相似三角形的判定一
相似三角形的判定(一)

4、例2、求证:直角三角形被斜边上的高分成的两个直角三角 形和原三角形相似。
已知:在 RtΔABC 中, CD是斜边 AB上的高。 求证:ΔACD ∽ ΔABC ∽ ΔCBD 。 证明: ∵ ∠A=∠A,∠ADC=∠ACB=900, ∴ ΔACD∽ΔABC(两角对应相等,两 三角形相似)。 同理 ΔCBD ∽ ΔABC 。 ∴ ΔABC∽ΔCBD∽ΔACD。 此结论可以称为“母子相似定理”,今 后可以直接使用. C D
;
战申?本届战申榜排位赛横空出世の鞠言战申?”祝桦老祖也知道鞠言の名字.“不是他还有谁?俺劝他不要进去,但他执意要进,俺也没办法.”倪炯老祖摇头说道.祝桦老祖也摇了摇头,顿了一下道:“倪炯道友,俺们也往前再看看吧!或许,还能看到鞠言战申.”就他们两个人目前所处の位置来说, 再接近禁区之地一些距离,也是比较安全の.总之,只要不踏入母体の感知范围,就没哪个大问题.“也好!鞠言战申进去,必定是要与子兽激战.俺,还没有亲眼看过鞠言战申の战斗能历,呐次正好能看看.”倪炯老祖点点头.呐两位老祖,随后也向着禁区之地又靠近了一些.不久之后,又陆续有几名混 元无上级善王来到禁区之地边缘.他们,都是得到了天庭の信息,然后打算趁着最后一点事间看一眼禁区之地.此事の鞠言,已经进入禁区之地の危险区域.在禁区之地の中心位置,有一大片红色の区域.呐片原本处于静态の红色区域,呐个事候突然剧烈の蠕动起来.与此同事,那连绵の巨大岩石下方, 开始有绿色、蓝色和黑色の身影钻出来.呐些颜色不同の身影,身形是长の,它们是趴在地上移动行走.若是靠近一些看,便可发现,呐是一种虫类凶兽,相貌极其丑陋邪恶.从岩石下钻出の虫子越来越多,它们发出尖利の名叫声,而后疯狂の移动起来.虫类凶兽,向鞠言所在の位置扑去.进入到危险区域 の鞠言,停住了脚步.他の眼睛,看到了一头头正在高速移动の凶兽.甚至,他已经能隐约の看到那在剧烈蠕动の一片红色.“那就是母兽吧!”鞠言望着红色,心中转念.鞠言手持冰炎剑,申历快速运转,微子世界の历量也处于蓄势之中.“数量好多!”鞠言也难免の脸色发生变化.看着一群群の绿色、 蓝色和黑色凶兽向自身扑来,恐怕任谁都无法保持淡定.“呐是虫类の凶兽?”“移动速度很快!”“呐凶兽叫声,居然还能影响修行者の申魂.”鞠言已经听到了虫类凶兽の名叫声.虫类凶兽の名叫声对于鞠言来说虽然也有些刺耳,觉得不太舒服,但无法真正威胁到鞠言の申魂体.鞠言の精申,能够 保持正常状态,就是说不会由于虫类凶兽の尖利叫声而影响实历发挥.三掌门第三零七陆章试试群杀第三零七陆章试试群杀(第一/一页)虫类凶兽の名叫声,类似于音波攻击,不过在呐界碑世界内,凶兽の声音全部都是通过道则传播.所以,其传播速度是瞬息而至の,几乎不需要事间.“按照倪炯老祖 所说,绿色の虫子对应の是一点黑月积分,所以绿色虫子凶兽实历应该最弱.”鞠言看着冲在前端の虫子,它们距离自身已经很近.“不过,呐绿色虫子凶兽の爬行速度,看起来倒是比蓝色虫子还要稍微快一些.”鞠言心中分析.入眼处,绿色虫子数量非常多,蓝色虫子凶兽数量相对少一些,至于黑色の 凶兽虫子就更少了,基本上一片区域内才有一头黑色虫子凶兽.“嘶嘶~嘶嘶~”一头绿色虫子凶兽,扑到了鞠言近前.鞠言抬手一剑,微子世界历量爆发出来,剑身轰在绿色虫子凶兽慢是黏液の身躯上.虫子凶兽发出更加尖锐の名叫声,身躯被击飞出去.然而,呐头绿色虫子凶兽摔落到地面后并未被击 杀,它身上の伤口正在快速愈合.“果然不容易杀!”“哪怕只是一点黑月积分の凶兽,也不好杀.方才俺全历释放微子世界历量,竟没能一剑将其杀死.”鞠言暗暗心惊の想着.倪炯老祖方才说过,呐样の子兽,要杀死也得耗费一番功夫.而且,便是绿色の虫子凶兽,其攻击历也能达到甚至超过其他の 拾分凶兽.虫子凶兽对应の黑月积分之所以少,原因在于防御之上.呐虫子凶兽の防御相比界碑世界内其他凶兽,要差很多,但相比外界の凶兽,虫子凶兽の防御和恢复能历仍然可怖.“鞠言战申还不跑?再不走,就来不及了!”祝桦老祖微微皱眉道.驻华老祖和倪炯老祖呐两人,正站在鞠言の后方,两 人处于母兽の感知界限处,他们能够看到鞠言の身影.“鞠言战申の黑月积分,距离进入榜单前拾差了不少,看来他还想在最后の事间里,冲刺一把.”倪炯老祖转目说道.“呐也太不要命了.”祝桦老祖摇摇头.为了点黑月积分,将性命都葬送,呐显然不值得.“再不从里面退出来,就真の来不及了.” 倪炯老祖凝声说道.禁区之地の子兽,已经快要对鞠言战申,呈现合围之势.鞠言现在想撤出来,都有些困难了,若是再耽误片刻,那就真の不可能再撤出.飞行逃离,同样不行!禁区之地の子兽,也具有短暂の飞行能历.“鞠言战申,速速从里面撤出来.”祝桦老祖大声对鞠言喊道.修行者在界碑世界,不 能调用世界内道则之历,所以祝桦老祖の声音,只能融入申魂历,呐样传递速度还能快一些.如果是普通の空气传播,那等声音传到鞠言耳中,怕黄花菜都要凉了.而融入申魂历の声音传递,在界碑世界内无法传出太远,只能在修行者申魂覆盖范围内传递.鞠言听到了祝桦老祖の声音,快速扭头看了一眼. 不过此事此刻,鞠言可没工夫回应祝桦老祖.“还不撤出!”“呐个年轻人,太疯狂了.”祝桦老祖摇头惋惜,也不多说了.“那不是鞠言战申吗?”陆续有一些进入界碑世界の修行者,也来到了祝桦老祖两人附近,他们看到了在危险区域の鞠言战申.“真是鞠言战申.”“他……居然进去了!疯了 吧?”“呐个不知死活の蠢货,死在呐里也好!”一道刺耳声音响起.其他诸人,都看向说呐句话の修行者.此人,正是红叶王国の尹红战申,他の黑月
相似三角形的判定1

;
/AG850COM AG 亚游
djm164zbg
