建筑大跨度结构案例分析

合集下载

大跨度建筑案例分析

大跨度建筑案例分析

2013年12月2日,国家大剧院壳体钢结构安装完成
·网壳结构
网壳是一种与平板网架类似的空间 杆件结构,系以杆件为基础,按照一 定规律组成网格,按壳体结构布置的 空间构架,它兼具杆系和壳体的性质。 其传力特点是通过壳内两个方向的拉 力,压力或剪力逐点传力。此结构是 一种有广阔发展空间的空间构件。
建筑师利用金属网的通透性,使简单厚 重的建筑结构在视觉上形成为多维空间,轻 盈简捷又不失空间的纵深感站在壳体的公共 空间内,人们可以看到弧形的金属网从高处 垂下,将歌剧院与壳体公共空间分隔开来隐 隐透出淡黄色人们可以透过金属网看到歌剧 院环廊内人们活动的场景,若隐若现,朦胧 而神秘,激发人们的好奇、想象和思索。建 筑师充分利用了金属网的特点来提升室内的 装饰效果。
大剧院建筑屋面呈半椭圆型,由钛金属板覆盖,前后两侧有 两个类 似三角形的渐开式玻璃幕墙切面,整个建筑漂浮于人造 水面之上。
国家大剧院壳体结构呈半椭球型。 由顶环梁,梁架,斜撑和环向连系 杆件组成。其中顶环梁呈椭圆形,长轴 长约60米,短轴长约38米,由环形钢架, 箱形梁,以及H型钢焊接而成。梁架呈 中心对称辐射状布置。 连杆沿水平环向布置,上下里外共 82道,并采用铸钢连接件或套筒连接件 连接。
·结语
国家大剧院是世界上最大的剧院拥有世界上最大的穹顶,是世界上最深的建筑,拥有亚洲最大的管 风琴。整体简洁而富有美感,但又不乏活力,仿佛里面有股生命力向外爆发。堪称建筑奇观,同时又彰 显出北京这个古老的城市的现代风貌与活力。城市建筑不再关乎审美或情感,而是对社会秩序的解释, 建筑也总是超越功能的,是建筑的形式给人们以经验,赋予城市以结构。
大跨度建筑分析
Analysis of Long Span Construction

大跨度建筑的混合空间结构案例分析

大跨度建筑的混合空间结构案例分析

大跨度建筑的混合空间结构案例分析作者:张玥明来源:《砖瓦世界·下半月》2019年第04期摘; ;要:以大跨度建筑的混合空间结构为研究对象,从工程概况、结构体系两个方面分析当代国内案例,重点对大跨度建筑的混合空间结构的特点和组成要素进行分析。

为以后大跨度建筑设计理念和设计手法提供启发与参考,关键词:大跨度建筑;混合空间结构;拱-壳结构;悬索-拱结构一、概述混合空间结构,指的是将刚架结构、桁架结构、拱式结构、薄壁结构、网架结构、悬索结构和薄膜结构等不同形式的结构经过合理组合而形成的空间结构形式。

它充分发挥了各种结构及各种材料的特长,弥补了单一大跨结构受力、材料上的不足,使结构更广泛的适应于多种建筑功能并增大了建筑造型的灵活性。

一般来说,建筑形体轮廓由巨大的刚架、拱、悬索或斜拉结构作为巨型骨架而形成;屋盖造型则由骨架上布置的平板网架、网壳、桁架、悬索或薄膜结构形成。

通常,混合空间结构由刚架、桁架、拱、薄壁、网架、网壳、悬索、薄膜结构的两种或者三种结构单元组成。

在选择不同的组合方式时应满足建筑功能的需要、保持结构受力的均匀合理,充分发挥材料的特性、尽量采用预应力等先进的技术手段,改善结构受力性能、使整体结构刚柔并济,具有良好的整体稳定性、并保证施工简洁,造价合理的原则。

二、案例分析(一)武汉火车站1、工程概况武汉火车站是全国四大铁路网客运中心之一,也是第一个上部大型建筑与下部桥梁共同作用的新型结构火车站,实现了高速铁路,地铁,公路三者的无缝对接。

