2018高考数学理科江苏总复习:解答题滚动练6

合集下载

2018考前三个月高考数学理科(江苏专用)总复习训练题:——解答题滚动练7 Word版含答案

2018考前三个月高考数学理科(江苏专用)总复习训练题:——解答题滚动练7 Word版含答案

解答题滚动练71.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长都相等,且∠ABB 1=60°,D 为AC 的中点,求证:(1)B 1C ∥平面A 1BD ;(2)AB ⊥B 1C .证明 (1)连结AB 1交A 1B 于点E ,连结DE .因为D ,E 分别为AC ,AB 1的中点,所以DE ∥B 1C .因为DE ⊂平面A 1BD ,B 1C ⊄平面A 1BD ,所以B 1C ∥平面A 1BD .(2)取AB 的中点O ,连结OC ,OB 1.因为BA =BB 1,且∠ABB 1=60°,所以△ABB 1为正三角形,而O 为AB 的中点,所以OB 1⊥AB . 在正三角形ABC 中,O 为AB 中点,所以OC ⊥AB .因为OB 1∩OC =O ,且OB 1⊂平面OB 1C ,OC ⊂平面OB 1C ,所以AB ⊥平面OB 1C .又因为B 1C ⊂平面OB 1C ,所以AB ⊥B 1C .2.已知数列{a n }的前n 项和S n 满足:S n =t (S n -a n +1)(t 为常数,且t ≠0,t ≠1).(1)证明:{a n }成等比数列;(2)设b n =a 2n +S n ·a n ,若数列{b n }为等比数列,求t 的值.(1)证明 当n =1时,S 1=t (S 1-a 1+1),得a 1=t ,当n ≥2时,S n =t (S n -a n +1),即(1-t )S n =-ta n +t ,(1-t )S n -1=-ta n -1+t , 所以a n =ta n -1,故{a n }成等比数列.(2)解 由(1)知{a n }成等比数列且公比是t ,∴a n =t n , 故b n =(t n )2+t (1-t n )1-t ·t n ,即b n =t 2n +t n +1-2t 2n +11-t . 若数列{b n }是等比数列,则有b 22=b 1·b 3,而b 1=2t 2,b 2=t 3(2t +1),b 3=t 4(2t 2+t +1),故[t 3(2t +1)]2=(2t 2)·t 4(2t 2+t +1),解得t =12,再将t =12代入b n 得b n =⎝ ⎛⎭⎪⎫12n , 由b n +1b n =12知{b n }为等比数列,所以t =12. 3.图1是一段半圆柱形水渠的直观图,其横断面如图2所示,其中C 为半圆弧ACB 的中点,渠宽AB 为2m.(1)当渠中水深CD 为0.4m 时,求水面的宽度;(2)若把这条水渠改挖(不准填土)成横断面为等腰梯形的水渠,且使渠的底面与地面平行,则当改挖后的水渠底宽为多少时,所挖出的土量最少?解 (1) 如图,以AB 所在直线为x 轴,AB 的垂直平分线为y 轴,以1m 为单位长度,建立平面直角坐标系xOy .半圆弧ACB 的方程为x 2+y 2=1(y ≤0), A (-1,0),B (1,0),C (0,-1),D (0,-0.6).直线y =-0.6与半圆弧的交点为(±0.8,-0.6).答 所求的水面宽度为1.6 m.(2)要使得所挖出的土量最少,则等腰梯形的两腰及下底与半圆弧ACB 相切.设等腰梯形的右腰与半圆弧ACB 相切于点T (cos θ,sin θ)⎝ ⎛⎭⎪⎫-π2<θ<0,则切线EF 的方程为x cos θ+y sin θ=1.令y =0,得E ⎝ ⎛⎭⎪⎫1cos θ,0, 令y =-1,得F ⎝⎛⎭⎪⎫1+sin θcos θ,-1, 设梯形OCFE 的面积为S ,则S =12(CF +OE )·OC=12⎝ ⎛⎭⎪⎫1cos θ+1+sin θcos θ×1 =2+sin θ2cos θ, S ′=2cos 2θ-(2+sin θ)·(-2sin θ)4cos 2θ=1+2sin θ2cos 2θ, 令S ′=0,得θ=-π6.当θ=-π6时,S 取得最小值,最小值为32, 此时CF =1+sin ⎝ ⎛⎭⎪⎫-π6cos ⎝ ⎛⎭⎪⎫-π6=33. 答 当改挖后的水渠底宽为233m 时,所挖出的土量最少. 4.函数f (x )=1+ln x -k (x -2)x,其中k 为常数. (1)若k =0,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若k =5,求证:f (x )有且仅有两个零点;(3)若k 为整数,且当x >2时,f (x )>0恒成立,求k 的最大值.(1)解 当k =0时,f (x )=1+ln x .因为f ′(x )=1x,从而f ′(1)=1. 又f (1)=1,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -1=x -1,即x -y =0.(2)证明 当k =5时,f (x )=ln x +10x-4. 因为f ′(x )=x -10x 2,从而当x ∈(0,10)时,f ′(x )<0,f (x )单调递减;当x ∈(10,+∞)时,f ′(x )>0,f (x )单调递增.所以当x =10时,f (x )有极小值.因为f (10)=ln10-3<0,f (1)=6>0,所以f (x )在(1,10)之间有一个零点.因为f (e 4)=4+10e4-4>0, 所以f (x )在(10,e 4)之间有一个零点.从而f (x )有两个不同的零点.(3)解 方法一 由题意知,1+ln x -k (x -2)x >0在(2,+∞)上恒成立, 即k <x +x ln x x -2在(2,+∞)上恒成立. 令h (x )=x +x ln x x -2,则h ′(x )=x -2ln x -4(x -2)2.设ν(x )=x -2ln x -4,则ν′(x )=x -2x. 当x ∈(2,+∞)时,ν′(x )>0,所以ν(x )在(2,+∞)上为增函数.因为ν(8)=8-2ln8-4=4-2ln8<0,ν(9)=5-2ln9>0,所以存在x 0∈(8,9),ν(x 0)=0,即x 0-2ln x 0-4=0.当x ∈(2,x 0)时,h ′(x )<0,h (x )单调递减,当x ∈(x 0,+∞)时,h ′(x )>0,h (x )单调递增.所以当x =x 0时,h (x )的最小值为h (x 0)=x 0+x 0ln x 0x 0-2. 因为ln x 0=x 0-42,所以h (x 0)=x 02∈(4,4.5). 故所求的整数k 的最大值为4.方法二 由题意知,1+ln x -k (x -2)x>0在(2,+∞)上恒成立. f (x )=1+ln x -k (x -2)x ,f ′(x )=x -2k x 2. ①当2k ≤2,即k ≤1时,f ′(x )>0在(2,+∞)上恒成立,所以f (x )在(2,+∞)上单调递增.而f (2)=1+ln2>0成立,所以满足要求.②当2k >2,即k >1时,当x ∈(2,2k )时,f ′(x )<0,f (x )单调递减,当x ∈(2k ,+∞)时,f ′(x )>0,f (x )单调递增.所以当x =2k 时,f (x )有最小值f (2k )=2+ln2k -k .从而f (x )>0在(2,+∞)上恒成立等价于2+ln2k -k >0.令g (k )=2+ln2k -k ,则g ′(k )=1-k k<0,从而g (k )在(1,+∞)为减函数. 因为g (4)=ln8-2>0,g (5)=ln10-3<0,所以使2+ln2k -k >0成立的最大正整数k =4.综合①②,知所求的整数k 的最大值为4.。

2018《单元滚动检测卷》高考数学(理)(苏教版):阶段滚动检测(六)含解析

2018《单元滚动检测卷》高考数学(理)(苏教版):阶段滚动检测(六)含解析

阶段滚动检测(六)考生注意:1.本试卷分第Ⅰ卷(填空题)和第Ⅱ卷(解答题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分160分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.(2016·苏北四市联考)设集合A={x|lg(10-x2)〉0},集合B ={x|2x〈错误!},则A∩B=__________.2.(2016·常州模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,已知a cos A=b cos B,则△ABC的形状是______________三角形.3.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-a ln x在(1,2)上为增函数,则a=______。

4.(2016·苏北四市)已知矩形ABCD的边AB=4,BC=3,若沿对角线AC折叠,使平面DAC⊥平面BAC,则三棱锥D—ABC的体积为________.5.(2016·扬州模拟)各项都为正数的数列{a n},其前n项和为S n,且S n=(错误!+错误!)2(n≥2,n∈N*),若b n=错误!+错误!,且数列{b n}的前n项和为T n,则T n=____________.6.(2016·陕西尧山补习学校质检)在△ABC中,∠ABC=错误!,AB =2,BC=3,则sin∠BAC=________。

7.(2016·湖南长郡中学第四次月考)已知“若点P(x0,y0)在双曲线C:错误!-错误!=1(a>0,b>0)上,则C在点P处的切线方程为C:错误!-错误!=1”,现已知双曲线C:错误!-错误!=1和点Q(1,t)(t≠±错误!),过点Q作双曲线C的两条切线,切点分别为M,N,则直线MN过定点__________.8.(2016·河北衡水中学调研)设x,y满足约束条件320,0,0,0,x yx yxy--≤⎧⎪-≥⎪⎨≥⎪⎪≥⎩若目标函数z=x+错误!y(m>0)的最大值为2,则y=sin(mx+错误!)的图象向右平移错误!个单位长度后的表达式为________________.9.(2016·泰州模拟)已知ab=错误!,a,b∈(0,1),则错误!+错误!的最小值为________.10.在△ABC中,内角A,B,C的对边分别为a,b,c,已知错误!=错误!,则错误!的值为________.11.(2016·南京师大附中检测)下列四个命题:①在△ABC中,“sin A>sin B”是“A〉B”的充要条件;②命题“∃x0∈R,x错误!-x0-1<0”的否定是“∀x∈R,x2-x-1<0”;③若圆C:若x2+y2=4上恰有三个点到直线l:x+y+c=0的距离为1,则c∈{-1,1};④若f(x)=ln(e2x+1)+ax是偶函数,则a=-1.其中是真命题的有____________.(填序号)12.已知椭圆E:错误!+错误!=1的长轴的两个端点分别为A1,A2,点P在椭圆E上,如果△A1PA2的面积等于9,那么错误!·错误!=________.13.(2016·江苏启东测试)正实数x1,x2及f(x)满足f(x)=错误!,且f(x1)+f(x2)=1,则f(x+y)的最小值为________.14.(2016·陕西五校联考)椭圆错误!+错误!=1(a为定值且a>错误!)的左焦点为F,直线x=m与椭圆相交于点A、B,若△FAB的周长的最大值是12,则该椭圆的离心率是____________.第Ⅱ卷二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15。

【高三物理试题精选】江苏省2018年高考理科数学试题(含答案)

【高三物理试题精选】江苏省2018年高考理科数学试题(含答案)

江苏省2018年高考理科数学试题(含答案)
数学Ⅰ试题
参考式
圆柱的体积式 =Sh,其中S是圆柱的底面积,h为高
圆锥的体积式 Sh,其中S是圆锥的底面积,h为高
一、填空题本大题共14个小题,每小题5分,共70分请把答案写在答题卡相应位置上。

1已知集合则________▲________
2复数其中i为虚数单位,则z的实部是________▲________ 3在平面直角坐标系xOy中,双曲线的焦距是________▲________
4已知一组数据47,48,51,54,55,则该组数据的方差是________▲________
5函数y= 的定义域是▲
6如图是一个算法的流程图,则输出的a的值是▲
7将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是▲
8已知{an}是等差数列,Sn是其前n项和若a1+a22= 3,S5=10,则a9的值是▲
9定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是▲
10如图,在平面直角坐标系xOy中,F是椭圆的右焦点,直线与椭圆交于B,C两点,且 ,则该椭圆的离心率是▲
(第10题)
11设f(x)是定义在R上且周期为2的函数,在区间[ 1,1)上,其中若,则f(5a)的值是▲
12 已知实数x,y满足,则x2+y2的取值范围是▲。