儿女双全„„呵呵„„ “马大宝喝醉了酒忙把家还„„”一股酒气掺杂在寒风中迎面扑来,泥泞的小道上一个身影在晃动。 马天栓呀马天栓,你真不愧是马大宝的后代,酒鬼一个。结婚五六年了,还没有一男半女,整天好吃懒做,一无所成,你还算个男人嘛! 我才不理你呢!躲过他的身影,一口气跑回了家。 院子里静悄悄的,一点声音也没有。从窗口射出的灯光映着地上一小片白雪,我这才感到雪越下越大了。 我轻轻地推开门,满屋的烟气扑鼻而来,定晴一看,堂屋里坐满了人,却死一般的寂静。陈旧的沙发上坐着我那年过花甲的父亲,他正在一口 一口地抽着烟,像是天要塌下来一样的烦心。 若不是遇到大事,父亲是不会这个样子的。 “六弟回来了。”五哥的话打破了屋子里的宁两年,他最了解和关心我。 我把兜挂到墙上的木橛上,走到坐在偏座上的母亲身边,“娘,这是怎么了?” “老六啊,娘跟你说过多少回,你又不是不知道,你媳妇最近要生孩子,你怎么一去就是十几天,你心里还有这个家吗?„„再说,这厂又不 是你自己的,你不就是一个小小的工人嘛,人家有头有脸的都在家里干什么,你知道吗?让你一个人给他们拼命,你得到什么好处了?„„” “娘,你怎么也„„” “什么也别说了,快到里间去看看她娘们,然后„„出来开家庭会。”父亲打断了我的话。 在我们这个二十多口人的家里,父亲的话就是圣旨。 走进里间,四嫂和五嫂都坐在床沿上,我的妻子肖燕盘坐在床上正在给孩子喂奶。 “你和孩子都好吗?我„„”我一时语塞,什么话也说不出来。刚才我对娘的话还有些不服,现在我才感到内心深处有一种说不出的内疚„„ 唉!哪有妻子生孩子,丈夫不在跟前的?我真是一个不称职的丈夫! “那姊妹俩都好,就是这一个妮子身体弱„„也不肯吃奶,恐怕„„”妻子的话哽咽了,眼泪从她的眼角流出来,滴在襁褓中的婴儿的脸上。 我顺势望去,在四嫂和五嫂的背后,还有两个熟睡的婴儿! 我的天哪,怪不得老厂长的表情怪怪的,父亲一口一口地抽烟,母亲一肚子的牢骚,还有妻子满脸的泪水„„ 一胞三胎,女孩,绝户头一个!
《相似三角形的判定1》教学反思

《相似三角形的判定1》教学反思《相似三角形的判定》是人教版义务教育课程标准实验教科书九年级数学第二十七章《相似》中的重要内容。
本节课作为《相似三角形》的第一课时,其核心目标是引导学生理解并掌握相似三角形的判定方法,特别是通过平行线分线段成比例定理来判定三角形相似。
在教授这一课时,我深感责任重大,同时也收获颇丰。
以下是我对本节课教学的几点反思。
一、教学设计的出发点与流程本节课的教学设计遵循了《数学课程标准》的要求,即让学生成为行为主体,通过“动手实践、自主探索、合作交流”的方式来学习。
整个教学流程分为四个环节:创设情境,激发求知欲;合作交流,探索新知;应用拓展,达成目标;归纳总结,深化目标。
在创设情境环节,我通过提出一个实际问题——能否配制一张完全一样的玻璃来引导学生思考,进而引入相似三角形的概念。
这样的设计旨在激发学生的求知欲,使他们能够在问题情境中主动探索。
在合作交流、探索新知环节,我鼓励学生通过小组讨论、动手操作等方式,探索并发现相似三角形的判定方法。
特别是通过测量平行线截得的线段比例,引导学生理解平行线分线段成比例定理,并据此推导出相似三角形的判定定理。
在应用拓展环节,我设计了一系列具有梯度的问题,组织学生进行变式训练,以巩固和深化对相似三角形判定方法的理解。
在归纳总结环节,我引导学生对所学知识进行梳理和概括,帮助他们形成系统的知识框架。
二、教学过程中的亮点与收获1.情境创设的有效性:通过提出实际问题,成功激发了学生的学习兴趣和求知欲,为后续的合作学习奠定了良好的基础。
2.合作交流的深入性:在小组合作中,学生积极参与讨论,动手操作,不仅加深了对知识的理解,还培养了他们的团队协作能力和沟通能力。
3.变式训练的针对性:通过设计具有梯度的问题串,组织学生进行变式训练,有效突破了教学难点,使每个学生都得到了充分的发展。
4.归纳总结的系统性:在归纳总结环节,我引导学生对所学知识进行梳理和概括,帮助他们形成了系统的知识框架,为后续的学习打下了坚实的基础。
相似三角形的判定(解析版) (1)

4.4相似三角形的判定相似三角形的判定定理1.(一)相似三角形判定的预备定理平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
2.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.3.判定定理2:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定定理3:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.一、单选题1.如图,AD ,BC 相交于点O ,由下列条件仍不能判定△AOB 与△DOC 相似的是( )A .AB ∥CD B .∠C =∠B C .OA OBOD OC= D .OA ABOD CD= 【解答】D【提示】本题中已知∠AOB =∠DOC 是对顶角,应用两三角形相似的判定定理,即可作出判断. 【详解】解:A 、由AB ∥CD 能判定△AOB ∽△DOC ,故本选项不符合题意. B 、由∠AOB =∠DOC 、∠C =∠B 能判定△AOB ∽△DOC ,故本选项不符合题意.C 、由OA OBOD OC = 、∠AOB =∠DOC 能判定△AOB ∽△DOC ,故本选项不符合题意. D 、已知两组对应边的比相等:OA ABOD CD = ,但其夹角不一定对应相等,不能判定△AOB 与△DOC 相似,故本选项符合题意. 故选:DAB CDED EACB【点睛】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.2.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定△ABC 与△DBA 相似的是( )A .C BAD ∠=∠B .BAC BDA ∠=∠ C .AC ADBC AB = D .2AB BD BC =⋅【解答】C【提示】由相似三角形的判定定理即可得到答案.【详解】解:C BAD ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项A 不符合题意;BAC BDA ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项B 不符合题意;AC ADBC AB =,但无法确定ACB ∠与BAD ∠是否相等,所以无法判定两三角形相似,故选项C 符合题意;2AB BD BC =⨯即AB BCBD AB =,B B ∠=∠,ABC ∽DBA ,故选项D 不符合题意.故选:C .【点睛】本题考查相似三角形的判定定理,熟练掌握相关定理是解题的关键. 3.下列各种图形中,有可能不相似的是( ) A .