它的建筑面积为33.2万㎡,建筑高度为59.3m,建筑主体采用了拱-网壳结构。

2、结构体系武汉火车站由中央站房、南侧雨棚、北侧雨棚三部分组成。

武汉火车站中央站房的屋面支承结构由五榀主拱、半拱和斜立柱共同支撑,五榀主拱的基本间距为64.5m,最大主拱跨度甚至可达到116m。

主拱、半拱共同承担着楼面梁的支承任务,由于共用支撑结构,楼面结构与屋面结构有间接的联系;中央站房的屋盖采用网壳覆盖,其中上下弦采用圆管、腹杆两种形式。

大跨度场馆结构设计

大跨度场馆结构设计
特点
大跨度场馆通常具有大面积的屋顶和 开放式空间,需要满足特殊的功能需 求和视觉效果。
结构设计的基本原则
01
安全性
确保结构在各种可能出现的荷载和 环境下都能保持稳定和安全。
适用性
考虑结构的可维护性和可扩展性, 以满足未来可能的需求变化。
03
02
经济性
在满足功能和安全的前提下,尽可 能降低结构成本。
后期评估
对建成后的结构进行性能评估, 确保满足设计要求。
03
大跨度场馆的主要结构形式
钢架结构
总结词
由钢柱和钢梁组成,具有较高的承载力和稳定性,适用于大型场馆和工业厂房。
详细描述
钢架结构采用钢材作为主要材料,通过焊接、螺栓连接等方式组装而成。其结 构形式简单、施工方便,能够满足大跨度、大空间的需求,同时具有较强的抗 震性能和耐久性。
总结词
由多个杆件按照一定规律组成的网格状结构,具有较高的承载力和稳定性。
详细描述
网架结构采用钢材作为主要材料,通过焊接或螺栓连接形成三维空间网格。其结构形式多样,可根据需求进行定 制,适用于不同规模和形式的场馆建设。网架结构的受力性能良好,能够承受较大的集中荷载和均布荷载,同时 具有较高的刚度和稳定性。
美观性
结构设计应与建筑美学相结合,创 造令人愉悦的视觉效果。
04
结构设计的流程与方法
方案设计
根据需求分析,制定多个设计 方案并进行比较。
施工图设计
根据详细设计结果,绘制施工 图纸并编制施工说明。
需求分析
明确结构设计的目标、要求和 限制条件。
详细设计
对选定的方案进行详细的计算 和分析,确定结构构件的尺寸 和材料。
02
优化设计包括结构形式、材料选择、节点连接方式等方面,以

结构仿生在大跨度建筑设计的应用

结构仿生在大跨度建筑设计的应用

结构仿生在大跨度建筑设计的应用在社会经济高速发展的今天,随着科学技术的不断进步,建筑行业也迎接了崭新的春天。

其中大跨度建筑的创作进程尤为迅猛,已经出现了一系列的有影响力和代表性的作品,如北京为2022年夏季奥运会修建的主游泳馆———“水立方”,国家大剧院等等。

它们的设计想法和设计理念为当代大跨度建筑的创作带来了许多灵感和启示。

结构仿生具有生物体的美感与特性,它在建筑学中的合理应用,为许多的设计提供了不一样的视角。

但同时它也暴露一些问题,例如与传统建筑设计相比,仿生结构的建筑体系不够合理、材料耗损严重、造价昂贵等等。

应该怎样解决这些问题?下面就如何使结构仿生在大跨度建筑设计中得到更好的应用展开讨论。

如今,社会在蓬勃发展,人们早已不再满足于吃饱穿暖的阶段,对物质和审美的需求日渐高涨,建筑的意义不再只是单纯的遮风挡雨,同时还得兼具美观与实用价值。

因此,结构仿生在大跨度建筑设计中的重要性不言而喻。

本文首先从结构仿生和大跨度建筑设计两方面入手,通过查阅整理,对结构仿生的概念、结构仿生的发展和结构仿生的科学基础理论进行系统的研究,总结出结构仿生的方法和应用特征。