2018高考数学理科(江苏专用)总复习训练题:——附加题高分练6含答案

2018高考数学理科(江苏专用)总复习训练题:——附加题高分练6含答案

6.计数原理、二项式定理和数学归纳法 1.已知等式(1+x)2n -1=(1+x)n -1(1+x)n .(1)求(1+x)2n -1的展开式中含x n 的项的系数,并化简:C 0n -1C n n +C 1n -1C n -1n+…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n(C n n )2=nC n2n -1.(1)解 (1+x)2n -1的展开式中含x n 的项的系数为C n 2n -1,由(1+x)n -1(1+x)n =(C 0n -1+C 1n -1x +…+C n -1n -1x n -1)(C 0n +C 1n x +…+C n n x n )可知,(1+x)n -1(1+x)n 的展开式中含x n 的项的系数为C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n .所以C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1.(2)证明 当k ∈N *时,kC k n =k ·n !k !(n -k )!=n !(k -1)!(n -k )!=n ·(n -1)!(k -1)!(n -k )!=nC k -1n -1, 所以(C 1n )2+2(C 2n )2+…+n(C n n )2=∑k =1n[k(C k n )2]=k =1n (kC k n C k n )=k =1n (nC k -1n -1C k n )=n k =1n (C k -1n -1C k n )=n k =1n (C n -k n -1C kn ).由(1)知C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n 2n -1, 即k =1n (C n -k n -1C k n )=C n 2n -1,所以(C 1n )2+2(C 2n )2+…+n(C n n )2=nC n 2n -1.2.(2017·江苏泰州中学调研)在平面直角坐标系xOy 中,点P(x 0,y 0)在曲线y =x 2(x >0)上.已知点A(0,-1),P n (x n0,y n0),n ∈N *.记直线AP n 的斜率为k n .(1)若k 1=2,求P 1的坐标; (2)若k 1为偶数,求证:k n 为偶数. (1)解 因为k 1=2,所以y 0+1x 0=x 20+1x 0=2,解得x 0=1,y 0=1,所以P 1的坐标为(1,1).(2)证明 方法一 设k 1=2p(p ∈N *),即y 0+1x 0=x 20+1x 0=2p.所以x 20-2px 0+1=0,所以x 0=p ±p 2-1. 因为y 0=x 2,所以k n =y n 0+1x n 0=x 2n 0+1x n 0=x n0+1x n 0,所以当x 0=p +p 2-1时,k n =(p +p 2-1)n+⎝ ⎛⎭⎪⎫1p +p 2-1n=(p +p 2-1)n +(p -p 2-1)n . 同理,当x 0=p -p 2-1时,k n =(p +p 2-1)n +(p -p 2-1)n .①当n =2m(m ∈N *)时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k ,所以k n 为偶数. ②当n =2m +1(m ∈N)时,k n =2∑k =0mC 2k n pn -2k (p 2-1)k ,所以k n 为偶数. 综上,k n 为偶数.方法二 因为⎝ ⎛⎭⎪⎫x 0+1x 0⎝ ⎛⎭⎪⎫x n +10+1x n +10=x n +20+1x n +20+x n 0+1x n 0, 所以k n +2=k 1k n +1-k n .k 2=x 20+1x 20=⎝ ⎛⎭⎪⎫x 0+1x 02-2=k 21-2. 设命题p(n):k n ,k n +1均为偶数.以下用数学归纳法证明“命题p(n)是真命题”.①因为k 1是偶数,所以k 2=k 21-2也是偶数.当n =1时,p(n)是真命题; ②假设当n =m(m ∈N *)时,p(n)是真命题,即k m ,k m +1均为偶数,则k m +2=k 1k m+1-k m 也是偶数,即当n =m +1时,p(n)也是真命题.由①②可知,对n ∈N *,p(n)均是真命题,从而k n 是偶数.3.(2017·江苏扬州中学模拟)在数列{a n }中,a n =cos π3×2n -2(n ∈N *)(1)试将a n +1表示为a n 的函数关系式; (2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证。

2018考前三个月高考数学理科(江苏专用)总复习训练题:——解答题滚动练6 含答案

2018考前三个月高考数学理科(江苏专用)总复习训练题:——解答题滚动练6 含答案

解答题滚动练61.在△ABC 中,三个内角分别为A ,B ,C ,已知sin ⎝⎛⎭⎪⎫A +π6=2cos A . 【1)若cos C =63,求证:2a -3c =0; 【2)若B ∈⎝⎛⎭⎪⎫0,π3,且cos 【A -B )=45,求sin B . 【1)证明 因为sin ⎝⎛⎭⎪⎫A +π6=2cos A ,得32sin A +12cos A =2cos A , 即sin A =3cos A ,因为A ∈【0,π),且cos A ≠0,所以tan A =3,所以A =π3. 因为sin 2C +cos 2C =1,cos C =63,C ∈【0,π), 所以sin C =33, 由正弦定理知a sin A =c sin C ,即a c =sin A sin C =3233=32, 即2a -3c =0.【2)解 因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以A -B =π3-B ∈⎝ ⎛⎭⎪⎫0,π3, 因为sin 2【A -B )+cos 2【A -B )=1,所以sin 【A -B )=35, 所以sin B =sin 【A -【A -B ))=sin A cos 【A -B )-cos A ·sin【A -B )=43-310. 2.已知函数f 【x )=ax 3-2x -ln x ,a ∈R .【1)若曲线y =f 【x )在x =1处的切线方程为y =b ,求a +b 的值;【2)在【1)的条件下,求函数f 【x )零点的个数.解 【1)f ′【x )=3ax 2-2-1x, 由题意,f ′【1)=0,f 【1)=b ,解得,a =1,b =-1,所以a +b =0.【2)由【1)知,f 【x )=x 3-2x -ln x ,f ′【x )=3x 2-2-1x =3x 3-2x -1x=(x -1)(3x 2+3x +1)x, 令f ′【x )=0,得x =1,且当0<x <1时,f ′【x )<0;当x >1时,f ′【x )>0,所以函数f 【x )在【0,1)上单调递减,在【1,+∞)上单调递增.因为f 【1)=-1<0,f ⎝ ⎛⎭⎪⎫1e =1e 3-2e +1>0,f 【e)=e 3-2e -1>0,函数f 【x )在区间⎣⎢⎡⎦⎥⎤1e ,1和[1,e]上的图象是一条不间断的曲线,由零点存在性定理,知函数f 【x )有两个零点.3.已知圆M :x 2+【y -4)2=4,点P 是直线l :x -2y =0上的一动点,过点P 作圆M 的切线PA ,PB ,切点为A ,B .【1)当切线PA 的长度为23时,求点P 的坐标;【2)若△PAM 的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;【3)求线段AB 长度的最小值.解 【1)由题意可知,圆M 的半径r =2,设P 【2b ,b ),因为PA 是圆M 的一条切线,A 为切点,所以∠MAP =90°,所以MP =(0-2b )2+(4-b )2=AM 2+AP 2=4,解得b =0或b =85, 所以P 【0,0)或P ⎝ ⎛⎭⎪⎫165,85. 【2)设P 【2b ,b ),因为∠MAP =90°,所以经过A ,P ,M 三点的圆N 以MP 为直径,其方程为【x -b )2+⎝ ⎛⎭⎪⎫y -b +422=4b 2+(b -4)24, 即【2x +y -4)b -【x 2+y 2-4y )=0.由⎩⎪⎨⎪⎧ 2x +y -4=0,x 2+y 2-4y =0,解得⎩⎨⎧ x =0,y =4,或⎩⎪⎨⎪⎧x =85,y =45,所以圆过定点【0,4),⎝ ⎛⎭⎪⎫85,45. 【3)因为圆N 方程为【x -b )2+⎝ ⎛⎭⎪⎫y -b +422=4b 2+(b -4)24,即x 2+y 2-2bx -【b +4)y +4b =0.①圆M :x 2+【y -4)2=4,即x 2+y 2-8y +12=0.②②-①得圆M 与圆N 的相交弦AB 所在直线方程为2bx +【b -4)y +12-4b =0,点M 到直线AB 的距离d =45b 2-8b +16, 相交弦长AB =24-d 2=41-45b 2-8b +16 =41-45⎝ ⎛⎭⎪⎫b -452+645. 当b =45时,AB 有最小值11. 4.如图是一“T ”型水渠的平面视图【俯视图),水渠的南北方向和东西方向轴截面均为矩形,南北向渠宽为4m ,东西向渠宽2m 【从拐角处,即图中A ,B 处开始).假定渠内的水面始终保持水平位置【即无高度差).【1)在水平面内,过点A 的一条直线与水渠的内壁交于P ,Q 两点,且与水渠的一边的夹角为θ⎝⎛⎭⎪⎫0<θ<π2,将线段PQ 的长度l 表示为θ的函数; 【2)若从南面漂来一根长为7m 的笔直的竹竿【粗细不计),竹竿始终浮于水平面内,且不发生形变,问:这根竹竿能否从拐角处一直漂向东西向的水渠【不会卡住)?请说明理由.解 【1)由题意,PA =2sin θ,QA =4cos θ,所以l =PA +QA =2sin θ+4cos θ⎝⎛⎭⎪⎫0<θ<π2. 【2)设f 【θ)=2sin θ+4cos θ,θ∈⎝⎛⎭⎪⎫0,π2. 由f ′【θ)=-2cos θsin 2θ+4sin θcos 2θ=2(22sin 3θ-cos 3θ)sin 2θcos 2θ, 令f ′【θ)=0,得tan θ0=22. 且当θ∈【0,θ0),f ′【θ)<0;当θ∈⎝⎛⎭⎪⎫θ0,π2,f ′【θ)>0,所以f 【θ)在【0,θ0)上单调递减,在⎝⎛⎭⎪⎫θ0,π2上单调递增,所以当θ=θ0时,f【θ)取得极小值,即为最小值.当tanθ0=22时,sinθ0=13,cosθ0=23,所以f【θ)的最小值为36,即这根竹竿能通过拐角处的长度的最大值为36m.因为36>7,所以这根竹竿能从拐角处一直漂向东西向的水渠.。

