(完整版)初三数学相似三角形的判定

合集下载

(完整版)相似三角形的判定方法

(完整版)相似三角形的判定方法

(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

相似三角形的判定条件

相似三角形的判定条件

相似三角形的判定条件在我们的数学世界中,相似三角形是一个非常重要的概念。

它不仅在解决几何问题时经常出现,还与实际生活中的许多场景有着紧密的联系。

那什么是相似三角形呢?简单来说,如果两个三角形的形状相同,但大小不一定相同,它们就是相似三角形。

而要判断两个三角形是否相似,就需要依据一定的判定条件。

相似三角形的判定条件主要有以下几种:第一种判定条件是“两角分别相等的两个三角形相似”。

这是一个非常重要的判定方法,也比较容易理解。

比如说,有两个三角形,一个三角形的两个角分别是 30 度和 60 度,另一个三角形也有两个角分别是 30 度和 60 度。

因为三角形的内角和是 180 度,所以第三个角的度数也就确定了。

这样一来,这两个三角形的三个角都分别相等,它们的形状就相同,从而可以判定这两个三角形是相似的。

第二种判定条件是“两边成比例且夹角相等的两个三角形相似”。

假设我们有两个三角形,其中一个三角形的两条边的长度分别是 4 和 6,夹角是 60 度;另一个三角形对应的两条边的长度分别是 8 和 12,夹角也是 60 度。

我们可以计算出这两组对应边的比例,4∶8 = 1∶2,6∶12 = 1∶2,比例相等,而且夹角也相等,所以这两个三角形就是相似的。

第三种判定条件是“三边成比例的两个三角形相似”。

比如一个三角形的三条边分别是3、4、5,另一个三角形的三条边分别是6、8、10。

我们来计算一下它们对应边的比例,3∶6 = 1∶2,4∶8 = 1∶2,5∶10 = 1∶2,三边的比例都相等,那么这两个三角形就是相似的。

为了更好地理解和运用这些判定条件,我们来看一些实际的例子。

假设在一个建筑工地上,有一个工人需要测量一个大型三角形广告牌的高度,但他无法直接测量。

不过,他在地面上立了一根已知长度的杆子,然后分别测量出杆子的影子长度和广告牌的影子长度。

通过这种方法,就可以利用相似三角形的知识来计算出广告牌的高度。

在这个例子中,杆子和它的影子以及广告牌和它的影子分别构成了两个直角三角形。

相似三角形的判定方法

相似三角形的判定方法

相似三角形的判定方法1.AA(角-角)相似判定法:如果两个三角形的两个角分别相等,则可以判断它们是相似三角形。

具体来说,如果两个三角形的两个角分别相等,则其他角也必然相等。

根据三角形内角和定理,一个三角形的三个角之和等于180度。

因此,两个角相等的三角形的第三个角也必然相等,这样就可以判断两个三角形是相似的。

2.SSS(边-边-边)相似判定法:如果两个三角形的三条边的比值相等,则它们是相似三角形。

具体来说,如果两个三角形的对应边的长度比值相等,则可以判断它们是相似三角形。

3.SAS(边-角-边)相似判定法:如果两个三角形的一个边与对应顶角的比值相等,而且另一对边的比值也相等,则可以判断它们是相似三角形。

4.AAA(角-角-角)相似判定法:如果两个三角形的三个角对应相等,则可以判断它们是相似三角形。

根据角度对应定理,如果两个三角形的三个角对应相等,则它们是相似的。

除了以上的几种判定方法,还有一些相似三角形的性质和定理可以用于判定。

例如:1.周角的比值定理:如果两个相似三角形的三个内角对应相等,那么它们的周角的比值也相等。

2.面积的比值定理:如果两个相似三角形的边长比值为a:b,则它们的面积比值为a²:b²。

3.高的比值定理:如果两个相似三角形的边长比值为a:b,则它们的高的比值也为a:b。

4.相似三角形的中位线定理:如果两个相似三角形的边长比值为a:b,则它们的中位线的比值也为a:b。

需要注意的是,这些判定方法和定理都是基于相似三角形的基本定义和性质推导出来的。

在应用时,需要根据所给条件具体判断是否可以使用相应的判定方法和定理。

以上是一些常见的相似三角形的判定方法和定理。

相似三角形是几何学中重要的概念之一,对于解决与三角形相关的问题有很大的帮助。

同时也为后续学习更高级的几何概念和定理打下了基础。

自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)