有一个角是45的两个等腰三角形 B .有一个角是60的两个等腰三角形 C .有一个角是110的两个等腰三角形 D .两个等腰直角三角形【解答】A【提示】本题每一个选项都跟等腰三角形相似有关,注意的是一个角是一个角是45°,这个角可能是顶角或者底角,有一个角是60,这个三角形就是等边三角形,一个角是110,这个角一定是顶角,若是底角则不满足三角形内角和等于180°.等腰直角三角形的的底角是45°顶角是90°为固定值. 【详解】A .各有一个角是45°的两个等腰三角形,有可能是一个为顶角,另一个为底角,此时不相似,故此选项符合题意;B .各有一个角是60°的两个等腰三角形是等边三角形,两个等边三角形相似,故此选项不合题意;C .各有一个角是110°的两个等腰三角形,此角必为顶角,则底角都为35°,则这两个三角形必相似,故此选项不合题意;D .两个等腰直角三角形,底角是45°顶角是90°,为固定值,此三角形必相似,故此选项不合题意; 故选A .【点睛】本题解题关键在于,找准一个角是45,60,110的等腰三角形有几种情况,再就是等腰直角三角形的每个角的角度是固定的.4.下列条件,能使ABC 和111A B C △相似的是( )A .1111112.5,2,3;3,4,6AB BC AC A B B C AC ======B .11111192,3,4;3,6,2AB BC AC A B B C AC ======C.11111110,8;AB BC AC A B BCAC =====D.1111111,3;AB BC AC A B BCAC ====【解答】B【提示】根据相似三角形的判定定理进行判断.【详解】解:A 、11112.55213642AB BC A B B C ==≠==,不能使ABC ∆和△111A B C 相似,错误; B 、11111123242933632AB BC AC A B A C B C =======,能使ABC ∆和△111A B C 相似,正确;C、1111AB BC A B B C ≠=,不能使ABC ∆和△111A B C 相似,错误; D、1111AB BC A C B C =≠=ABC ∆和△111A B C 相似,错误; 故选B.【点睛】本题考查了相似三角形的判定.识别三角形相似,除了要掌握定义外,还要注意正确找出三角形的对应边、对应角.5.下列能判定ABC DEF ∽△△的条件是( ) A .AB AC DE DF = B .AB ACDE DF =,A F ∠=∠ C .AB AC DE DF =,B E ∠=∠ D .AB ACDE DF =,A D ∠=∠ 【解答】D【提示】利用相似三角形的判定定理:两边对应成比例且夹角相等的三角形相似,逐项判断即可得出答案.【详解】解:A.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; B. AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; C.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; D.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项正确; 故选:D .【点睛】本题考查的知识点是相似三角形的判定定理,熟记定理内容是解此题的关键. 6.如图,要使ACD ABC △△∽,需要具备的条件是( )A .AC ABAD BC = B .CD BCAD AC = C .2AC AD AB =⋅D .2CD AD BD =⋅【解答】C【提示】题目中隐含条件∠A =∠A ,根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件只能是AC ADAB AC =,根据比例性质即可推出答案. 【详解】解:∵在△ACD 和△ABC 中,∠A =∠A ,∴根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件是:AC ADAB AC =, ∴2AC AD AB ⋅= . 故选:C .【点睛】本题考查了相似三角形的判定,注意:有两边对应成比例,且夹角相等的两三角形相似. 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件不能满足△ADE ∽△ACB 的条件是( )A .∠AED=∠B B .AD AEAC AB = C .AD·BC= DE·AC D .DE//BC【解答】C【提示】根据相似三角形的判定定理去判断分析即可. 【详解】∵∠AED=∠B ,∠A=∠A , ∴△ADE ∽△ACB , 故A 不符合题意; ∵AD AEAC AB =,∠A=∠A , ∴△ADE ∽△ACB , 故B 不符合题意;∵AD·BC= DE·AC ,无夹角相等, ∴不能判定△ADE ∽△ACB , 故C 符合题意; ∵DE//BC , ∴△ADE ∽△ACB , 故D 不符合题意; 故选C .【点睛】本题考查了三角形相似的判定条件,熟练掌握判定三角形相似的基本方法是解题的关键. 8.如图,等边ABC 中,点E 是AB 的中点,点D 在AC 上,且2DC DA =,则( )A .AED BED ∽△△ B .AED CBD ∽△△ C .AED ABD ∽△△ D .BAD BCD ∽△△ 【解答】B【提示】由等边三角形的性质,中点的定义得到2BC AB AE ==,60A C ∠=∠=︒,结合2DC DA =,得到12AE AD CB CD ==,即可得到AED CBD ∽△△. 【详解】解:∵ABC 是等边三角形, ∴BC AB =,60A C ∠=∠=︒, ∵点E 是AB 的中点, ∴2BC AB AE ==, ∵2DC DA =, ∴12AE AD CB CD ==,∵60A C ∠=∠=︒,∴AED CBD ∽△△. 故选:B .【点睛】本题考查了相似三角形的判定,等边三角形的性质,解题的关键是掌握相似三角形的判定进行判断.9.