(江苏专版)2018年高考数学二轮复习6个解答题专项强化练(三)解析几何

(江苏专版)2018年高考数学二轮复习6个解答题专项强化练(三)解析几何

6个解答题专项强化练(三) 解析几何1.已知圆M :x 2+y 2-2x +a =0.(1)若a =-8,过点P (4,5)作圆M 的切线,求该切线方程;(2)若AB 为圆M 的任意一条直径,且OA ―→·OB ―→=-6(其中O 为坐标原点),求圆M 的半径.解:(1)若a =-8,则圆M 的标准方程为(x -1)2+y 2=9,圆心M (1,0),半径为3. 若切线斜率不存在,圆心M 到直线x =4的距离为3,所以直线x =4为圆M 的一条切线; 若切线斜率存在,设切线方程为y -5=k (x -4),即kx -y -4k +5=0,则圆心到直线的距离为|k -4k +5|k 2+1=3,解得k =815,即切线方程为8x -15y +43=0.所以切线方程为x =4或8x -15y +43=0.(2)圆M 的方程可化为(x -1)2+y 2=1-a ,圆心M (1,0),则OM =1,半径r =1-a (a <1). 因为AB 为圆M 的任意一条直径,所以MA ―→=-MB ―→,且|MA ―→|=|MB ―→|=r ,则OA ―→·OB ―→=(OM ―→+MA ―→)·(OM ―→+MB ―→)=(OM ―→-MB ―→)·(OM ―→+MB ―→)=OM ―→2-MB ―→2=1-r 2,又因为OA ―→·OB ―→=-6,解得r =7,所以圆M 的半径为7.2.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),且经过点⎝ ⎛⎭⎪⎫1,32. (1)求椭圆的标准方程;(2)已知椭圆的弦AB 过点F ,且与x 轴不垂直.若D 为x 轴上的一点,DA =DB ,求AB DF的值.解:(1)法一:由题意,得⎩⎪⎨⎪⎧c =1,1a 2+94b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆的标准方程为x 24+y 23=1.法二:由题意,知2a =+2+⎝ ⎛⎭⎪⎫322+-2+⎝ ⎛⎭⎪⎫322=4,所以a =2. 又c =1,a 2=b 2+c 2,所以b =3,所以椭圆的标准方程为x 24+y 23=1.(2)法一:设直线AB 的方程为y =k (x +1). ①当k =0时,AB =2a =4,FD =FO =1,所以AB DF=4;②当k ≠0时,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),把直线AB 的方程代入椭圆方程,整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,所以x 1+x 2=-8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以x 0=-4k23+4k 2,所以y 0=k (x 0+1)=3k3+4k2, 所以AB 的垂直平分线方程为y -3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x +4k 23+4k 2. 因为DA =DB ,所以点D 为AB 的垂直平分线与x 轴的交点,所以D ⎝ ⎛⎭⎪⎫-k 23+4k 2,0,所以DF =-k 23+4k 2+1=3+3k23+4k 2.又因为AB =1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=12+12k23+4k2,所以AB DF=4.综上,得AB DF的值为4.法二:①若直线AB 与x 轴重合,则AB DF=4; ②若直线AB 不与x 轴重合,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y 223=1,两式相减得x 21-x 224+y 21-y 223=0,所以x 1-x 2x 04+y 1-y 2y 03=0,所以直线AB 的斜率为y 1-y 2x 1-x 2=-3x 04y 0,所以直线AB 的垂直平分线方程为y -y 0=4y 03x 0(x -x 0).因为DA =DB ,所以点D 为AB 的垂直平分线与x 轴的交点,所以D ⎝ ⎛⎭⎪⎫x 04,0,所以DF =x 04+1.因为椭圆的左准线的方程为x =-4,离心率为12,由AFx 1+4=12,得AF =12(x 1+4), 同理BF =12(x 2+4).所以AB =AF +BF =12(x 1+x 2)+4=x 0+4,所以AB DF=4. 综上,得AB DF的值为4.3.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A ,B ,M 为线段AB 的中点,且OM ―→·AB ―→=-32b 2.(1)求椭圆的离心率;(2)若a =2,四边形ABCD 内接于椭圆,AB ∥DC .记直线AD ,BC 的斜率分别为k 1,k 2,求证:k 1k 2为定值.解:(1)由题意,A (a,0),B (0,b ),由M 为线段AB 的中点得M ⎝ ⎛⎭⎪⎫a 2,b2. 所以OM ―→=⎝ ⎛⎭⎪⎫a 2,b 2,AB ―→=(-a ,b ).因为OM ―→·AB ―→=-32b 2,所以⎝ ⎛⎭⎪⎫a 2,b 2·(-a ,b )=-a 22+b 22=-32b 2, 整理得a 2=4b 2,即a =2b .因为a 2=b 2+c 2,所以3a 2=4c 2,即3a =2c . 所以椭圆的离心率e =c a =32. (2)证明:法一:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12.因为AB ∥DC ,故可设DC 的方程为y =-12x +m ,D (x 1,y 1),C (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =-12x +m ,x24+y 2=1,消去y ,得x 2-2mx +2m 2-2=0,所以x 1+x 2=2m ,从而x 1=2m -x 2. 直线AD 的斜率k 1=y 1x 1-2=-12x 1+m x 1-2,直线BC 的斜率k 2=y 2-1x 2=-12x 2+m -1x 2,所以k 1k 2=-12x 1+m x 1-2·-12x 2+m -1x 2=14x 1x 2-12m -x 1-12mx 2+m m -x 1-x 2=14x 1x 2-12m x 1+x 2+12x 1+m m -x 1x 2-2x 2=14x 1x 2-12m ·2m +12m -x 2+m m -x 1x 2-2x 2=14x 1x 2-12x 2x 1x 2-2x 2=14, 即k 1k 2为定值14.法二:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12.设C (x 0,y 0),则x 204+y 20=1.因为AB ∥CD ,故CD 的方程为y =-12(x -x 0)+y 0.联立方程⎩⎪⎨⎪⎧y =-12x -x 0+y 0,x24+y 2=1,消去y ,得x 2-(x 0+2y 0)x +2x 0y 0=0,解得x =x 0或x =2y 0. 所以点D 的坐标为⎝ ⎛⎭⎪⎫2y 0,12x 0.所以k 1k 2=12x 02y 0-2·y 0-1x 0=14,即k 1k 2为定值14.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1)求椭圆C 的标准方程;(2)已知直线l 交椭圆C 于A ,B 两点.①若直线l 经过椭圆C 的左焦点F ,交y 轴于点P ,且满足PA ―→=λAF ―→,PB ―→=μBF ―→.求证:λ+μ为定值;②若A ,B 两点满足OA ⊥OB (O 为坐标原点),求△AOB 面积的取值范围.解:(1)由题设知c =1,-a 2c=-2,解得a 2=2,b 2=1,∴椭圆C 的标准方程为x 22+y 2=1.(2)①证明:由题设知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则P (0,k ). 设A (x 1,y 1),B (x 2,y 2),把直线l 的方程代入椭圆的方程得x 2+2k 2(x +1)2=2, 整理得(1+2k 2)x 2+4k 2x +2k 2-2=0, ∴x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k2.由PA ―→=λAF ―→,PB ―→=μBF ―→知,λ=-x 11+x 1,μ=-x 21+x 2,∴λ+μ=-x 1+x 2+2x 1x 21+x 1+x 2+x 1x 2=--4k 21+2k 2+4k 2-41+2k 21+-4k 21+2k 2+2k 2-21+2k 2=--4-1=-4(定值).②当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22, 当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1kx ,A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 得到x 2+2k 2x 2=2,∴x 21=22k 2+1,y 21=2k 22k 2+1,同理x 22=2k 22+k 2,y 22=22+k2,故△AOB 的面积S =OA ·OB2=k 2+2k 2+k 2+.令t =k 2+1∈(1,+∞), 故S =t 2t -t +=12+1t -1t2. 再令u =1t∈(0,1),则S =1-u 2+u +2=1-⎝ ⎛⎭⎪⎫u -122+94∈⎣⎢⎡⎭⎪⎫23,22.综上所述,S ∈⎣⎢⎡⎦⎥⎤23,22.5.如图,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在x 轴上方).(1)若QF =2FP ,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为k 1,k 2.是否存在常数λ,使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由.解:(1)因为a 2=4,b 2=3,所以c =a 2-b 2=1,所以F 的坐标为(1,0),设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为x =my +1, 代入椭圆方程,消去x ,得(4+3m 2)y 2+6my -9=0, 则y 1=-3m +61+m 24+3m 2,y 2=-3m -61+m 24+3m 2. 若QF =2FP ,则-y 2=2y 1,即y 2+2y 1=0, 所以-3m -61+m 24+3m 2+2×-3m +61+m24+3m 2=0, 解得m =255,故直线l 的方程为5x -2y -5=0.(2)由(1)知,y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2,所以my 1y 2=-9m 4+3m 2=32(y 1+y 2),所以k 1k 2=y 1x 1+2·x 2-2y 2=y 1my 2-y 2my 1+=32y 1+y 2-y 132y 1+y 2+3y 2=13, 故存在常数λ=13,使得k 1=13k 2.6.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,其离心率e =12,左准线方程为x =-8.(1)求椭圆的方程;(2)过F 1的直线交椭圆于A ,B 两点,I 1,I 2分别为△F 1AF 2,△F 1BF 2的内心. ①求四边形F 1I 1F 2I 2与△AF 2B 的面积比;②是否存在定点C ,使CA ―→·CB ―→为常数?若存在,求出点C 的坐标;若不存在,说明理由.解:(1)由题意⎩⎪⎨⎪⎧c a =12,a2c =8,解得a =4,c =2,故b =23,所以椭圆的方程为x 216+y 212=1.(2)①设△F 1AF 2的内切圆半径为r ,则S △F 1I 1F 2=12·F 1F 2·r =12·2c ·r =2r ,S △F 1AF 2=12·(AF 1+AF 2+F 1F 2)·r =12·(2a +2c )·r =6r ,∴S △F 1I 1F 2∶S △F 1AF 2=1∶3, 同理S △F 1I 2F 2∶S △F 1BF 2=1∶3, ∴S 四边形F 1I 1F 2I 2∶S △AF 2B =1∶3.②假设存在定点C (s ,t ),使得CA ―→·CB ―→为常数.若直线AB 存在斜率,设AB 的方程为y =k (x +2),A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k x +,x 216+y 212=1,消去y ,得(3+4k 2)x 2+16k 2x +16k 2-48=0,由此得x 1+x 2=-16k 23+4k 2,x 1x 2=16k 2-483+4k 2,∴CA ―→·CB ―→=(x 1-s ,y 1-t )·(x 2-s ,y 2-t ) =(x 1-s )(x 2-s )+(y 1-t )(y 2-t )=(x 1-s )(x 2-s )+[k (x 1+2)-t ][k (x 2+2)-t ] =(1+k 2)x 1x 2+(2k 2-tk -s )(x 1+x 2)+s 2+t 2+4k 2-4tk =1+k216k 2-483+4k 2+2k 2-tk -s -16k23+4k2+s 2+t 2+4k 2-4tk =-12tk -12s -333+4k+s 2+t 2+4s -5. ∵与k 无关,∴⎩⎪⎨⎪⎧-12t =0,-12s -33=0,即⎩⎪⎨⎪⎧s =-114,t =0,此时CA ―→·CB ―→=-13516;若直线AB 不存在斜率,则A 与B 的坐标为(-2,±3),CA ―→·CB ―→=(s +2,t -3)·(s +2,t +3)=(s +2)2+t 2-9,将⎩⎪⎨⎪⎧s =-114,t =0代入,此时CA ―→·CB ―→=-13516也成立.综上所述,存在定点C ⎝ ⎛⎭⎪⎫-114,0,使得CA ―→·CB ―→为常数.。