然后概括大跨度建筑的结构设计特点,结合相应的案例进行分析,最后得出结论,并就这一结论对结构仿生在大跨度建组设计中的应用提出改进意见。

1结构仿生1.1结构仿生的概念了解结构仿生的概念,首先要先了解仿生学的概念。

仿生学一词是由美国斯蒂尔根据拉丁文“bios(生命方式的意思)”和字尾“nlc (‘具有……的性质’的意思)”构成的。

斯蒂尔在1960年提出仿生学概念,到1961年才开始得以使用。

他指出“某些生物具有的功能迄今比任何人工制造的机械都优越得多,仿生学就是要在工程上实现并有效地应用生物功能的一门学科”。

结构仿生(BionicStructure)是通过研究生物肌体的构造,建造类似生物体或其中一部分的机械装置,通过结构相似实现功能相近。

结构仿生中分为,蜂巢结构、肌理结构、减粘降阻结构和骨架结构四种结构类型。

工程施工技术正面案例

工程施工技术正面案例

工程施工技术正面案例随着我国经济的快速发展,建筑领域的需求也在不断增加,工程施工技术作为建筑领域的重要组成部分,扮演着重要的角色。

在工程施工技术的实践中,不断涌现出各类正面案例,这些案例不仅展示了工程施工技术的先进性和实用性,也为建筑行业的发展提供了有益的借鉴和参考。

本文将针对一些工程施工技术正面案例进行深入分析和探讨。

一、大跨度钢桁架施工技术大跨度钢桁架在建筑结构中应用广泛,其施工难度较大,而且需要具备较高的技术水平和丰富的施工经验。

通过科学合理的工程施工技术,可以有效地提高工程施工质量和效率,降低施工成本。

以某大型跨度钢桁架项目为例,该项目总长度超过300米,横跨一条江河,项目涉及到大量的钢结构制作、吊装、焊接等工作。

为了实现工程施工中的快速、安全、高效,团队采用了先进的钢构件预装预拼技术,提前将各种形状和尺寸的钢构件拼装在地面上,然后通过船只或卡车运输到施工现场,最后再进行组装和安装。

通过这种工程施工技术,不仅极大地缩短了施工周期,还大大减少了施工现场的施工难度和风险。

二、模块化建筑技术模块化建筑技术是近年来新兴的建筑施工技术,其核心理念是将建筑结构划分成多个功能性模块,在工厂内进行预制和组装,最后再运到施工现场进行安装。

相比传统的现场施工,模块化建筑技术具有施工速度快、质量稳定、精度高等优点。

以某高层建筑项目为例,项目总高度约300米,采用了模块化建筑技术,将整个建筑结构划分成多个模块,在工厂内进行预制和装配,然后通过吊车或塔吊运输到施工现场,最终再进行组装和安装。

通过这种工程施工技术,工程周期缩短了40%,施工质量得到了明显提升,同时还减少了施工现场的噪音和污染。

三、BIM技术在工程施工中的应用BIM(Building Information Modeling)技术是一种集成化的数字化设计和管理工具,可以模拟建筑物的结构、功能和运行情况。

在工程施工中引入BIM技术,可以实现对建筑物结构、安全、材料、设备等方面进行全面监控和管理,提高工程施工的效率和质量。

大跨度建筑案例分析

大跨度建筑案例分析

大跨度建筑案例分析大跨度建筑是指横跨较大距离的建筑结构,通常用于体育馆、会展中心、机场等大型场馆。

这类建筑在设计和施工过程中面临诸多挑战,但也展现了人类工程技术的辉煌成就。

本文将通过分析几个大跨度建筑的案例,探讨其设计特点、施工工艺和结构特色。

首先,我们来看看鸟巢——北京国家体育场。

作为2008年北京奥运会的主要场馆之一,鸟巢采用了钢结构和外部网架相结合的设计,实现了悬臂梁和双曲面网架的完美结合,形成了独特的外观。

其大跨度结构采用了大跨度钢梁和索网结构,通过精密计算和施工工艺,实现了整体结构的稳定和坚固。

鸟巢的设计不仅满足了大型体育赛事的需求,同时也成为了北京的标志性建筑,展现了中国工程技术的雄心和实力。

其次,我们来看看迪拜世界贸易中心。

这座高达828米的超高层建筑,拥有世界上最大的悬臂结构,其大跨度悬臂楼板采用了高强度混凝土和钢筋混凝土结构,通过精密设计和施工工艺,实现了超高层建筑的稳定和安全。