如图,在ACB △中,90,ACB AF ∠=︒是BAC ∠的平分线,过点F 作FE AF ⊥,交AB 于点E ,交AC 的延长线于点D ,则下列说法正确的是( )A .CDF EBF ∽B .ADF ABF ∽C .ADF CFD ∽D .ACF AFE ∽【解答】D【提示】根据相似三角形的判定方法AA 解题. 【详解】解:EF AF ⊥90AFE ∴∠=︒90ACB AFE ∴∠=∠=︒AF 是BAC ∠的平分线,CAF FAE ∴∠=∠()ACFAFE AA ∴故选项D 符合题意,选项A 、B 、C 均不符合题意,故选:D .【点睛】本题考查相似三角形的判定方法,角平分线的性质等知识,是重要考点,掌握相关知识是解题关键.10.如图,四边形ABCD 的对角线,AC BD 相交于点O ,且将这个四边形分成四个三角形,若::OA OC OB OD =,则下列结论中正确的是( )A .△AOB ∽△AOD B .△AOD ∽△BOC C .△AOB ∽△BOCD .△AOB ∽△COD 【解答】D【提示】根据相似三角形的判定定理:两边对应成比例且夹角相等,即可判断△AOB ∽△COD . 【详解】解:∵四边形ABCD 的对角线,AC BD 相交于点O , ∴∠AOB=∠COD , 在△AOB 和△COD 中, =OA OBOC OD AOB COD ⎧⎪⎨⎪∠=∠⎩∴△AOB ∽△COD . 故选:D .【点睛】本题考查相似三角形的判定.熟练掌握两边对应成比例且夹角相等则这两个三角形相似是解题的关键.二、填空题11.如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.【解答】∠ADE=∠B (答案不唯一).【提示】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定. 【详解】解∶∵∠A=∠A ,∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B 或∠AED=∠C 证ADE ABC △△∽相似; 根据两边对应成比例且夹角相等,可添加条件AD AEAB AC =证ADE ABC △△∽相似. 故答案为∶∠ADE =∠B (答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法. 12.图,在ABC 中,AB AC >,点D 在AB 上(点D 与A ,B 不重合),若再增加一个条件就能使ACD ABC △∽△,则这个条件是________(写出一个条件即可).【解答】ACD ABC ∠=∠(答案不唯一)【提示】两个三角形中如果有两组角对应相等,那么这两个三角形相似,据此添加条件即可. 【详解】解:添加ACD ABC ∠=∠,可以使两个三角形相似. ∵CAD BAC ∠=∠,ACD ABC ∠=∠, ∴ACD ABC △∽△.故答案为:ACD ABC ∠=∠(答案不唯一)【点睛】本题考查相似三角形的判定定理,两组角对应相等的两个三角形相似.理解和掌握三角形相似的判定是解题的关键.13.如图,∠1=∠2,请补充一个条件:________________,使△ABC ∽△ADE .【解答】∠C =∠E 或∠B =∠ADE(答案不唯一)【提示】再添加一组角可以利用有两组角对应相等的两个三角形相似来进行判定. 【详解】∵∠1=∠2 ∴∠1+∠DAC=∠DAC+∠2 ∴∠BAC =∠DAE又∵∠C =∠E (或∠B =∠ADE ) ∴△ABC ∽△ADE .故答案为:∠C =∠E 或∠B =∠ADE (答案不唯一).【点睛】本题考查了相似三角形的判定,熟悉相似三角形的几个判定定理是关键. 14.如图,在ABC 中,点D 为边AC 上的一点,选择下列条件:①2A ∠=∠;②1CBA ∠=∠;③BC CDAC AB =;④BC CD DB AC BC AB ==中的一个,不能得出ABC 和BCD △相似的是:__________(填序号).【解答】③【提示】根据相似三角形的判定定理可得结论.【详解】解:①2A ∠=∠,C C ∠=∠时,ABC BDC ∆∆∽,故①不符合题意; ②1CBA ∠=∠,C C ∠=∠时,ABC BDC ∆∆∽,故②不符合题意; ③BC CDAC AB =,C C ∠=∠时,不能推出ABC BDC ∆∆∽,故③符合题意; ④BC CD DBAC BC AB ==,C C ∠=∠时,ABC BDC ∆∆∽,故④不符合题意, 故答案为:③【点睛】本题考查了相似三角形的判定,解题的关键是掌握两组对应边对应成比例且夹角相等的两个三角形相似;有两角对应相等的两个三角形相似.15.如图,在ABC 中,DE BC ∥,DE 分别交AB 、AC 于点D 、E ,DC 、BE 交于点O ,则相似三角形有______.【解答】ADE∽ABC,DOE∽COB△【提示】根据DE BC∥,找出相等的角,进而得到相似三角形.【详解】解:∵DE BC∥,∴∠ADE=∠ABC,∠AED=∠ACB,∴ADE∽ABC,∵DE BC∥,∴∠EDO=∠BCO,∠DEO=∠CBO,∴DOE∽COB△,故答案为ADE∽ABC,DOE∽COB△.【点睛】本题考查了平行线的性质以及相似三角形的判定,解题的关键是掌握:一个三角形的两个角与另一个三角形的两个角对应相等,这两个三角形相似.16.如图,在△ABC中,AB=10,AC=5,AD是角平分线,CE是高,过点D作DF⊥AB,垂足为F,若DF=83,则线段CE的长是______.【解答】4【提示】延长AC,作DG⊥AC,根据根据角平分线的性质得到FD=GD,再根据三角形的面积公式即可求解.【详解】解:延长AC,作DG⊥AC,∵AD平方∠BAC,∴FD=DG,∴S△ABC= S△ABD+ S△ADC=12AB FD⨯⨯+12AC GD⨯⨯=12AB EC⨯⨯即111105883310222EC⨯⨯+⨯⨯=⨯⨯ 解得EC=4.【点睛】本题考查了角平分线的性质,角的平分线上的点到角的两边的距离相等与三角形的面积公式. 17.如图,在ABC 中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么经过______秒时QBP △与ABC 相似.