2018考前三个月高考数学理科(江苏专用)总复习训练题:——解答题滚动练8套集合((含答案)35页

2018考前三个月高考数学理科(江苏专用)总复习训练题: ——解答题滚动练8套集合((含答案)解答题滚动练11.(2017·盐城三模)设△ABC 面积的大小为S ,且3AB →·AC →=2S . (1)求sin A 的值;(2)若C =π4,AB →·AC →=16,求AC .解 (1)设△ABC 的内角A ,B ,C 所对边的边长分别为a ,b ,c ,由3AB →·AC →=2S , 得3bc cos A =2×12bc sin A ,得sin A =3cos A .即sin 2A =9cos 2A =9(1-sin 2A ),所以sin 2A =910.又A ∈(0,π),所以sin A >0,故sin A =31010.(2)由sin A =3cos A 和sin A =31010,得cos A =1010,又AB →·AC →=16,所以bc ·cos A =16,得bc =1610① 又C =π4,所以sin B =sin(A +C )=sin A cos C +cos A sin C=31010×22+1010×22=255.在△ABC 中,由正弦定理,得b sin B =csin C ,即b 255=c 22,得c =104b ,②联立①②,解得b =8,即AC =8.2.(2017·江苏泰兴中学质检)如图,在正三棱柱ABC -A 1B 1C 1中,E 是侧面AA 1B 1B 对角线的交点,F 是侧面AA 1C 1C 对角线的交点,D 是棱BC 的中点.求证:(1)EF ∥平面ABC ; (2)平面AEF ⊥平面A 1AD . 证明 (1)连结A 1B 和A 1C .因为E ,F 分别是侧面AA 1B 1B 和侧面AA 1C 1C 的对角线的交点, 所以E ,F 分别是A 1B 和A 1C 的中点,所以EF ∥BC . 又BC ⊂平面ABC ,EF ⊄平面ABC , 故EF ∥平面ABC .(2)因为三棱柱ABC -A 1B 1C 1为正三棱柱, 所以A 1A ⊥平面ABC , 所以BC ⊥A 1A .故由EF ∥BC ,得EF ⊥A 1A .又因为D 是棱BC 的中点,且△ABC 为正三角形,所以BC ⊥AD . 故由EF ∥BC ,得EF ⊥AD .而A 1A ∩AD =A ,A 1A ,AD ⊂平面A 1AD , 所以EF ⊥平面A 1AD .又EF ⊂平面AEF ,故平面AEF ⊥平面A 1AD .3.如图,在平面直角坐标系xOy 中,设椭圆C :x 2a2+y 2=1(a >1).(1)若椭圆C 的焦距为2,求a 的值;(2)求直线y =kx +1被椭圆C 截得的线段长(用a ,k 表示);(3)若以A (0,1)为圆心的圆与椭圆C 总有4个公共点,求椭圆C 的离心率e 的取值范围.解 (1)由椭圆C :x 2a2+y 2=1(a >1)知,焦距为2a 2-1=2,解得a =±2,因为a >1,所以a = 2. (2)设直线y =kx +1被椭圆截得的线段长为AP ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0,解得x 1=0,x 2=-2a 2k 1+a 2k2.因此AP =1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. (3)因为圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有2个不同的公共点为P ,Q ,满足AP =AQ .记直线AP ,AQ 的斜率分别为k 1,k 2,k 1和k 2一正一负,且k 21≠k 22.由(2)知,AP =2a 2|k 1|1+k 211+a 2k 21,AQ =2a 2|k 2|1+k 221+a 2k 22,则2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0, 因为k 21≠k 22,所以1+k 21+k 22+a 2(2-a 2)k 21k 22=0,变形得,⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2),从而1+a 2(a 2-2)>1, 解得a >2,则e =c a=1-1a 2∈⎝ ⎛⎭⎪⎫22,1.4.已知数列{a n }是等差数列,{b n }是等比数列且满足a 1+a 2+a 3=9,b 1b 2b 3=27. (1)若a 4=b 3,b 4-b 3=m .①当m =18时,求数列{a n }和{b n }的通项公式; ②若数列{b n }是唯一的,求m 的值;(2)若a 1+b 1,a 2+b 2,a 3+b 3均为正整数,且成等比数列,求数列{a n }的公差d 的最大值. 解 (1)①由数列{a n }是等差数列及a 1+a 2+a 3=9,得a 2=3, 由数列{b n }是等比数列及b 1b 2b 3=27,得b 2=3. 设数列{a n }的公差为d ,数列{b n }的公比为q ,若m =18,则有⎩⎪⎨⎪⎧3+2d =3q ,3q 2-3q =18,解得⎩⎪⎨⎪⎧d =3,q =3或⎩⎪⎨⎪⎧d =-92,q =-2.所以{a n }和{b n }的通项公式为⎩⎪⎨⎪⎧a n =3n -3,b n =3n -1或⎩⎪⎨⎪⎧a n =-92n +12,b n =3(-2)n -2.②由题设b 4-b 3=m ,得3q 2-3q =m ,即3q 2-3q -m =0,(*) 因为数列{b n }是唯一的,所以若q =0,则m =0,检验知,当m =0时,q =1或0(舍去),满足题意; 若q ≠0,则Δ=(-3)2+12m =0,解得m =-34,代入(*)式,解得q =12,又b 2=3,所以{b n }是唯一的等比数列,符合题意. 所以m =0或-34.(2)依题意,36=(a 1+b 1)(a 3+b 3),设{b n }公比为q ,则有36=⎝ ⎛⎭⎪⎫3-d +3q (3+d +3q ),(**)记s =3-d +3q,t =3+d +3q ,则st =36.将(**)中的q 消去,整理得d 2+(s -t )d +3(s +t )-36=0,d 的大根为t -s +(s -t )2-12(s +t )+1442=t -s +(s +t -6)2-362,而s ,t ∈N *,所以(s ,t )的所有可能取值为:(1,36),(2,18),(3,12),(4,9),(6,6),(9,4),(12,3),(18,2),(36,1). 所以当s =1,t =36时,d 的最大值为35+5372.解答题滚动练21.(2017·南京、盐城二模)如图,在△ABC 中,D 为边BC 上一点,AD =6,BD =3,DC =2. (1)如图1,若AD ⊥BC ,求∠BAC 的大小; (2)如图2,若∠ABC =π4,求△ADC 的面积.解 (1) 由已知,得tan ∠BAD =36=12,tan ∠CAD =26=13,所以tan ∠BAC =tan(∠BAD +∠CAD )=12+131-12×13=1.因为∠BAC ∈(0,π),所以∠BAC =π4.(2) 以B 为原点,BC 所在直线为x 轴建立平面直角坐标系,则B (0,0),D (3,0),C (5,0). 因为∠ABC =π4,所以设A (a ,a ),其中a >0.由AD =6,BD =3,得(a -3)2+a 2=62,即2a 2-6a -27=0,解得a =32(1+7).所以S △ADC =12DC ·a =32(1+7).2.如图,ABCD 是一块边长为100米的正方形地皮,其中ATPS 是一半径为90米的底面为扇形小山(P 为圆弧TS 上的点),其余部分为平地.今有开发商想在平地上建一个两边落在BC 及CD 上的长方形停车场PQCR.(1)设∠PAB =θ,试将矩形PQCR 面积表示为θ的函数; (2)求停车场PQCR 面积的最大值及最小值.解 (1)S PQCR =f (θ)=(100-90cos θ)(100-90sin θ)=8100sin θcos θ-9000(sin θ+cos θ)+10000 , θ∈⎣⎢⎡⎦⎥⎤0,π2.(2)由(1)知S PQCR =f (θ)=8100sin θcos θ-9000(sin θ+cos θ)+10000,θ∈⎣⎢⎡⎦⎥⎤0,π2.令sin θ+cos θ=t ,则t =2sin ⎝ ⎛⎭⎪⎫θ+π4∈[1,2].∴S PQCR =81002t 2-9000t +10000-81002,当t =109时,S PQCR 取得最小值950(m 2),当t =2时,S PQCR 取得最大值14050-90002(m 2).答 停车场面积的最大值和最小值分别为14050-90002(m 2)和950(m 2).3.如图,点A (1,3)为椭圆x 22+y 2n=1上一定点,过点A 引两直线与椭圆分别交于B ,C 两点.(1)求椭圆方程;(2)若直线AB ,AC 与x 轴围成的是以点A 为顶点的等腰三角形. ①求直线BC 的斜率;②求△ABC 的面积的最大值,并求出此时直线BC 的方程.解 (1)把点A (1,3)代入x 22+y 2n =1得n =6,故椭圆方程为x 22+y 26=1.(2)①显然题中等腰三角形腰所在的直线不可能与x 轴垂直. 因此其斜率必存在,设两腰的斜率分别为k 1,k 2,由⎩⎪⎨⎪⎧y -3=k 1(x -1),x 22+y 26=1,消去y ,得(3+k 21)x 2+2k 1(3-k 1)x +(3-k 1)2-6=0,∴点B 的横坐标为x =1-6+23k 1k 21+3(x =1为点A 的横坐标),∴点B 的纵坐标为y =3-23k 21+6k 1k 21+3,即B ⎝ ⎛⎭⎪⎫1-6+23k 1k 21+3,3-23k 21+6k 1k 21+3.∵k 1+k 2=0,∴直线BC 的斜率为k BC = 3.②设B (x 1,y 1),C (x 2,y 2),直线BC 的方程为y =3x +m ,代入方程x 22+y 26=1得6x 2+23mx+m 2-6=0,∴x 1+x 2=-33m ,x 1x 2=m 2-66,∴BC =1+(3)2·|x 1-x 2| =2·(x 1+x 2)2-4x 1x 2 =23312-m 2,又点A 到直线BC 的距离为d =|m |2,∴S △ABC =12BC ·d =36m 2(12-m 2)=36-(m 2-6)2+36, ∴当m 2=6,即m =6或m =-6时,△ABC 面积取得最大值 3. 此时,直线BC 的方程为y =3x ± 6.4.已知函数f (x )=2x 3+ax 2+bx +c (a ,b ,c ∈R ).(1)若函数f (x )为奇函数,且图象过点(-1,2),求f (x )的解析式; (2)若x =1和x =2是函数f (x )的两个极值点. ①求a ,b 的值;②求函数f (x )在区间[0,3]上的零点个数. 解 (1)因为函数f (x )为奇函数,所以f (-x )=-f (x ),即2(-x )3+a (-x )2+b (-x )+c =-2x 3-ax 2-bx -c , 整理得,ax 2+c =0,所以a =c =0,从而f (x )=2x 3+bx , 又函数f (x )图象过点(-1,2),所以b =-4. 从而f (x )=2x 3-4x .(2)①f (x )=2x 3+ax 2+bx +c (a ,b ,c ∈R )的导函数f ′(x )=6x 2+2ax +b . 因为f (x )在x =1和x =2处取得极值, 所以f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+2a +b =0,24+4a +b =0,解得a =-9,b =12.②由①得f(x)=2x3-9x2+12x+c(c∈R),f′(x)=6(x-1)(x-2).列表:显然,函数f(x)在[0,3]上的图象是一条不间断的曲线.由表知,函数f(x)在[0,3]上的最小值为f(0)=c,最大值为f(3)=9+c.所以当c>0或9+c<0(即c<-9)时,函数f(x)在区间[0,3]上的零点个数为0.当-5<c<0时,因为f(0)f(1)=c(5+c)<0,且函数f(x)在(0,1)上是单调增函数,所以函数f(x)在(0,1)上有1个零点.当-5<c<-4时,因为f(1)f(2)=(5+c)(4+c)<0,且f(x)在(1,2)上是单调减函数,所以函数f(x)在(1,2)上有1个零点.当-9<c<-4时,因为f(2)f(3)=(4+c)(9+c)<0,且f(x)在(2,3)上是单调增函数,所以函数f(x)在(2,3)上有1个零点.综上,当c>0或c<-9时,函数f(x)在区间[0,3]上的零点个数为0;当-9≤c<-5或-4<c≤0时,零点个数为1;当c=-4或c=-5时,零点个数为2;当-5<c<-4时,零点个数3.解答题滚动练31.(2017·镇江期末)已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的大小.解 方法一 (1)由m ⊥n ,得2cos α-sin α=0,所以sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1,且α∈⎝⎛⎭⎪⎫0,π2,则cos α=55,sin α=255, 则cos2α=2cos 2α-1=2×⎝⎛⎭⎪⎫552-1=-35. (2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,得α-β∈⎝ ⎛⎭⎪⎫-π2,π2.又sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22. 因为β∈⎝⎛⎭⎪⎫0,π2,所以β=π4.方法二 (1)由m ⊥n ,得2cos α-sin α=0,tan α=2,故cos2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-41+4=-35. (2)由(1)知,2cos α-sin α=0,且cos 2α+sin 2α=1,α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,则sin α=255,cos α=55,以下同方法一(2).2.如图,在四棱锥P -ABCD 中,AB ⊥平面PAD ,DC ∥AB ,DC =2AB ,E 为棱PA 上一点. (1)设O 为AC 与BD 的交点,若PE =2AE ,求证:OE ∥平面PBC ; (2)若DE ⊥AP ,求证:PB ⊥DE .证明 (1)在△AOB 与△COD 中, 因为DC ∥AB ,DC =2AB ,所以AO CO =AB CD =12, 又因为PE =2AE ,所以在△APC 中,有AO CO =AE PE =12,则OE ∥PC . 又因为OE ⊄平面PBC ,PC ⊂平面PBC ,所以OE ∥平面PBC . (2)因为AB ⊥平面PAD ,DE ⊂平面PAD , 所以AB ⊥DE .又因为AP ⊥DE ,AB ⊂平面PAB ,AP ⊂平面PAB ,AP ∩AB =A , 所以DE ⊥平面PAB ,又PB ⊂平面PAB ,所以DE ⊥PB .3.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?解 (1)当9天购买一次时,该厂用于配料的保管费用P =70+0.03×200×(1+2)=88(元). (2)①当0<x ≤7时,y =360x +10x +236=370x +236, ②当x >7时,y =360x +236+70+6[(x -7)+(x -8)+…+2+1]=3x 2+321x +432∴y =⎩⎪⎨⎪⎧370x +236,0<x ≤7,3x 2+321x +432,x >7.∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元. f (x )=⎩⎪⎨⎪⎧370x +236x ,0<x ≤7,3x 2+321x +432x,x >7.当0<x ≤7时,f (x )=370+236x ,当且仅当x =7时f (x )有最小值28267≈404(元),当x >7时,f (x )=3x 2+321x +432x=3⎝ ⎛⎭⎪⎫x +144x +321≥393,当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.4.已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围;(3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝ ⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数). (1)解 当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)解 g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,故g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e ,所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值为g (e). g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,所以实数m 的取值范围是⎝⎛⎦⎥⎤1,2+1e 2.(3)证明 因为f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),所以方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2(ln x 1-ln x 2)x 1-x 2,又f (x )=2ln x -x 2+ax ,f ′(x )=2x -2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2.