自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)

自学资料一、相似三角形的性质和判定综合【知识探索】1.(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。

(2)直角三角形相似的判定方法①以上各种判定方法均适用②垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

【错题精练】例1.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训定有()A. △ADE∽△ECFB. △ECF∽△AEFC. △ADE∽△AEFD. △AEF∽△ABF【解答】解:在矩形ABCD中,∵∠D=∠C=90°,∠AEF=90°,∴∠DEA+∠CEF=90°,∠DEA+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF.故选:A.【答案】A例2.如图,已知AB、CD分别是半圆O的直径和弦,AD和BC相交于点E,若∠AEC=α,则S△CDE:S△ABE等于()A. sinαB. cosαC. sin2αD. cos2α【答案】D例3.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F 处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,第2页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√3例4.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.【解答】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵12•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,第3页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的面积=2(5+3√5)=10+6√5.故答案为10+6√5【答案】10+6√5例5.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=______.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE=√22+12=√5,∵AO⊥DE,∴12×DE×AO=12×AE×AD,∴AO=2√55.故答案为2√55.【答案】2√55例6.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于BC的中点处.①如图甲,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;②如图乙,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N.求证:△ECN∽△MEN.第4页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训【答案】证明:(1)∵△ABC是等腰直角三角形,∴∠B=45°,∴∠1+∠2=135°又∵△DEF是等腰直角三角形,∴∠3=45°∴∠1+∠4=135°∴∠2=∠4,∵∠B=∠C=45°,∴△BEM∽△CNE;(2)与(1)同理△BEM∽△CNE,∴BECN =EMNE,又∵BE=EC,∴ECCN =EMNE,∴ECEM =CNNE,又∵∠ECN=∠MEN=45°,∴△ECN∽△MEN.例7.如图,△ABC内接于⊙O,AD是边BC上的高,AE是⊙O的直径,连BE.(1)求证:△ABE与△ADC相似;(2)若AB=2BE=4DC=8,求△ADC的面积.【答案】第5页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例8.如图,AB是⊙O的直径,BE⊥CD于E.(1)求证:AB•BE=BC•BD;(2)若AB=26,CD=24,求sin∠CBD.【答案】(1)证明:连接AD,∵AB是直径,∴∠ADB=90°,∵BE⊥CD∴∠ADB=∠CEB∵∠A=∠C∴△CBE∽△ABD∴ABBC =BD BE∴AB•BE=BC•BD;(2)解:连接DO并延长交⊙O于点F,∵DF是直径,∴∠FCD=90°∴∠F=∠CBD AB=DF=26∴CD=24∴sin∠CBD=sin∠F=CDDF =2426=1213【举一反三】第6页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第7页 共23页 自学七招之智慧树神拳:知识内容体系化,思维导图来助力 非学科培训1.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,则S △ABE :S △ECF 等于( )A. 1:2B. 4:1C. 2:1D. 1:4【答案】B2.矩形ABCD 中,AD=2AB=2√2,E 是AD 的中点,Rt ∠FEG 顶点与点E 重合,将∠FEG 绕点E 旋转,角的两边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AME=α(0°<α<90°),有下列结论:①BM=CN ;②AM+CN=√2;③S △EMN =1sin 2α,其中正确的是( )A. ①B. ②③C. ①③D. ①②③【解答】解:在矩形ABCD 中,AD=2AB ,E 是AD 的中点, 作EF ⊥BC 于点F ,则有AB=AE=EF=FC ,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN ,在Rt △AME 和Rt △FNE 中,{∠AEM =∠FENAE =EF ∠MAE =∠NFE,∴Rt △AME ≌Rt △FNE ,∴AM=FN ,∴MB=CN ,故①正确;∴CF=AM+CN=12BC=√2,当点M 在AB 的延长线上时,AM-CN=√2,故②错误;∵Rt△AME≌Rt△FNE,∴EM=EN,∴△EMN是等腰直角三角形,∵∠AME=α,∴sinα=AEEM,∴EM=√2sinα,∴S△EMN=12EM2=1sin2α,故③正确,故选:C.