【解答】0.8或2##2或0.8【提示】设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQBA BC =时,BPQ BAC ∽,即824816t t -=;当BP BQ BCBA =时,BPQ BCA △∽△,即824168t t -=,然后解方程即可求出答案. 【详解】解:设经过t 秒时,QBP △与ABC 相似, 则2AP tcm =,(82)BP t cm =-,4BQ tcm =, ∵PBQ ABC ∠=∠,∴当BP BQBA BC =时,BPQ BAC ∽, 即824816t t -=, 解得:2t =;当BP BQ BC BA =时,BPQ BCA △∽△,即824168t t-=, 解得:0.8t =;综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似,【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角相等的两个三角形相似,解题的关键是准确分析题意列出方程求解.18.如图,正方形ABCD 的边长为2,连接BD ,点P 是线段AD 延长线上的一个动点,45PBQ ∠=︒,点Q 是BQ 与线段CD 延长线的交点,当BD 平分PBQ ∠时,PD ______QD (填“>”“<”或“=”):当BD 不平分PBQ ∠时,PD QD ⋅=__________.【解答】 = 8【提示】①先证明△ABP ≌△CBQ,再证明△QBD ≌△PBD,即可得出PD=QD;②证明△BQD ∽△PBD,即可利用对应边成比例求得PD·QD. 【详解】解:①当BD 平分∠PBQ 时, ∠PBQ=45°,∴∠QBD=∠PBD=22.5°, ∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠C=90°,∠ABD=∠CBD=45°, ∴∠ABP=∠CBQ=22.5°+45°=67.5°, 在△ABP 和△CBQ 中,A C AB BCABP CBQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABP ≌△CBQ (ASA ), ∴BP=BQ ,在△QBD 和△PBD 中,BQ BP QBD PBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴△QBD ≌△PBD (SAS ), ∴PD=QD;②当BD 不平分∠PBQ 时, ∵AB ∥CQ , ∴∠ABQ=∠CQB ,∵∠QBD+∠DBP=∠QBD+∠ABQ=45°, ∴∠DBP=∠ABQ=∠CQB ,∵∠BDQ=∠ADQ+∠ADB=90°+45°=135°,∠BDP=∠CDP+∠BDC=90°+45°=135°, ∴∠BDQ=∠BDP, ∴△BQD ∽△PBD ,∴BD QDPD BD =,∴PD·QD=BD2=22+22=8, 故答案为:=,8.【点睛】本题考查三角形的全等和相似,关键在于熟悉基础知识,利用条件找到对应三角形.三、解答题19.已知:D 、E 是△ABC 的边AB 、AC 上的点,AB =8,AD =3,AC =6,AE =4,求证:△ABC ∽△AED .【解答】见解析【提示】根据已知线段长度求出AB ACAE AD =,再根据∠A=∠A 推出相似即可. 【详解】证明:在△ABC 和△AED 中, ∵824AB AE ==,623AC AD ==,∴AB ACAE AD =, 又∵∠A =∠A ,∴△ABC ∽△AED .【点睛】本题考查了相似三角形的判定定理的应用,注意:有两边的对应成比例,且夹角相等的两三角形相似.20.已知:在△ABC 和△A′B′C′中, AB BC ACA B B C A C '''='''=.求证:△ABC ∽△A′B′C′.【解答】证明见解析【提示】先在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,然后证明△ABC ∽△ADE ,再△ADE ≌△A′B′C′即可.【详解】在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,连接DE . ∵AB ACA B A C ='''',AD=A′B′,AE=A′C′, ∴AB ACAD AE = 而∠BAC=∠DAE ,∴△ABC ∽△ADE (两边成比例且夹角相等的两个三角形相似). ∴AB BCAD DE = 又AB BCA B B C ='''',AD= A′B′, ∴ AB BCAD B C ='' ∴BC BCDE B C =''∴DE=B′C′,∴△ADE ≌△A′B′C′, ∴△ABC ∽△A′B′C′.【点睛】本题考查了相似三角形的判定,三边对应成比例的两个三角形相似,灵活运用两边对应成比例且夹角相等的两个三角形相似,全等三角形的判定是解决本题的关键. 21.已知:如图,在ABC 和A B C '''中,,A A B B ∠=∠∠=∠''. 求证:ABC A B C '''∽△△.【解答】见解析【提示】在ABC 的边AB (或它的延长线)上截取AD A B ='',过点D 作BC 的平行线,交AC 于点E ,过点D 作AC 的平行线,交BC 于点F ,容易得到ADE ABC △△∽,然后证明ADE A B C '''≌,从而即可得到ABC A B C '''∽△△.【详解】证明:在ABC 的边AB (或它的延长线)上截取AD A B ='',过点D 作BC 的平行线,交AC 于点E ,则,ADE B AED C ∠=∠∠=∠,AD AEAB AC =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例).过点D 作AC 的平行线,交BC 于点F ,则AD CFAB CB =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴AE CFAC CB =. ∵//,//DE BC DF AC , ∴四边形DFCE 是平行四边形. ∴DE CF =.∴AEDEAC CB =. ∴ADAE DEAB AC BC ==.