下证4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0,即证明2(x 2-x 1)x 1+x 2+ln x 1x 2<0,令t =x 1x 2. 因为0<x 1<x 2,所以0<t <1,即证明u (t )=2(1-t )t +1+ln t <0在0<t <1上恒成立.因为u ′(t )=-2(t +1)-2(1-t )(t +1)2+1t =1t -4(t +1)2=(t -1)2t (t +1)2,又0<t <1,所以u ′(t )>0, 所以u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2(x 2-x 1)x 1+x 2+ln x 1x 2<0,故4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0,即f ′⎝ ⎛⎭⎪⎫x 1+x 22<0成立.解答题滚动练41.如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且AB =2,BC =1,E ,F 分别是AB ,PC 的中点,PA ⊥DE .(1)求证:EF ∥平面PAD ; (2)求证:平面PAC ⊥平面PDE .证明 (1)方法一 取线段PD 的中点M ,连结FM ,AM . 因为F 为PC 的中点,所以FM ∥CD ,且FM =12CD .因为四边形ABCD 为矩形,E 为AB 的中点, 所以EA ∥CD ,且EA =12CD .所以FM ∥EA ,且FM =EA .所以四边形AEFM 为平行四边形,所以EF ∥AM . 又AM ⊂平面PAD ,EF ⊄平面PAD , 所以EF ∥平面PAD .方法二 连结CE 并延长交DA 的延长线于N ,连结PN .因为四边形ABCD 为矩形,所以AD ∥BC , 所以∠BCE =∠ANE ,∠CBE =∠NAE . 又AE =EB ,所以△CEB ≌△NEA . 所以CE =NE .又F 为PC 的中点,所以EF ∥NP . 又NP ⊂平面PAD ,EF ⊄平面PAD , 所以EF ∥平面PAD .方法三 取CD 的中点Q ,连结FQ ,EQ .在矩形ABCD 中,E 为AB 的中点, 所以AE =DQ ,且AE ∥DQ . 所以四边形AEQD 为平行四边形, 所以EQ ∥AD .又AD ⊂平面PAD ,EQ ⊄平面PAD , 所以EQ ∥平面PAD .因为Q ,F 分别为CD ,CP 的中点, 所以FQ ∥PD .又PD ⊂平面PAD ,FQ ⊄平面PAD , 所以FQ ∥平面PAD .又FQ ,EQ ⊂平面EQF ,FQ ∩EQ =Q ,所以平面EQF ∥平面PAD . 因为EF ⊂平面EQF ,所以EF ∥平面PAD .(2)设AC ,DE 相交于G . 在矩形ABCD 中, 因为AB =2BC ,E 为AB 的中点,所以DA AE =CDDA= 2.又∠DAE =∠CDA ,所以△DAE ∽△CDA , 所以∠ADE =∠DCA .又∠ADE +∠CDE =∠ADC =90°, 所以∠DCA +∠CDE =90°.由△DGC 的内角和为180°,得∠DGC =90°. 即DE ⊥AC . 又PA ⊥DE ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,所以DE ⊥平面PAC ,又DE ⊂平面PDE ,所以平面PAC ⊥平面PDE .2.如图所示,A ,B 是两个垃圾中转站,B 在A 的正东方向16km 处,AB 的南面为居民生活区.为了妥善处理生活垃圾,政府决定在AB 的北面建一个垃圾发电厂P .垃圾发电厂P 的选址拟满足以下两个要求(A ,B ,P 可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P 到直线AB 的距离要尽可能大).现估测得A ,B 两个中转站每天集中的生活垃圾量分别约为30吨和50吨,问垃圾发电厂该如何选址才能同时满足上述要求?解 方法一 由条件①,得PA PB =5030=53. 设PA =5x ,PB =3x ,则cos ∠PAB =(5x )2+162-(3x )22×16×5x =x 10+85x ,所以点P 到直线AB 的距离h =PA sin ∠PAB =5x1-⎝ ⎛⎭⎪⎫x 10+85x 2=-14x 4+17x 2-64 =-14(x 2-34)2+225, 所以当x 2=34,即x =34时,h 取得最大值15km. 即选址应满足PA =534km ,PB =334km.方法二 以AB 所在直线为x 轴,线段AB 的中垂线为y 轴,建立如图所示的平面直角坐标系, 则A (-8,0),B (8,0).由条件①,得PA PB =5030=53.设P (x ,y )(y >0),则3(x +8)2+y 2=5(x -8)2+y 2, 化简得(x -17)2+y 2=152(y >0),即点P 的轨迹是以点(17,0)为圆心、15为半径的圆位于x 轴上方的部分. 则当x =17时,点P 到直线AB 的距离最大,最大值为15km. 所以点P 的选址应满足在上述坐标系中坐标为(17,15)即可.方法三 由条件①,得PA PB =5030=53.过点P 作PD 垂直于AB ,设PD =h ,AD =x ,则DB =|16-x |, 3x 2+h 2=5h 2+(16-x )2,h 2=-(x -25)2+225.所以当x =25时,h 取得最大值15. 答 选址应满足PA =534km ,PB =334km. 3.已知数列{a n }满足a n +a n +1=2n -3,n ∈N *. (1)若数列{a n }为等差数列,求a 1;(2)设a 1=a (a >0),∀n ∈N *,n ≥2,不等式a 2n +a 2n +1a n +a n +1≥3成立,求实数a 的最小值.解 (1)设数列{a n }公差为d ,则2n -3=a n +a n +1=a 1+(n -1)d +a 1+nd =2dn +(2a 1-d )对∀n ∈N *成立,所以⎩⎪⎨⎪⎧2d =2,2a 1-d =-3,故d =1,a 1=-1.(2)由a n +a n +1=2n -3,知{a n -(n -2)}为等比数列,公比q =-1, 所以a n -(n -2)=(a +1)(-1)n -1,故a n =(n -2)+(a +1)(-1)n -1.①当n 为不小于3的奇数时,由a 2n +a 2n +1a n +a n +1≥3,得(n -1+a )2+(n -2-a )22n -3≥3,化简得a 2+a ≥-(n -3)2+2恒成立,所以a 2+a ≥2,解得a ≥1. ②n 为不小于2的偶数时,同理有a 2+3a ≥-(n -3)2恒成立,因为a >0,显然恒成立.所以a >0.由①②得a ≥1,故a 的最小值为1.4.已知椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),点A ,B 分别为其左、右顶点,点F 1,F 2分别为其左、右焦点,以点A 为圆心、AF 1为半径作圆A ,以点B 为圆心、OB 为半径作圆B .若直线l :y =-33x 被圆A 和圆B 截得的弦长之比为15∶6. (1)求椭圆C 的离心率;(2)已知a =7,问在x 轴上是否存在点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为3∶4,若存在,请求出所有点P 的坐标;若不存在,请说明理由.解 (1)分别过点A ,B 作直线l 的垂线,垂足为A 1,B 1, 由题意得AA 1=BB 1,由点到直线距离公式得AA 1=BB 1=a2,因为圆A 以AF 1为半径,所以半径为a -c ,被直线l 截得的弦长为2(a -c )2-⎝ ⎛⎭⎪⎫a 22,因为圆B 以OB 为半径,所以半径为a ,被直线l 截得的弦长为2a 2-⎝ ⎛⎭⎪⎫a 22. 因为直线l :y =-33x 被圆A 和圆B 截得的弦长之比为15∶6,化简得7a 2-32ac +16c 2=0,两边同时除以a 2,得16e 2-32e +7=0, 解得e =14或e =74(舍去).所以所求的离心率为14.(2)存在点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为3∶4, 设点P (x 0,0),由题意可得直线方程为y =k (x -x 0), 则直线截圆A 所得的弦长为2(a -c )2-⎝⎛⎭⎪⎫|k (-7-x 0)|1+k 22, 直线截圆B 所得的弦长为2a 2-⎝⎛⎭⎪⎫|k (7-x 0)|1+k 22,2(a -c )2-⎝ ⎛⎭⎪⎫k (7+x 0)1+k 222a 2-⎝ ⎛⎭⎪⎫k (7-x 0)1+k 22=34, 即有16⎣⎢⎡⎦⎥⎤(a -c )2-⎝ ⎛⎭⎪⎫7k +kx 01+k 22=9⎣⎢⎡⎦⎥⎤a 2-⎝ ⎛⎭⎪⎫7k -kx 01+k 22,其中a =7,c =74,a -c =214,上式整理得,16(7k +kx 0)21+k 2=9(7k -kx 0)21+k 2,关于k 的方程有无穷多解, 故有7x 20+350x 0+343=0, 解得x 0=-1或x 0=-49,故存在2个点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为3∶4,P 点坐标为(-1,0)或(-49,0).解答题滚动练51.已知α∈(0,π),且sin ⎝ ⎛⎭⎪⎫α+π3=6-24. (1)求sin ⎝ ⎛⎭⎪⎫α-π4的值;(2)求cos ⎝⎛⎭⎪⎫2α-π3的值. 解 方法一 联立⎩⎪⎨⎪⎧sin ⎝⎛⎭⎪⎫α+π3=6-24,sin 2α+cos 2α=1.⇒4sin 2α-(6-2)sin α-(1+3)=0, 解得sin α=6+24或sin α=-22, 因为α∈(0,π),所以sin α=6+24, 所以cos α=2-64. (1)sin ⎝ ⎛⎭⎪⎫α-π4=sin αcos π4-cos αsin π4=6+24×22-2-64×22=62×22=32. (2)sin2α=2sin αcos α=2×6+24×2-64=-12,cos2α=1-2sin 2α=-32. cos ⎝⎛⎭⎪⎫2α-π3=cos2αcos π3+sin2αsin π3=-32.方法二 因为α∈(0,π),sin ⎝ ⎛⎭⎪⎫α+π3=6-24<12,所以5π6<α+π3<4π3,sin 11π12=sin ⎝ ⎛⎭⎪⎫π4-π6=sin π4cos π6-cos π4sin π6=6-24,所以α+π3=11π12,所以α=7π12.(1)sin ⎝ ⎛⎭⎪⎫α-π4=sin ⎝ ⎛⎭⎪⎫7π12-π4=sin π3=32.(2)cos ⎝ ⎛⎭⎪⎫2α-π3=cos ⎝⎛⎭⎪⎫2×7π12-π3=cos 5π6=-32.2.如图,在四棱锥P-ABCD中,△ACD是正三角形,BD垂直平分AC,垂足为M,∠ABC=120°,PA=AB=1,PD=2,N为PD的中点.(1)求证:AD⊥平面PAB;(2)求证:CN∥平面PAB.证明(1)因为BD垂直平分AC,所以BA=BC,在△ABC中,因为∠ABC=120°,所以∠BAC=30°.因为△ACD是正三角形,所以∠DAC=60°,所以∠BAD=90°,即AD⊥AB.因为AB=1,∠ABC=120°,所以AD=AC=3,又因为PA=1,PD=2,由PA2+AD2=PD2,知∠PAD=90°,即AD⊥AP.因为AB,AP⊂平面PAB,AB∩AP=A,所以AD⊥平面PAB.(2)方法一取AD的中点H,连结CH,NH.因为N为PD的中点,所以HN∥PA,因为PA⊂平面PAB,HN⊄平面PAB,所以HN∥平面PAB.由△ACD是正三角形,H为AD的中点,所以CH⊥AD.由(1)知,BA⊥AD,所以CH∥BA,因为BA⊂平面PAB,CH⊄平面PAB,所以CH∥平面PAB.因为CH,HN⊂平面CNH,CH∩HN=H,所以平面CNH∥平面PAB.因为CN⊂平面CNH,所以CN∥平面PAB.方法二取PA的中点S,过C作CT∥AD交AB的延长线于T,连结ST,SN.因为N 为PD 的中点,所以SN ∥AD ,且SN =12AD ,因为CT ∥AD ,所以CT ∥SN . 由(1)知,AB ⊥AD ,所以CT ⊥AT , 在Rt △CBT 中,BC =1,∠CBT =60°, 得CT =32. 由(1)知,AD =3,所以CT =12AD ,所以CT =SN .所以四边形SNCT 是平行四边形, 所以CN ∥TS .因为TS ⊂平面PAB ,CN ⊄平面PAB , 所以CN ∥平面PAB .3.已知圆O :x 2+y 2=4,两个定点A (a,2),B (m,1),其中a ∈R ,m >0.P 为圆O 上任意一点,且PA PB=k (k 为常数). (1)求常数k 的值;(2)过点E (a ,t )作直线l 与圆C :x 2+y 2=m 交于M ,N 两点,若M 点恰好是线段NE 的中点,求实数t 的取值范围.解 (1)设点P (x ,y ),x 2+y 2=4,PA =(x -a )2+(y -2)2,PB =(x -m )2+(y -1)2,因为PAPB=k ,所以(x -a )2+(y -2)2=k 2[(x -m )2+(y -1)2], 又x 2+y 2=4,化简得2ax +4y -a 2-8=k 2(2mx +2y -m 2-5), 因为P 为圆O 上任意一点,所以⎩⎪⎨⎪⎧2a =2mk 2,4=2k 2,a 2+8=k 2(m 2+5),又m >0,k >0,解得⎩⎨⎧k =2,a =2,m =1,所以常数k = 2.(2)方法一 设M (x 0,y 0),M 是线段NE 的中点,N (2x 0-2,2y 0-t ),又点M ,N 在圆C 上,即关于x ,y 的方程组⎩⎪⎨⎪⎧x 20+y 20=1,(2x 0-2)2+(2y 0-t )2=1有解,化简得⎩⎪⎨⎪⎧x 20+y 20=1,8x 0+4ty 0-t 2-7=0有解,即直线n :8x +4ty -t 2-7=0与圆C :x 2+y 2=1有交点, 则点(0,0)到直线n 的距离d =|t 2+7|64+16t2≤1,化简得,t 4-2t 2-15≤0, 解得t ∈[-5,5].方法二 设过E 的切线与圆C 切于切点F ,EF 2=EM ·EN , 又M 是线段NE 的中点,所以EN =2MN ,EM =MN ,所以EF 2=2MN 2, 又EF 2=EC 2-CF 2=22+t 2-1=t 2+3,MN ≤2, 所以t 2+3≤8, 所以t ∈[-5,5].4.已知函数f (x )=-x 2-(2a +1)x +ln x ,且该函数在x =1处取得极值. (1)求实数a 的值,并求出函数的单调区间; (2)若函数g (x )=f (x )-b +5x2在区间(0,2018)上只有一个零点,求实数b 的值. 解 (1)由已知,得f ′(x )=-2x -2a -1+1x,据题意,f ′(1)=0,得到a =-1, 所以f (x )=-x 2+x +ln x ,f ′(x )=-2x +1+1x=(2x +1)(-x +1)x.由x >0,令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,所以函数f (x )在x =1处取得极值,所以a =-1,f (x )的单调增区间为(0,1),f (x )的单调减区间为(1,+∞).(2)g (x )=f (x )-b +5x 2=-x 2+7x 2+ln x -b ,x ∈(0,2018).则g ′(x )=-2x +72+1x,令g ′(x )=0, 得x =2,负值舍去.当0<x <2时,g ′(x )>0,g (x )的单调增区间为(0,2), 当2<x <2018时,g ′(x )<0,g (x )的单调减区间为(2,2018). 所以函数g (x )=f (x )-b +5x2在区间(0,2018)上只有一个零点,等价于g (2)=0, 解得b =ln2+3.解答题滚动练61.在△ABC 中,三个内角分别为A ,B ,C ,已知sin ⎝⎛⎭⎪⎫A +π6=2cos A .(1)若cos C =63,求证:2a -3c =0; (2)若B ∈⎝⎛⎭⎪⎫0,π3,且cos(A -B )=45,求sin B .(1)证明 因为sin ⎝ ⎛⎭⎪⎫A +π6=2cos A ,得32sin A +12cos A =2cos A ,即sin A =3cos A ,因为A ∈(0,π),且cos A ≠0, 所以tan A =3,所以A =π3.因为sin 2C +cos 2C =1,cos C =63,C ∈(0,π), 所以sin C =33, 由正弦定理知a sin A =c sin C ,即a c =sin A sin C =3233=32,即2a -3c =0.(2)解 因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以A -B =π3-B ∈⎝ ⎛⎭⎪⎫0,π3,因为sin 2(A -B )+cos 2(A -B )=1, 所以sin(A -B )=35,所以sin B =sin(A -(A -B ))=sin A cos(A -B )-cos A ·sin(A -B )=43-310.2.已知函数f (x )=ax 3-2x -ln x ,a ∈R .(1)若曲线y =f (x )在x =1处的切线方程为y =b ,求a +b 的值; (2)在(1)的条件下,求函数f (x )零点的个数. 解 (1)f ′(x )=3ax 2-2-1x,由题意,f ′(1)=0,f (1)=b ,解得,a =1,b =-1, 所以a +b =0.