迪拜世界贸易中心的设计突破了传统高层建筑的限制,展现了人类工程技术的创新和突破,成为了迪拜的城市地标和世界建筑的奇迹。

最后,我们来看看上海中心大厦。

这座高度632米的摩天大楼,采用了超大跨度的钢结构框架和外挂式钢结构天桥,实现了大跨度建筑的稳定和安全。

上海中心大厦的设计和施工充分考虑了风荷载、地震作用等外部力学因素,通过先进的结构分析和仿真技术,实现了建筑结构的优化和精准控制。

其独特的外形和大跨度结构,成为了上海的城市名片和世界建筑的典范。

综上所述,大跨度建筑在设计和施工过程中需要充分考虑结构稳定性、外部力学因素和施工工艺等多方面因素,通过精密计算和先进技术,实现了大跨度建筑的稳定、安全和美观。

这些案例不仅展现了人类工程技术的辉煌成就,同时也为未来大跨度建筑的设计和施工提供了宝贵的经验和借鉴。

相信在不久的将来,会有更多更壮丽的大跨度建筑出现在世界各地,为人类的城市和生活增添更多的美丽和活力。

霍尔三维结构案例

霍尔三维结构案例

霍尔三维结构案例霍尔三维结构是一种常见的空间结构形式,它在建筑中得到了广泛的应用。

本文将通过一个实际案例来介绍霍尔三维结构的设计和施工过程,以及其在建筑中的优势和特点。

案例背景。

某大型体育馆项目采用了霍尔三维结构,该体育馆设计跨度大、空间要求高,需要满足大型体育赛事和演出活动的需求。

为了实现空间的大跨度和灵活的使用功能,设计团队选择了霍尔三维结构作为体育馆的主要结构形式。

设计过程。

在进行霍尔三维结构的设计过程中,设计团队首先进行了详细的空间分析和结构需求分析。

根据体育馆的功能要求和空间布局,确定了霍尔三维结构的基本形式和节点布置。

同时,设计团队还进行了大量的结构计算和模拟分析,确保结构的稳定性和安全性。

在结构形式上,霍尔三维结构采用了双向曲面结构,通过双向张拉和曲面构件的组合,实现了大跨度空间的覆盖。

结构节点采用了特殊的连接方式,确保了结构的整体稳定性和刚度。

施工过程。

在进行霍尔三维结构的施工过程中,施工团队面临了诸多挑战。

首先是结构构件的加工和制作,由于曲面结构的特殊性,需要精准的加工和拼装。

其次是结构的吊装和安装,大跨度结构的吊装需要精密的施工计划和安全保障措施。

在施工过程中,施工团队采用了先进的施工技术和设备,确保了结构的精准安装和施工质量。

同时,施工团队还加强了安全管理和质量监控,确保了施工过程的安全和顺利进行。

优势和特点。

霍尔三维结构在体育馆项目中展现了诸多优势和特点。

首先是空间的灵活性和覆盖能力,霍尔三维结构能够实现大跨度空间的覆盖,满足了体育馆的功能要求。

其次是结构的美观性和艺术性,曲面结构形式赋予了体育馆独特的外观和空间感。

同时,霍尔三维结构还具有较好的结构性能和抗震性能,能够保障体育馆在各种外部荷载和环境条件下的安全运行。

此外,霍尔三维结构的施工周期相对较短,能够有效缩短工期,提高工程效率。

结语。

通过以上案例的介绍,我们可以看到霍尔三维结构在大型体育馆项目中的应用优势和特点。

它不仅能够满足大跨度空间的覆盖需求,还具有良好的结构性能和美观性。

网壳结构案例简单分析

网壳结构案例简单分析

网壳结构案例简单分析网壳结构是一种由连续曲面构成的结构形式,具有稳定性好、强度高、质量轻等优点,广泛应用于建筑、桥梁、体育场馆等工程领域。

下面以建筑领域的网壳结构案例为例进行简单分析。

案例一:深圳大运中心体育馆深圳大运中心体育馆是一座综合性体育馆,采用大跨度、大空间的网壳结构设计。

该体育馆的外形呈现出流线型的造型,整个建筑结构由一个由流线型钢结构和玻璃幕墙组成的半流线型壳体组成。

该体育馆采用了双壳结构设计,内外两层网壳之间通过钢柱连接,形成了稳定的整体结构。

内层网壳主要承担荷载,外层则起到防水、保温和装饰等作用。

该体育馆的网壳结构设计突破了传统结构的限制,实现了大跨度、大空间的结构需求。

网壳结构的采用使得整个建筑结构极为轻盈,给人以开放、流畅的感觉。

同时,网壳结构的外观造型独特,成为该体育馆的标志性建筑,增加了城市的地标性与艺术性。

案例二:中国花卉博览会花卉大厅中国花卉博览会花卉大厅是一座专门展示各种花卉的建筑,采用了网壳结构设计。

该建筑呈现出一个半球形的外形,内部采用由钢桁架支撑的网壳结构。

网壳结构的内侧覆盖着透明的玻璃幕墙,使得室内充满了自然光线,为花卉的生长提供了良好的环境。

网壳结构的外侧则由彩虹色的层叠板构成,形成了美观的外观。

该花卉大厅的网壳结构设计实现了自由曲面的建筑形式,使得内部空间显得开放、明亮。

网壳结构的采用使得整个建筑更加美观、轻盈。

室内外环境的统一,使得花卉展示更加生动。

同时,该建筑的网壳结构还具有良好的承载能力,可以抵御自然灾害。

网壳结构能够通过合理的网格分布来均匀承受荷载,增强结构的稳定性和抗震性能。

此外,网壳结构还具有易于施工、周期短、成本低等优点。

因此,在很多需要大跨度、大空间的建筑领域,网壳结构都得到了广泛应用。

总的来说,网壳结构的优点包括稳定性好、强度高、质量轻、施工周期短等。

通过以上两个案例的分析可以看出,网壳结构在建筑领域中具有很高的适用性,并且能够创造出独特的建筑形式和美观的外观。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档