而,,ADE B DAE BAC AED C ∠=∠∠=∠∠=∠, ∴ADE ABC △△∽.∵,,A A ADE B B AD A B ∠=∠∠=∠=∠='''', ∴ADE A B C '''≌. ∴ABC A B C '''∽△△.【点睛】本题是教材上相似三角形的判定定理的证明,熟读教材是解题的关键. 22.如图,Rt ABC 中,CD 是斜边AB 上的高.求证:(1)ACD ABC △∽△; (2)CBD ABC ∽△△. 【解答】(1)见解析;(2)见解析【提示】(1)根据有两组角对应相等的两个三角形相似进行证明即可. (2)根据有两组角对应相等的两个三角形相似进行证明即可. 【详解】证明:(1)∵CD 是斜边AB 上的高, ∴∠ADC =90°,∴∠ADC =∠ACB =90°, ∵∠A =∠A , ∴△ACD ∽△ABC .(2)∵CD 是斜边AB 上的高, ∴∠BDC =90°,∴∠BDC =∠ACB =90°, ∵∠B =∠B , ∴△CBD ∽△ABC .【点睛】本题考查了相似三角形的判定定理;熟记有两组角对应相等的两个三角形相似是解决问题的关键.23.如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠ABC =∠DBE ,∠3=∠4. 求证:(1)△ABD ∽△CBE ; (2)△ABC ∽△DBE .【解答】(1)证明见解析;(2)证明见解析;【提示】(1)根据有两组角对应相等的两个三角形相似可判断△ABD∽△CBE;(2)先利用得到∠1=∠2得到∠ABC=∠DBE,再利用△ABD∽△CBE得AB BDBC BE=, 根据比例的性质得到AB BCBD BE=, 然后根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ABC与△DBE相似.【详解】(1)相似.理由如下:∵∠1=∠2,∠3=∠4.∴△ABD∽△CBE;(2)相似.理由如下:∵∠1=∠2,∴∠1+∠DBC=∠2+DBC,即∠ABC=∠DBE,∵△ABD∽△CBE,∴=,∴=,∴△ABC∽△DBE.【点睛】本题考查了三角形相似的判定,熟练掌握三角形相似的判定方法是解题关键.24.已知如图所示,AF⊥BC,CE⊥AB,垂足分别是F、E,试证明:(1)△BAF∽△BCE.(2)△BEF∽△BCA.【解答】(1)答案见解析;(2)答案见解析【提示】(1)根据两角相等,两个三角形相似即可得出结论;(2)根据(1)得到△BAF ∽△BCE ,再由相似三角形的对应边成比例,得到BF :BE=BA :BC ,由两边对应成比例,夹角相等两个三角形相似,即可得出结论. 【详解】(1)∵AF ⊥BC ,CE ⊥AB ,∴∠AFB=∠CEB=90°. ∵∠B=∠B ,∴△BAF ∽△BCE ;(2)∵△BAF ∽△BCE ,∴BF :BE=BA :BC . ∵∠B=∠B ,∴△BEF ∽△BCA .【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.如图,在△ABC 和△ADE 中,AB BC ACAD DE AE ==,点B 、D 、E 在一条直线上,求证:△ABD ∽△ACE .【解答】证明见解析;【提示】根据三边对应成比例的两个三角形相似可判定△ABC ∽△ADE ,根据相似三角形的性质可得∠BAC=∠DAE ,即可得∠BAD=∠CAE ,再由AB AC AD AE =可得AB ADAC AE =,根据两边对应成比例且夹角相等的两个三角形相似即可判定△ABD ∽△ACE .【详解】∵在△ABC 和△ADE 中,AB BC ACAD DE AE ==, ∴△ABC ∽△ADE , ∴∠BAC=∠DAE , ∴∠BAD=∠CAE , ∵AB ACAD AE =, ∴AB ADAC AE =, ∴△ABD ∽△ACE .【点睛】本题考查了相似三角形的判定与性质,熟知相似三角形的判定方法是解决本题的关键. 26.如图,△ABC 与 △ADE 中,∠ACB=∠AED=90°,连接BD 、CE ,∠EAC=∠DAB.(1)求证:△ABC ∽△ADE ; (2)求证:△BAD ∽△CAE ;(3)已知BC=4,AC=3,AE=32.将△AED 绕点A 旋转,当点E 落在线段CD 上时,求 BD 的长.【解答】(1)详见解析;(2)详见解析;(3)BD=53.【提示】(1)由已知可得∠CAB=∠EAD ,∠ACB=∠AED=90°,则结论得证; (2)由(1)知AC AEAB AD =,∠EAC=∠DAB ,则结论得证; (3)先证△ABC ∽△ADE ,求出AE 、AD 的长,则BD 可求. 【详解】证明:(1)∵∠EAC=∠DAB , ∴∠CAB=∠EAD , ∵∠ACB=∠AED=90°, ∴△ABC ∽△ADE ;(2)由(1)知△ABC ∽△ADE , ∴AC AEAB AD =, ∵∠EAC=∠BAD , ∴△BAD ∽△CAE ;(3)∵∠ACB=90°,BC=4,AC=3,∴2222=43BC AC ++,∵△ABC ∽△ADE , ∴AC AB AE AD =, ∴AD=5=•2AB AE AC , 如图,将△AED 绕点A 旋转,当点E 落在线段CD 上时,∠AEC=∠ADB=90°,∴222255=()=3225AB AD--【点睛】本题考查相似三角形的判定和性质、旋转的性质等知识,解题的关键是熟练掌握基本知识.。
相似三角形的判定定理一

通过练习加深对判定定理1的理解
作业设计:
板书设计:
教与学的反思
学生通过度量,不难发现这两个三角形的第两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
2、如图AD⊥AB于D,CE⊥AB于E交AB于F,则图中相似三角形有____对。
4、练一练
(1)、教材P67练习题1、2
(2)教材P75习题1、3、5
5、记一记:
2、如果两个三角形有两组角对应相等,它们一定相似吗?
1、读一读
1、读教学目标
2、读教材64——66
2、试一试
1、作∆ABC与∆A1B1C1,使得∠A=∠A1,∠B=∠B1,这时它们的第三角满足∠C=∠C1吗?分别度量这两个三角形的边长,计算 ﹑ ﹑ ,你有什么发现?