(2)由(1)知,f (x )=x 3-2x -ln x ,f ′(x )=3x 2-2-1x=3x 3-2x -1x=(x -1)(3x 2+3x +1)x,令f ′(x )=0,得x =1,且当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0, 所以函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.因为f (1)=-1<0,f ⎝ ⎛⎭⎪⎫1e =1e -2e +1>0,f (e)=e 3-2e -1>0,函数f (x )在区间⎣⎢⎡⎦⎥⎤1e ,1和[1,e]上的图象是一条不间断的曲线,由零点存在性定理,知函数f (x )有两个零点. 3.已知圆M :x 2+(y -4)2=4,点P 是直线l :x -2y =0上的一动点,过点P 作圆M 的切线PA ,PB ,切点为A ,B .(1)当切线PA 的长度为23时,求点P 的坐标;(2)若△PAM 的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由; (3)求线段AB 长度的最小值.解 (1)由题意可知,圆M 的半径r =2,设P (2b ,b ), 因为PA 是圆M 的一条切线,A 为切点, 所以∠MAP =90°,所以MP =(0-2b )2+(4-b )2=AM 2+AP 2=4, 解得b =0或b =85,所以P (0,0)或P ⎝⎛⎭⎪⎫165,85.(2)设P (2b ,b ),因为∠MAP =90°,所以经过A ,P ,M 三点的圆N 以MP 为直径,其方程为(x -b )2+⎝⎛⎭⎪⎫y -b +422=4b 2+(b -4)24,即(2x +y -4)b -(x 2+y 2-4y )=0.由⎩⎪⎨⎪⎧2x +y -4=0,x 2+y 2-4y =0,解得⎩⎨⎧x =0,y =4,或⎩⎪⎨⎪⎧x =85,y =45,所以圆过定点(0,4),⎝ ⎛⎭⎪⎫85,45.(3)因为圆N 方程为(x -b )2+⎝ ⎛⎭⎪⎫y -b +422=4b 2+(b -4)24,即x 2+y 2-2bx -(b +4)y +4b =0.①圆M :x 2+(y -4)2=4,即x 2+y 2-8y +12=0.② ②-①得圆M 与圆N 的相交弦AB 所在直线方程为 2bx +(b -4)y +12-4b =0, 点M 到直线AB 的距离d =45b 2-8b +16, 相交弦长AB =24-d 2=41-45b 2-8b +16 =41-45⎝ ⎛⎭⎪⎫b -452+645.当b =45时,AB 有最小值11.4.如图是一“T ”型水渠的平面视图(俯视图),水渠的南北方向和东西方向轴截面均为矩形,南北向渠宽为4m ,东西向渠宽2m(从拐角处,即图中A ,B 处开始).假定渠内的水面始终保持水平位置(即无高度差).(1)在水平面内,过点A 的一条直线与水渠的内壁交于P ,Q 两点,且与水渠的一边的夹角为θ⎝⎛⎭⎪⎫0<θ<π2,将线段PQ的长度l 表示为θ的函数;(2)若从南面漂来一根长为7m 的笔直的竹竿(粗细不计),竹竿始终浮于水平面内,且不发生形变,问:这根竹竿能否从拐角处一直漂向东西向的水渠(不会卡住)?请说明理由.解 (1)由题意,PA =2sin θ,QA =4cos θ,所以l =PA +QA =2sin θ+4cos θ⎝ ⎛⎭⎪⎫0<θ<π2. (2)设f (θ)=2sin θ+4cos θ,θ∈⎝⎛⎭⎪⎫0,π2.由f ′(θ)=-2cos θsin 2θ+4sin θcos 2θ=2(22sin 3θ-cos 3θ)sin 2θcos 2θ, 令f ′(θ)=0,得tan θ0=22. 且当θ∈(0,θ0),f ′(θ)<0;当θ∈⎝ ⎛⎭⎪⎫θ0,π2,f ′(θ)>0,所以f (θ)在(0,θ0)上单调递减,在⎝⎛⎭⎪⎫θ0,π2上单调递增,所以当θ=θ0时,f (θ)取得极小值,即为最小值.即这根竹竿能通过拐角处的长度的最大值为36m.因为36>7,所以这根竹竿能从拐角处一直漂向东西向的水渠.解答题滚动练71.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长都相等,且∠ABB 1=60°,D 为AC 的中点,求证:(1)B 1C ∥平面A 1BD ; (2)AB ⊥B 1C .证明 (1)连结AB 1交A 1B 于点E ,连结DE .因为D ,E 分别为AC ,AB 1的中点,所以DE ∥B 1C . 因为DE ⊂平面A 1BD ,B 1C ⊄平面A 1BD , 所以B 1C ∥平面A 1BD .(2)取AB 的中点O ,连结OC ,OB 1.因为BA =BB 1,且∠ABB 1=60°,所以△ABB 1为正三角形,而O 为AB 的中点,所以OB 1⊥AB . 在正三角形ABC 中,O 为AB 中点,所以OC ⊥AB . 因为OB 1∩OC =O ,且OB 1⊂平面OB 1C ,OC ⊂平面OB 1C , 所以AB ⊥平面OB 1C .又因为B 1C ⊂平面OB 1C ,所以AB ⊥B 1C .2.已知数列{a n }的前n 项和S n 满足:S n =t (S n -a n +1)(t 为常数,且t ≠0,t ≠1). (1)证明:{a n }成等比数列;(2)设b n =a 2n +S n ·a n ,若数列{b n }为等比数列,求t 的值. (1)证明 当n =1时,S 1=t (S 1-a 1+1),得a 1=t ,当n ≥2时,S n =t (S n -a n +1),即(1-t )S n =-ta n +t ,(1-t )S n -1=-ta n -1+t , 所以a n =ta n -1,故{a n }成等比数列.(2)解 由(1)知{a n }成等比数列且公比是t ,∴a n =t n,故b n =(t n )2+t (1-t n )1-t ·t n ,即b n =t 2n +t n +1-2t 2n +11-t.若数列{b n }是等比数列,则有b 22=b 1·b 3,而b 1=2t 2,b 2=t 3(2t +1),b 3=t 4(2t 2+t +1), 故[t 3(2t +1)]2=(2t 2)·t 4(2t 2+t +1),解得t =12,再将t =12代入b n 得b n =⎝ ⎛⎭⎪⎫12n ,由b n +1b n =12知{b n }为等比数列,所以t =12. 3.图1是一段半圆柱形水渠的直观图,其横断面如图2所示,其中C 为半圆弧ACB 的中点,渠宽AB 为2m.(1)当渠中水深CD 为0.4m 时,求水面的宽度;(2)若把这条水渠改挖(不准填土)成横断面为等腰梯形的水渠,且使渠的底面与地面平行,则当改挖后的水渠底宽为多少时,所挖出的土量最少?解 (1) 如图,以AB 所在直线为x 轴,AB 的垂直平分线为y 轴,以1m 为单位长度,建立平面直角坐标系xOy .半圆弧ACB 的方程为x 2+y 2=1(y ≤0),A (-1,0),B (1,0),C (0,-1),D (0,-0.6).直线y =-0.6与半圆弧的交点为(±0.8,-0.6). 答 所求的水面宽度为1.6 m.(2)要使得所挖出的土量最少,则等腰梯形的两腰及下底与半圆弧ACB 相切.设等腰梯形的右腰与半圆弧ACB 相切于点T (cos θ,sin θ)⎝ ⎛⎭⎪⎫-π2<θ<0,则切线EF 的方程为x cos θ+y sin θ=1. 令y =0,得E ⎝⎛⎭⎪⎫1cos θ,0,令y =-1,得F ⎝⎛⎭⎪⎫1+sin θcos θ,-1,设梯形OCFE 的面积为S ,则S =12(CF +OE )·OC=12⎝ ⎛⎭⎪⎫1cos θ+1+sin θcos θ×1=2+sin θ2cos θ, S ′=2cos 2θ-(2+sin θ)·(-2sin θ)4cos 2θ=1+2sin θ2cos 2θ, 令S ′=0,得θ=-π6.当θ=-π6时,S 取得最小值,最小值为32,此时CF =1+sin ⎝ ⎛⎭⎪⎫-π6cos ⎝ ⎛⎭⎪⎫-π6=33.答 当改挖后的水渠底宽为233m 时,所挖出的土量最少. 4.函数f (x )=1+ln x -k (x -2)x,其中k 为常数. (1)若k =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若k =5,求证:f (x )有且仅有两个零点;(3)若k 为整数,且当x >2时,f (x )>0恒成立,求k 的最大值. (1)解 当k =0时,f (x )=1+ln x . 因为f ′(x )=1x,从而f ′(1)=1.又f (1)=1,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -1=x -1, 即x -y =0.(2)证明 当k =5时,f (x )=ln x +10x-4.因为f ′(x )=x -10x 2,从而当x ∈(0,10)时,f ′(x )<0,f (x )单调递减;当x ∈(10,+∞)时,f ′(x )>0,f (x )单调递增. 所以当x =10时,f (x )有极小值. 因为f (10)=ln10-3<0,f (1)=6>0, 所以f (x )在(1,10)之间有一个零点. 因为f (e 4)=4+10e4-4>0,所以f (x )在(10,e 4)之间有一个零点. 从而f (x )有两个不同的零点. (3)解 方法一 由题意知,1+ln x -k (x -2)x>0在(2,+∞)上恒成立, 即k <x +x ln xx -2在(2,+∞)上恒成立. 令h (x )=x +x ln x x -2,则h ′(x )=x -2ln x -4(x -2)2. 设ν(x )=x -2ln x -4,则ν′(x )=x -2x. 当x ∈(2,+∞)时,ν′(x )>0,所以ν(x )在(2,+∞)上为增函数.因为ν(8)=8-2ln8-4=4-2ln8<0,ν(9)=5-2ln9>0, 所以存在x 0∈(8,9),ν(x 0)=0,即x 0-2ln x 0-4=0.当x ∈(2,x 0)时,h ′(x )<0,h (x )单调递减,当x ∈(x 0,+∞)时,h ′(x )>0,h (x )单调递增.所以当x =x 0时,h (x )的最小值为h (x 0)=x 0+x 0ln x 0x 0-2.因为ln x 0=x 0-42,所以h (x 0)=x 02∈(4,4.5). 故所求的整数k 的最大值为4. 方法二 由题意知,1+ln x -k (x -2)x>0在(2,+∞)上恒成立. f (x )=1+ln x -k (x -2)x ,f ′(x )=x -2kx2.①当2k ≤2,即k ≤1时,f ′(x )>0在(2,+∞)上恒成立, 所以f (x )在(2,+∞)上单调递增. 而f (2)=1+ln2>0成立,所以满足要求. ②当2k >2,即k >1时,当x ∈(2,2k )时,f ′(x )<0,f (x )单调递减,当x ∈(2k ,+∞)时,f ′(x )>0,f (x )单调递增.所以当x =2k 时,f (x )有最小值f (2k )=2+ln2k -k . 从而f (x )>0在(2,+∞)上恒成立等价于2+ln2k -k >0.令g (k )=2+ln2k -k ,则g ′(k )=1-kk<0,从而g (k )在(1,+∞)为减函数.因为g (4)=ln8-2>0,g (5)=ln10-3<0, 所以使2+ln2k -k >0成立的最大正整数k =4. 综合①②,知所求的整数k 的最大值为4.解答题滚动练81.(2017·江苏溧阳中学模拟)在三棱锥S -ABC 中,SA ⊥平面ABC ,SA =AB =AC =33BC ,点D 是BC 边的中点,点E 是线段AD 上一点,且AE =4DE ,点M 是线段SD 上一点.(1)求证:BC ⊥AM ;(2)若AM ⊥平面SBC ,求证:EM ∥平面ABS . 证明 (1)∵AB =AC ,D 是BC 的中点,∴AD ⊥BC , ∵SA ⊥平面ABC ,BC ⊂平面ABC , ∴SA ⊥BC ,又AD ∩SA =A ,AD ,SA ⊂平面SAD , ∴BC ⊥平面SAD ,又AM ⊂平面SAD ,∴BC ⊥AM .(2)∵AM ⊥平面SBC ,SD ⊂平面SBC ,∴AM ⊥SD .设SA =1,则AD =12,SD =52,AM =55,SM =255,MD =510.∴SM =4MD . 又AE =4DE , ∴ME ∥SA ,又ME ⊄平面ABS ,SA ⊂平面ABS , ∴EM ∥平面ABS .2.(2017·江苏郑集高级中学质检)在△ABC 中,已知(sin A +sin B +sin C )(sin B +sin C -sin A )=3sin B sin C . (1)求角A 的值;(2)求3sin B -cos C 的最大值.解 (1)因为(sin A +sin B +sin C )(sin B +sin C -sin A )=3sin B sin C , 由正弦定理,得(a +b +c )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3. (2)由A =π3,得B +C =2π3,所以3sin B -cos C =3sin B -cos ⎝ ⎛⎭⎪⎫2π3-B=3sin B -⎝ ⎛⎭⎪⎫-12cos B +32sin B =sin ⎝ ⎛⎭⎪⎫B +π6,因为0<B <2π3,所以π6<B +π6<5π6,当B +π6=π2,即B =π3时,3sin B -cos C 取最大值1.3.(2017·南通、扬州、淮安、宿迁、泰州、徐州六市二调)一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击.已知缉私艇的最大航速是走私船最大航速的3倍.假设缉私艇和走私船均按直线方向以最大航速航行.(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin17°=36,33≈5.7446); (2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.解 (1)如图甲,设缉私艇在点C 处拦截到走私船. 在△ABC 中,B =120°,AB =4,设BC =a ,AC =3a . 由正弦定理,得sin A a =sin120°3a ,所以sin A =36.因为B =120°,所以A 为锐角,从而A =17°. 由余弦定理,得(3a )2=42+a 2-2×4a cos120°, 即2a 2-a -4=0,解得a =1+334≈1.7. 点B 到l 的距离为3.8-2=1.8,而a <1.8,所以点C 在领海内. 答 缉私艇的追击方向应为北偏东47°.(2)如图乙,以A 为原点,正北方向为y 轴正方向,1海里为1个单位长度,建立平面直角坐标系xAy ,则A (0,0),B (2,23),直线l 的方程为x =3.8. 设缉私艇在点P (x ,y )处拦截到走私船.由AP =3BP ,得x 2+y 2=9[(x -2)2+(y -23)2].整理,得⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y -9342=94.点P 的轨迹是以M ⎝ ⎛⎭⎪⎫94,934为圆心,半径r =32的圆.圆心M 到直线l 的距离d =3.8-94=1.55>r ,所以直线l 与圆M 外离,即点P 总在领海内.答 无论走私船沿何方向逃跑,缉私艇总能在领海内成功拦截.4.如图,在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D ⎝ ⎛⎭⎪⎫-65,0.设直线AB ,AC 的斜率分别为k 1,k 2.(1)求k 1k 2的值;(2)记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ值;若不存在,说明理由; (3)求证:直线AC 必过点Q .(1)解 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(2)解 由题意得直线AP 的方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1(x -2),x 2+y 2=4,得(1+k 21)x 2-4k 21x+4(k 21-1)=0, 设P (x p ,y p ),解得x p =2(k 21-1)1+k 21,y p =k 1(x p -2)=-4k 11+k 21,联立⎩⎪⎨⎪⎧y =k 1(x -2),x 24+y 2=1,得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,设B (x B ,y B ),解得x B =2(4k 21-1)1+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,所以k BC =y B x B =-2k 14k 21-1,k PQ =y p x p +65=-4k 11+k 212(k 21-1)1+k 21+65=-5k 14k 21-1,所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC ,(3)证明 当直线PQ 与x 轴垂直时,Q ⎝ ⎛⎭⎪⎫-65,-85,则k AQ =852+65=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,直线PQ 方程为y =-5k 14k 21-1⎝ ⎛⎭⎪⎫x +65, 联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝ ⎛⎭⎪⎫x +65x 2+y 2=4,,解得x Q =-2(16k 21-1)16k 21+1,y Q =16k 116k 21+1, 所以k AQ =16k 116k 21+1-2(16k 21-1)16k 21+1-2=-14k 1=k 2, 故直线AC 必过点Q .。

