.确定旋转角度:根据实际需求确定旋转的角度。
d.画出旋转后的图形:以旋转中心为中心,按照旋转方向和角度,画出旋转后的图形。
2.翻转操作技巧:a.确定翻转中心线:通常选择图形的中心线作为翻转中心线。
b.确定翻转方向:沿中心线翻转,使得翻转后的图形与原图形关于中心线对称。
c.画出翻转后的图形:按照翻转方向,将原图形关于中心线翻转,得到翻转后的图形。
通过以上知识点的学习和操作技巧的掌握,学生可以更好地理解和运用图形的旋转和翻转,提高他们在几何学习和实际应用中的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图形的旋转》
教学内容:北师大小学数学教材四年级上册《图形的旋转》。
内容分析:
“图形的旋转”是继轴对称、平移之后的另外一种图形的基本变换,图形的变换是义教育阶段数学课程中“空间与图形”领域的一个主要内容。
“图形的旋转”这节课的教学内容灵活丰富,符合四年级学生的年龄特点和已有的生活经验。
生活中,有许多美丽的图案都是由简单的图形经过旋转得到的,本节课正是让学生经历简单图形经过旋转形成复杂图案的过程。
学情分析:
学生已经在三年级初步感受了生活中的平移与旋转现象,并能在方格纸上画出一个沿水平、垂直方向平移后的图形。
对旋转也有了初步的认识,具有一定的变换思想。
四年级学生普遍具有求知欲高、模仿能力强,思维多依赖于具体直观形象的特点。
学生的数学学习活动应当是一个生动活泼的、主动的富有个性的过程。
教学目标:1.通过实例观察,使学生发现一个简单基本图形在旋转过程中的变化规律,并能自己动手将简单的基本图形围绕一点按一定的方向旋转一定
的角度,培养学生的观察能力及审美意识。
2.能清晰地描述一个简单的基本图形在方格纸上旋转的过程,培养学生用数
学语言表述生活中旋转现象的能力。
教学重点: 1 .通过观察,使学生发现一个简单基本图形在旋转过程中的变化规律,并能自己动手将简单的基本图形围绕一点按一定的方向旋转一定的
角度。
2.能清晰地描述一个简单的基本图形在方格纸上旋转的过程。
教学难点:能清晰地描述一个简单的基本图形在方格纸上旋转的过程。
教具准备:自制课件、自制图形A、自制图形A及印有图A的方格纸、练习纸题卡、方格纸、多种基本图形、胶水、风车。
课前准备:玩风车,边玩边观察你从玩风车中发现了什么?风车的叶片是怎样动的?
(设计意图:课前引入与本课知识有关的游戏,激起学生的兴趣,为新课的讲授做铺垫。
)
教学过程:
一、欣赏风车的制作过程感知旋转三要素
师:喜欢玩风车吗?(喜欢)那,你们想知道风车是怎样制作出来的吗?我们一起来看一段视频。
看完了风车的制作过程,谁来简单说说风车是怎样制作出来的?
师:从风车的制作过程中,我们知道风车是由一个基本图形通过旋转而成的,图形的旋转就是我们这节课要研究的问题,(板书课题:图形的旋转)师:旋转与什么有关呢?我们结合风车的制作过程来说说。
1、旋转与中心点有关,
2、旋转方向有关。
3、旋转与角度有关
(设计意图:《数学课程标准》指出:“数学教育应该努力激发学生的学习情感,将数学与学生的社会、学习联系起来,学习有活力的、活生生的数学。
”生活离不开数学,数学离不开生活,抽象的数学知识只有和现实生活紧密地联系起来,才是活的知识,才有生命力,才能体现知识学习的价值。
我在导入新课时播放风车的制作过程,捕捉生活常见的旋转现象,引起了学生对新知的欲求。
通过风车的制作过程和玩风车让学生感知旋转三要素。
)
二、动手操作,运用旋转三要素完整叙述旋转的过程
①说大风车的标志图旋转的过程
师:我们刚才看了风车的制作过程,风车是由一个基本图形旋转出来的。
现在老师这里有一个图形A,如果我想把图形A旋转变出这样一个风车图案,你能帮我做到吗?请你先仔细观察,认真的想想要怎样做?
同桌合作转一转,说一说。
操作要求:
1、请拿出学具袋中的图形A和印有图形A的方格纸,小组合作,用图形A 在方格纸上旋转。
2、每旋转一次,都要说出图形()绕()点()方向旋转()度得到
图形()。
3、边操作边说,并完成方格纸下方的填空。
学生动手操作
学生汇报
②说雪花图旋转的过程
师:同学们真棒!能完整的说出风车图案的旋转的过程。
现在老师换幅图考考你们,请看雪花图,这幅美丽的雪花图又是怎样通过旋转变出来的呢?请与你的同桌说一说。
师:谁愿意给大家说说。
学生汇报
师小结:其实在生活中有很多美丽的图案,都像风车图和雪花图一样是由一些简单的图形绕一个固定的点经过不同的角度旋转得到的。
(设计意图:荷兰数学家弗赖登塔尔说过:学习数学唯一正确的方法是实行再创造,也就是由学生把本人要学习的东西自己去发现或创造出来,教师的任务是引导和帮助学生去进行这种再创造工作而不是把现成的知识灌输给学生。
因此在这个教学环节中,我创设了让学生充分发展的机会和空间,让学生像科学家一样,自己去研究、去发现,在自主探究中体验数学,在体验中主动建构知识。
)
三、启发引导,拓展思维
(1)考眼力
师:我这有一个三角形,它也旋转了几次,来看看它旋转的情况,看完后想一想,然后回答屏幕上的问题。
学生汇报
(2)大胆猜测
1、图形1绕O点顺时针旋转90°可得到图形()所在的位置。
2、图形2绕O点顺时针旋转90°可得到图形()所在的位置。
3、图形2绕O点顺时针旋转()可得到图形4所在的位置。
4、图形1绕O点()旋转()可得到图形()所在的位置。
(3)摆一摆
用等腰三角形在方格纸上摆一摆,然后回答问题。
(设计意图:以学生的学为中心是本节课的出发点和归宿。
这一环节中,我不是机械地按照教材中呈现内容的先后设计课堂练习,而是由浅入深,循序渐进。
学生在电脑上操作,多媒体随机演示学生的答案给予验证,实现人机互动。
在这个过程中有助于学生用发现数学知识来解决问题、拓展思维。
使学生能明其义、懂其理,最终完成所学知识的意义建构。
)
四、欣赏应用,亲历设计
1、欣赏:
师:师:挑战成功,看来同学们对旋转和平移的知识还掌握得真不错。
今天我们研究了(旋转)的知识。
在生活中旋转的知识应用十分广泛。
看……
2、我会设计:
师:你们想不想运用旋转知识亲自设计一幅喜欢的图案?
3、展示交流:
师:好,有些同学已经设计好了,请设计好的同学带着你的作品到台前来展示给大家看……现在我们把设计好的作品贴在黑板上让大家欣赏。
(设计意图:拓展延伸,学生利用刚才学过的知识,制作自己喜欢的图形以及设计出美丽的图案。
)
五:总结:来看看!这,就是用我们的智慧设计出来的美丽的图案。
老师希望同学们能把我们学到的知识运用到生活中,使我们的生活就会变得更加丰富多彩!
六、板书设计:
图形的旋转
绕一点
顺时针
旋转方向
逆时针
角度。