2、分别改变这两个三角形边的大小,而不改变它们的角的大小,再试一试,是否有同样的结论?
情感态度与价值观
让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
教学重点
两个三角形相似的判定方法1及其应用
教学难点
两个三角形相似的判定方法1及其应用
教学准备
教学过程
过程优化
教师活动
学生活动
设计意图
提出问题:
1、观察两副三角尺,其中同样角度(300与600,或450与450)的两个三角尺大小可能不同,但它们看起来是相似的。
课题
相似三角形的判定(1)
课时5
课型
新授课
教学目标
知识与技能
掌握判定两个三角形相似的方法:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
过程与方法
培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法1与全等三角形判定方法(AAS﹑ASA)的区别与联系,体验事物间特殊与一般的关系。
相似三角形的判定(一)

相似三角形的判定[教学目标]知识与技能目标:(1)、理解相似三角形的概念,能正确地找出相似三角形的对应边和对应边角.(2)、掌握相似三角形判定定理的“预备定理”.过程与方法目标:(1)、通过探索相似三角形判定定理的“预备定理”的过程,培养学生的动手操作能力,观察、分析、猜想和归纳能力,渗透类比、转化的数学思想方法.(2)、利用相似三角形的判定定理的“预备定理”进行有关判断及计算,训练学生的灵活运用能力,提高表达能力和逻辑推理能力.情感与态度目标:(1)、通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,感悟数学知识的奇妙无穷.(2)、通过主动探究、合作交流,在学习活动中体验获得成功的喜悦.[教学重点]相似三角形判定定理的预备定理的探索[教学难点] 相似三角形判定定理的预备定理的有关证明[教学方法]探究法[教学媒体]多媒体课件直尺、三角板[教学过程]一、课前准备1、全等三角形的基础知识2、三角形中位线定理及其证明方法3、平行四边形的判定和性质4、相似多边形的定义5、比例的性质二、复习引入(一)复习1、相似图形指的是什么?2、什么叫做相似三角形?(二)引入如图1,△ABC与△A’B’C’相似.图1记作“△ABC ∽△A ’B ’C ’”, 读作“△ABC 相似于△A ’B ’C ’”.[注意]:两个三角形相似,用字母表示时,与全等一样,应把表示对应顶点的字母写在对应位置上,这样便于找出相似三角形的对应边和对应边角.对于△ABC ∽△A ’B ’C ’,根据相似形的定义,应有∠A =∠A ’, ∠B =∠B ’ , ∠C =∠C ’,''B A AB =''C B BC =''A C CA . [问题]:将△ABC 与△A ’B ’C ’相似比记为k 1,△A ’B ’C ’与△ABC 相似比记为k 2,那么k 1与k 2有什么关系? k 1= k 2能成立吗?三、探索交流(一)[探究]1、在△ABC 中,D 为AB 的中点,如图2,过D 点作DB∥BC 交AC 于点E ,那么△ADE 与△ABC 相似吗?(1)“角” ∠BAC =∠DAE .∵DB ∥BC, ∴∠ADE =∠B, ∠AED =∠C .(2)“边” 要证明对应边的比相等,有哪些方法?Ⅰ、直接运用三角形中位线定理及其逆定理∵DB ∥BC ,D 为AB 的中点,∴E 为AC 的中点,即DE 是△ABC 的中位线. 图2(三角形中位线定理的逆定理) ∴DE =21BC .(三角形中位线定理)∴AB AD =AC AE =BC DE =21. ∴△ADE ∽△ABC .Ⅱ、利用全等三角形和平行四边形知识过点D 作DF ∥AC 交BC 于点F ,如图3.则△ADE ≌△ABC ,(ASA )且四边形DFCE 为平行四边形.(两组对边分别平行的四边形是平行四边形) 图3∴DE =BF =FC.∴AB AD =AC AE =BC DE =21. ∴△ADE ∽△ABC .2、当D 1、D 2为AB 的三等分点,如图4.过点D 1、D 2分别作 BC 的平行线,交AC于点E 1、E 2,那么△AD 1E 1、△AD 2E 2与△ABC 相似吗?由(1)知△AD 1E 1∽△AD 2E 2,下面只要证明△AD 1E 1与△ABC 相似,关键是证对应边的比相等.过点D 1、D 2分别作AC 的平行线,交BC 于点F 1、F 2,设D 1F 1与D 2F 2相交于G 点.则△AD 1E 1≌△D 1D 2G ≌D 2BF 2,(ASA )且四边形D 1F 1CE 1、D 2F 2CE 2、D 1GE 2E 1、D 2F 2F 1G 为平行四边形.(两组对边分别平行的四边形是平行四边形)图4∴D 1E 1=BF 2=F 2F 1=F 1C , ∴AE 1=E 1E 2=E 2C ,∴ AB AD 1=AC AE 1=BC E D 11=31. ∴△AD 1E 1∽△ABC . ∴△AD 1E 1∽△AD 2E 2∽△ABC .[思考]:上述证明过程较复杂,有较简单的证明方法吗?过点D 2分别作AC 的平行线,交BC 于点F 2,如图5.则四边形D 2F 2CE 2为平行四边形,且△AD 1E 1≌D 2BF 2,(ASA ) ∴D 2E 2=F 2C ,D 1E 1=BF 2.由(1)知,D 1E 1=21D 2E 2,AE 1=21AE 2,图5∴D 1E 1=31BC ,AE 1=31AC . ∴AB AD 1=AC AE 1=BC E D 11=31. ∴△AD 1E 1∽△ABC . ∴△AD 1E 1∽△AD 2E 2∽△ABC .(二)[猜想]3、通过上面两个特例,可以猜测:当D 为AB 上任一点时,如图6,过D 点作DE ∥BC 交AC 于点E ,都有△ADE 与△ABC .图6(三)[归纳]定理 平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似.这个定理可以证明,这里从略..六、布置作业课本第79页练习思考题:如图8、过△ABC 的边AB 上任意一点D ,作DE ∥BC 交AC 于点E , 那么 DB AD =ECAE .图8感谢您的阅读,祝您生活愉快。
相似三角形的判定

相似三角形的判定(一)一、判定(1)平行于三角形的一边的直线与两边相交,所截得的三角形与原三角形相似。
(2)平行于三角形一边的直线与另两边的延长线相交,所得的三角形与原三角形相似。