2018年高考理科数学江苏卷(含答案与解析)

---------------- 密★启用前 江苏省 2018 年普通高等学校招生全国统一考试数学b 2 =1(a > 0,b > 0) 的右焦点 F (c,0) 到一条a 2 - 2 c,则其离心率的值是 1__--------------------锥形的体积公式V = Sh ,其中 S 是椎体的底面积, h 是椎体的高。

3__ __ __ __ __ _号卷--------------------数 z 满足 i z = 1+ 2i ,其中 i 是虚数单位,则 z 的实部为 .__ __ 上__ _ 答__ __ _ --------------------cos π x (0<x ≤2),f (x ) = ⎨ 2 ⎪⎪⎪ x + (-2<x ≤0), 7. 已 知 函 数 y = sin(2 x + ϕ)( - π___生 __ 考 __ 3.已知 5 位裁判给某运动员打出的分数的茎叶图如图所示,那么这 5 位裁判打出的分数__ _ __ _ _ _ _ _ 4.一个算法的伪代码如图所示,执行此算法,最后输出的 S 的值为 ._ _ _ _ 名 __ 姓 __ _ __ __ __ _ 题校 学 -------------绝在--------------------本试卷共 160 分.考试时长 120 分钟.参考公式:此一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.1.已知集合 A = {0,1,2,8}, B = {-1,1,6,8} ,那么 A B = .2.若复的平均数为 .----------------------------------------x 2 y 2 8.在平面直角坐标系 xOy 中,若双曲线渐近线的距离为 3.9.函数 f ( x ) 满足 f ( x + 4) = f ( x )( x ∈ R) ,且在区间 (-2,2] 上,⎧ ,则 f ( f (15)) 的值为 .1 ⎪⎩ 210.如图所示,正方体的棱长为 2,以其所有面的中心为顶点的多面体的体积为 .11.若函数 f ( x ) = 2 x 3 - ax 2 + 1(a ∈ R) 在 (0, +∞) 内有且只有一个零点 ,则 f ( x ) 在 [-1,1]上的最大值与最小值的和为 .12.在平面直角坐标系 xOy 中, A 为直线 l : y = 2x 上在第一象限内的点 ,点 B(5,0) ,以AB 为 直 径 的 圆 C 与 直 线 l 交 于 另 一 点 D . 若 AB CD = 0 , 则 点 A 的 横 坐 标为 .13.在 △ABC 中,角 A , B , C 所对应的边分别为 a , b , c , ∠ABC = 120 , ∠ABC 的平分线交 AC 于点 D ,且 BD = 1 ,则 4a + c 的最小值为 .14.已知集合 A = {x x = 2n - 1,n ∈ N *} , B = {x x = 2n , n ∈ N *} .将 A B 的所有元素从小业 毕5.函数 f ( x ) = log x - 1 的定义域为 .26.某兴趣小组有 2 名男生和 3 名女生,现从中任选 2 名学生去参加活动,则恰好选中 2 名无 女生的概率为 . --------------------ππ2 < ϕ < 2 ) 的 图 象 关 于 直 线 x =3 对称 , 则 ϕ 的值到大依次排列构成一个数列 {a } ,记 S 为数列 {a } 的前 n 项和,则使得 S >12an n n n n +1立的 n 的最小值为 .成是.效数学试卷 第 1 页(共 26 页)数学试卷 第 2 页(共 26 页), cos(α + β ) = - .二、解答题:本大题共 6 小题,共计 90 分,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分 14 分)在平行六面体 ABCD - A B C D 中, AA = AB , AB ⊥ B C .1 1 1 11 1 1 1求证:(Ⅰ) AB ∥ 平面 A B C ;1 1 16.(本小题满分 14 分)已知 α , β 为锐角, tan α =(Ⅰ)求 cos2 α 的值;(Ⅱ)求 tan(α - β ) 的值.435 5(Ⅱ)平面 ABB A ⊥ 平面 A BC .1 11数学试卷 第 3 页(共 26 页) 数学试卷 第 4 页(共 26 页)某农场有一块农田 ,如图所示,它的边界由圆 O 的一段圆弧 MPN ( P 为此圆弧的中 如图,在平面直角坐标系 xOy 中,椭圆 C 过点 ( 3, ) ,焦点 F (- 3, 0) , F ( 3,0) ,2__ 形状为 △CDP ,要求点 A , B 均在线段 MN 上, C , D 均在圆弧上 .设 OC 与 MN 所__ __ __ 积年产值之比为 4 : 3 .求当θ 为何值时,能使甲、乙两种蔬菜的年总产值最大.__ __ __ _ __ __ __ __ __ __ 名 __ 姓 _ __ __ __ 答__ __7 ,求直线 l 的方程.17 此(Ⅱ_ __ __(Ⅰ)用θ 分别表示矩形 A B C D 和 △C D P的面积,并确定 s i nθ的取值范围; _ 此 号 生 __ 考 __ ___ ___ _ _ _ __ __ _ _ _校 学 业 毕 -------------.(本小题满分 14 分)----------------在 点)和线段 MN 构成,已知圆 O 的半径为 40米,点 P 到 MN 的距离为 50 米.现规划在 --------------------农田上修建两个温室大棚 ,大棚Ⅰ内的地块形状为矩形 ABCD ,大棚Ⅱ内的地块_ 成的角为θ .-------------------- )若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面卷--------------------_ 上--------------------_ --------------------题--------------------18.(本小题满分 16 分)圆 O 的直径为 F F .1 2(Ⅰ)求椭圆 C 及圆 O 的方程;(Ⅱ)设直线 l 与圆 O 相切于第一象限内的点 P .①若直线 l 与椭圆 C 有且只有一个公共点,求点 P 的坐标;②直线 l 与椭圆 C 交于 A , B 两点.若 △OAB 的面积为 2 612无--------------------数学试卷第5页(共26页)数学试卷第6页(共26页)效(Ⅱ)若a=b>0,m∈N*,q∈(1,m2],证明:存在d∈R,使得|a-b|≤b对x .对任意a>0,判断是否存在b>0,使函19.(本小题满分16分)记f'(x),g'(x)分别为函数f(x),g(x)的导函数.若存在x∈R,满足0 f(x)=g(x)且f'(x)=g'(x),则称x为函数f(x)与g(x)的一个“S点”.0000020.(本小题满分16分)设{a}是首项为a,公差为d的等差数列,{b}是首项b,公比为q的等比数列.n1n1(Ⅰ)设a=0,b=1,q=2若|a-b|≤b对n=1,2,3,4均成立,求d的取值范围;11n n1(Ⅰ)证明:函数f(x)=x与g(x)=x2+2x-2不存在“S点”;11n n1 (Ⅱ)若函数f(x)=ax2-1与g(x)=ln x存在“S点”,求实数a的值;n=2,3,…,m+1均成立,并求d的取值范围(用b,m,q表示).1(Ⅲ)已知函数f(x)=-x2+a,g(x)=be x数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.数学试卷第7页(共26页)数学试卷第8页(共26页)本试卷均为非选择题(第21题~第23题).6 - θ)= 2 ,曲线 C 的方程为 p = 4cos θ ,求直线被曲线 C 截得的弦长.21.【选做题】本题包括 A ,B ,C ,D 四小题,请选定其中两小题并作答 ,若多做,则按作答在极坐标系中 ,直线 l 的方程为 psin (本卷满分40分,考试时间为30分钟.____ _号 __ ___ ___名 __ 姓 _ __ _ 答 已知矩阵 A = ⎢⎡2 3⎤__ ⎣1 2⎥⎦ __ __ 学 题-------------------- B .[_ ,'-------------数学Ⅱ(附加题)----------------C .[选修 4—4:坐标系与参数方程](本小题满分 10 分)在π --------------------...........的前两小题评分、解答时应写出文字说明、证明过程或演算步骤。