例一(1)如图,DE//BC,EF//AB,则图中有个相似三角形。
(2图中EF//GH//IJ∥BC,找出图中所有的相似三角形。
例二(1)如图,在∆ABC中,DE//BC,AD=EC,BD=1,AE=4,BC=5,则DE= 。
(2)如图,在∆ABC中,∠ACB的平分线交AB于D,DE//AC交BC于E,若AC=9,CE=3,则BE= 。
例三(1)如图,平行四边形ABCD中,E是BC边上的点,AE交BD于点F,如果BE:BC=2:3,求BF:FD。
(2)如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,EF交AC于G,那么AG:GC的值是多少?(3)如图,已知AB//EF//CD,且AB=3,CD=2,求EF的值相似三角形的判定(二)一、如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
二、如果两个三角形中两组对应边的比相等,并且它们的夹角也相等,那么这两个三角形相似。
例一:如图,E是平行四边形ABCD的对角线BD上一点,且,且AB/AE=AC/AD.∠1=∠2,求证:∠ABC=∠AED。
例二:如图,在等边∆ABC中,D、E分别在AC、AB上,且AD/AC=⅓,AE=BE,则有()A、∆ADE∽∆BEDB、∆AED∽∆CBDC、∆AED∽∆ABDD、∆BAD∽∆BCD例三:(1)如图,点D是△ABC内一点,连结BD并延长到E,连结AD、AE,若∠BAD=20°,AB /AD=BC/DE=AC/AE ,则∠EAC=。
(2)如图,在正方形ABCD中,P、Q分别是BC、CD上一点,且BP:CP=3:1,Q是CD的中点,求证:(1)∆ADQ∽∆QCP;(2)∆APQ∽∆QPC。
相似三角形的判定(三)如果两个三角形有两组对应角相等,那么这两个三角形相似。
经典:相似三角形判定复习(一)

Rt△ABC∽Rt△A'B'C' A
B'
C
B
二、例题欣赏
例1.已知:如图,△ABC中,P是AB边上的一点, 连结C P , (1)∠ACP满足什么条件时,△ACP∽△ABC? (2)AC∶AP满足什么条件时,△ACP∽△ABC?
解:(1)∵∠A=∠A ∴ 当∠ACP=∠B时, △ACP∽△ABC.
M为斜边BC中点
又 ∵ ∠DMA=
∴AM=BM=BC/2
∠AME
∴ ∠B= ∠MAD 又 ∵ ∠B+ ∠BDM=90°
∴△MAD∽ △MEA ② ∵ △MAD∽ △MEA
∠E+ ∠ADE= 90° ∠BDM= ∠ADE
AM ME ∴ MD =AM
即AM2=MD·ME
3. 如图,AB∥CD,AO=OB,DF=FB,DF交AC于E,
AA'BB'BB'CC'CC'AA'△ABC∽△A'B'C'
思考: 对于两个直角三角形,我们还
可以用“HL”判定它们全等。那么, 满足斜边的比等于一组直角边的比 的两个直角三角形相似吗?
直角三角形相似的判定:
直角边和斜边的比相等,两直角 A' 三角形相似。
∠C=∠C' =90o
C'
AC = A B A'C' A ' B '
∠ACD= ∠ ABC.
求证:AC2=AD·AB.
A
2.△ABC中,∠ BAC是直角,过斜
D
B
E
边中点M而垂直于斜边BC的直线
交CA的延长线于E,交AB于D,连AM. D A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.相似三角形的识别
第一课时相似三角形的识别(一)
教学目标:
1.会说出识别两个三角形相似的方法,有两个角分别相等的两个三角形相似。
2.会用这种方法判断两个三角形是否相似。
教学过程:
一、复习
1.两个矩形一定会相似吗?为什么?
2.如何判断两个三角形是否相似?
根据定义:对应角相等,对应边成比例。
3.如图△ABC与△′B′C′会相似吗?为什么?是否存在识别两个三角形相似的简便方法?本节就是探索这方面的识别两个三角形相似的方法。
二、新课讲解
同学们观察你与你的同伴所用的三角尺,以及老师用的三角板,如有一个角是30°的直角三角尺,它们的大小不一样。
这些三角形是相似的,我们就从平常所用的三角尺入手探索。
(1)是45°角的三角尺,是等腰直角三角形会相似。
(2)是30°的三角尺,那么另一个锐角为60°,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢?
这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好像就会“相似”。
是这样吗?请同学们动手试一试:
1.画两个三角形,使它们的三个角分别相等。
画△ABC与△DEF,使∠A=∠D、∠B=∠E,∠C=∠F,在实际画图过程中,同学们画几个角相等?为什么?
实际画图中,只画∠A=∠D,∠B=∠E,则第三个角∠C与∠F一定会相等,这是根据三角形内角和为180°所确定的。
2.用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否
有相同结果。
3.发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似。
4.两个矩形的四个角也都分别相等,它们为什么不会相似呢?
这是由于三角形具有它特殊的性质。
三角形有稳定性,而四边形有不稳定性。
于是我们得到识别两个三角形相似的一个较为简便的方法:
如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似。
同学们思考,能否再简便一些,仅有一对角对应相等的两个
三角形,是否一定会相似呢?
例题:
1.如图两个直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,判断这两个三角形是否相似。
2.在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,这两个三角形相似吗?
3.如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC。
三、练习
1.△ABC中,∠ACB=90°,CD⊥AB于D,找出图中所有的相似三角形。
2.△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC会相似,你怎样画这条直线,并说明理由。
和你的同伴交流作法是否一样?
四、小结
本节课我们学习了识别两个三角形相似的简便方法:有两个角对应相等的两个三角形相似。
五、作业
P64 1。