(江苏版)2018年高考数学一轮复习第06章数列测试题-含答案


2 Sn
( n 1)an ,若关于正整数
2
n 的不等式 an
tan ≤ 2t 2 的解集中的整数解有两个,则正实
数 t 的取值范围为
【答案】
3 (1, )
2
▲.
10. 【 2017 届高三七校联考期中考试】 设等差数列
an 的前 n 项和为 Sn ,若 a5 a3
5
▲ .【答案】
2
【解析】 a5 5 a3 3
【答案】 9
【解析】∵ a1a9 a52 ∴ log 2 a1 log 2 a2
4 ,∴ a5 2 , log 2 a9 log 2 (a1a2
a9 ) log 2 a59
9log 2 a5 9 ,
2. 【 2016-2017 学年度江苏苏州市高三期中调研考试】已知数列
an 满足:
an 1 an 1 an 1 , a1 1 ,数列 bn 满足: bn an an 1 ,则数列 bn 的前 10 项的和
34
,则满足
S2n
16
的所有
n 的和为
_________.
33 Sn 15
【答案】 4
【解析】 因 an 1 Sn 1 Sn , 故代入已知可得 2Sn 1 Sn 3 , 即 2( Sn 1 3) Sn 3 , 也即
Sn 1
3
1 ( Sn
2
3) , 故数列 { Sn
3} 是公比为 1 的等比数列 , 所以 Sn 2
第 06 章 数列
班级 __________ 姓名 _____________ 学号 ___________ 得分 __________ 一.填空题:
1. 【2016-2017 学年度江苏苏州市高三期中调研考试】 已知等比数列 an 的各项均为正数,

2018考前三个月高考数学理科(江苏专用)总复习训练题:——解答题滚动练3 含答案

解答题滚动练31.(2017·镇江期末)已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的大小.解 方法一 (1)由m ⊥n ,得2cos α-sin α=0,所以sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1,且α∈⎝⎛⎭⎪⎫0,π2,则cos α=55,sin α=255, 则cos2α=2cos 2α-1=2×⎝⎛⎭⎪⎫552-1=-35. (2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,得α-β∈⎝ ⎛⎭⎪⎫-π2,π2.又sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22. 因为β∈⎝⎛⎭⎪⎫0,π2,所以β=π4.方法二 (1)由m ⊥n ,得2cos α-sin α=0,tan α=2,故cos2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-41+4=-35. (2)由(1)知,2cos α-sin α=0,且cos 2α+sin 2α=1,α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,则sin α=255,cos α=55,以下同方法一(2).2.如图,在四棱锥P -ABCD 中,AB ⊥平面PAD ,DC ∥AB ,DC =2AB ,E 为棱PA 上一点. (1)设O 为AC 与BD 的交点,若PE =2AE ,求证:OE ∥平面PBC ; (2)若DE ⊥AP ,求证:PB ⊥DE .证明 (1)在△AOB 与△COD 中, 因为DC ∥AB ,DC =2AB ,所以AO CO =AB CD =12, 又因为PE =2AE ,所以在△APC 中,有AO CO =AE PE =12,则OE ∥PC . 又因为OE ⊄平面PBC ,PC ⊂平面PBC ,所以OE ∥平面PBC . (2)因为AB ⊥平面PAD ,DE ⊂平面PAD , 所以AB ⊥DE .又因为AP ⊥DE ,AB ⊂平面PAB ,AP ⊂平面PAB ,AP ∩AB =A , 所以DE ⊥平面PAB ,又PB ⊂平面PAB ,所以DE ⊥PB .3.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?解 (1)当9天购买一次时,该厂用于配料的保管费用P =70+0.03×200×(1+2)=88(元). (2)①当0<x ≤7时,y =360x +10x +236=370x +236, ②当x >7时,y =360x +236+70+6[(x -7)+(x -8)+…+2+1]=3x 2+321x +432∴y =⎩⎪⎨⎪⎧370x +236,0<x ≤7,3x 2+321x +432,x >7.∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元. f (x )=⎩⎪⎨⎪⎧370x +236x ,0<x ≤7,3x 2+321x +432x,x >7.当0<x ≤7时,f (x )=370+236x ,当且仅当x =7时f (x )有最小值28267≈404(元), 当x >7时,f (x )=3x 2+321x +432x=3⎝ ⎛⎭⎪⎫x +144x +321≥393,当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.4.已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围; (3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝ ⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数). (1)解 当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)解 g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,故g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e ,所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值为g (e). g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,所以实数m 的取值范围是⎝⎛⎦⎥⎤1,2+1e 2.(3)证明 因为f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),所以方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2(ln x 1-ln x 2)x 1-x 2,又f (x )=2ln x -x 2+ax ,f ′(x )=2x -2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2. 下证4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0,即证明2(x 2-x 1)x 1+x 2+ln x 1x 2<0,令t =x 1x 2. 因为0<x 1<x 2,所以0<t <1,即证明u (t )=2(1-t )t +1+ln t <0在0<t <1上恒成立.因为u ′(t )=-2(t +1)-2(1-t )(t +1)2+1t =1t -4(t +1)2=(t -1)2t (t +1)2,又0<t <1,所以u ′(t )>0, 所以u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2(x 2-x 1)x 1+x 2+ln x 1x 2<0,故4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0,即f ′⎝ ⎛⎭⎪⎫x 1+x 22<0成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解答题滚动练6
1.在△ABC 中,三个内角分别为A ,B ,C ,已知sin ⎝
⎛⎭⎪⎫A +π6=2cos A . (1)若cos C =63
,求证:2a -3c =0; (2)若B ∈⎝
⎛⎭⎪⎫0,π3,且cos(A -B )=45,求sin B . (1)证明 因为sin ⎝
⎛⎭⎪⎫A +π6=2cos A ,得32sin A +12cos A =2cos A , 即sin A =3cos A ,因为A ∈(0,π),且cos A ≠0,
所以tan A =3,所以A =π3
. 因为sin 2C +cos 2C =1,cos C =
63,C ∈(0,π), 所以sin C =33
, 由正弦定理知a sin A =c sin C ,即a c =sin A sin C =3233
=32
, 即2a -3c =0.
(2)解 因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以A -B =π3-B ∈⎝ ⎛⎭⎪⎫0,π3, 因为sin 2(A -B )+cos 2(A -B )=1, 所以sin(A -B )=35
, 所以sin B =sin(A -(A -B ))=sin A cos(A -B )-cos A ·sin(A -B )=43-310
. 2.已知函数f (x )=ax 3-2x -ln x ,a ∈R .
(1)若曲线y =f (x )在x =1处的切线方程为y =b ,求a +b 的值;
(2)在(1)的条件下,求函数f (x )零点的个数.
解 (1)f ′(x )=3ax 2-2-1x
, 由题意,f ′(1)=0,f (1)=b ,解得,a =1,b =-1,
所以a +b =0.
(2)由(1)知,f (x )=x 3
-2x -ln x ,
f ′(x )=3x 2-2-1x =3x 3
-2x -1x
=(x -1)(3x 2
+3x +1)x
, 令f ′(x )=0,得x =1,
且当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0,
所以函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.
因为f (1)=-1<0,f ⎝ ⎛⎭⎪⎫1e =1e 3-2e +1>0,f (e)=e 3-2e -1>0,函数f (x )在区间⎣⎢⎡⎦
⎥⎤1e ,1和[1,e]上的图象是一条不间断的曲线,由零点存在性定理,知函数f (x )有两个零点.
3.已知圆M :x 2+(y -4)2
=4,点P 是直线l :x -2y =0上的一动点,过点P 作圆M 的切线PA ,PB ,切点为A ,B .
(1)当切线PA 的长度为23时,求点P 的坐标;
(2)若△PAM 的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;
(3)求线段AB 长度的最小值.
解 (1)由题意可知,圆M 的半径r =2,设P (2b ,b ),
因为PA 是圆M 的一条切线,A 为切点,
所以∠MAP =90°,
所以MP =(0-2b )2+(4-b )2=AM 2+AP 2=4,
解得b =0或b =85
, 所以P (0,0)或P ⎝ ⎛⎭
⎪⎫165,85. (2)设P (2b ,b ),因为∠MAP =90°,所以经过A ,P ,M 三点的圆N 以MP 为直径, 其方程为(x -b )2
+⎝ ⎛⎭⎪⎫y -b +422=4b 2+(b -4)24, 即(2x +y -4)b -(x 2+y 2-4y )=0.
由⎩⎪⎨⎪⎧ 2x +y -4=0,x 2+y 2-4y =0,
解得⎩⎨⎧ x =0,
y =4,或⎩⎪⎨⎪⎧ x =85,y =45,
所以圆过定点(0,4),⎝ ⎛⎭⎪⎫85,45. (3)因为圆N 方程为(x -b )2+⎝ ⎛⎭
⎪⎫y -b +422=4b 2+(b -4)24,
即x 2+y 2-2bx -(b +4)y +4b =0.①
圆M :x 2+(y -4)2=4,即x 2+y 2-8y +12=0.②
②-①得圆M 与圆N 的相交弦AB 所在直线方程为
2bx +(b -4)y +12-4b =0,
点M 到直线AB 的距离d =45b 2-8b +16
, 相交弦长AB =24-d 2=4
1-45b 2-8b +16 =41-
45⎝ ⎛⎭⎪⎫b -452+645. 当b =45
时,AB 有最小值11. 4.如图是一“T ”型水渠的平面视图(俯视图),水渠的南北方向和东西方向轴截面均为矩形,南北向渠宽为4m ,东西向渠宽2m(从拐角处,即图中A ,B 处开始).假定渠内的水面始终保持水平位置(即无高度差).
(1)在水平面内,过点A 的一条直线与水渠的内壁交于P ,Q 两点,且与水渠的一边的夹角为
θ⎝
⎛⎭⎪⎫0<θ<π2,将线段PQ
的长度l 表示为θ的函数; (2)若从南面漂来一根长为7m 的笔直的竹竿(粗细不计),竹竿始终浮于水平面内,且不发生形变,问:这根竹竿能否从拐角处一直漂向东西向的水渠(不会卡住)?请说明理由.
解 (1)由题意,PA =2sin θ,QA =4cos θ,所以l =PA +QA =2sin θ+4cos θ
⎝ ⎛⎭
⎪⎫0<θ<π2. (2)设f (θ)=2sin θ+4cos θ,θ∈⎝
⎛⎭⎪⎫0,π2. 由f ′(θ)=-2cos θsin 2θ+4sin θcos 2θ=2(22sin 3θ-cos 3θ)sin 2θcos 2θ
, 令f ′(θ)=0,得tan θ0=22. 且当θ∈(0,θ0),f ′(θ)<0;当θ∈⎝
⎛⎭⎪⎫θ0,π2,f ′(θ)>0,所以f (θ)在(0,θ0)
上单调递减,在⎝
⎛⎭⎪⎫θ0,π2上单调递增, 所以当θ=θ0时,f (θ)取得极小值,即为最小值.
当tan θ0=22时,sin θ0=13,cos θ0=23
,所以f (θ)的最小值为36, 即这根竹竿能通过拐角处的长度的最大值为36m.因为36>7,所以这根竹竿能从拐角处一直漂向东西向的水渠.。

相关文档
最新文档