【答案】C3.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为.【答案】2√34.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2√2,求⊙O的半径.【答案】(1)证明:∵DC2=CE•CA,∴DCCE =CADC,而∠ACD=∠DCE,第8页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴CD̂=CB̂,∴∠BOC=∠BAD,∴OC∥AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴PCPA =PBPD,即4√23r=r6√2,∴r=4,即⊙O的半径为4.5.如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长;(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.第9页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】(1)证明:∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°,∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠DEC=90°,∴∠DEC=∠BAE,∴△ABE∽△ECD;(2)解:Rt△ABE中,∵AB=4,AE=5,∴BE=3,∵BC=5,∴EC=5-3=2,由(1)得:△ABE∽△ECD,∴ABBE =ECCD,∴43=2CD,∴CD=32;(3)解:线段AD、AB、CD之间数量关系:AD=AB+CD;理由是:过E作EF⊥AD于F,∵△AED∽△ECD,∴∠EAD=∠DEC,∵∠AED=∠C,∴∠ADE=∠EDC,∵DC⊥BC,∴EF=EC,∵DE=DE,∴Rt△DFE≌Rt△DCE(HL),∴DF=DC,同理可得:△ABE≌△AFE,∴AF=AB,∴AD=AF+DF=AB+CD.6.已知,正方形DEFG内接于△ABC中,且点E、F在BC上,点D,G分别在AB,AC上.第10页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训(1)如图①,若△ABC是直角三角形,∠A=90°,AB=4,AC=3,求正方形的边长;(2)如图②,若S△ADG=1,S△BDE=3,S△FCG=1,求正方形的边长.【答案】解:(1)设正方形DEFG的边长是x,∵△ABC是直角三角形,∠A=90°,AB=4,AC=3,∴由勾股定理得:BC=5,过A作AM⊥BC于M,交DG于N,由三角形面积公式得:12AB×AC=12BC×AM,∵AB=4,AC=3,BC=5,∴AM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DG∥BC,∴△ADG∽△ABC,∴DGBC =AN AM,∴x5=2.4−x2.4,x=6037,即正方形DEFG的边长是6037;(2)过A作AM⊥BC于M,交DG于N,设正方形DEFG的边长是a,AN=b,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=a,DG∥BC,∵S△ADG=1,S△BDE=3,S△FCG=1,∴12ab=1,12BE•a=3,12CF•a=1,∴BE=3b,CF=b,∴S△ADG+S△BED+S CFG=12ab+32ab+12ab=1+3+1=5,∴ab=2,∴b=2a①,=1(BE+EF+CF)×(AN+MN)-(S△ADG+S△BDE+S△CFG)2(a+4b)(a+b)-5=a2,=12∴a=2b②,由①②得:a=2,即正方形的边长是2.7.如图,在长方形ABCD中,点E,F分别是BC,DC上的动点.沿EF折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,求CF的取值范围.【答案】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大值为3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG=√BG2−AB2=4,∴DG=AD-AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3-x)2+12=x2,,∴x=53∴5≤CF≤3.≤CF≤3.故答案为:538.如图,在⊙O中,直径AB垂直于弦CD,垂足为点E,点F在AC上从A点向C点运动(点A、C 除外),AF与DC的延长线相交于点M.(1)求证:△AFD∽△CFM;(2)点F在运动中是否存在一个位置使△FMD为等腰三角形?若存在,给予证明;若不存在,请说明理由.【答案】1.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A. ∠1>∠2B. ∠1<∠2C. ∠1=∠2D. 无法确定【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【答案】C2.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A. 9B. 8C. 15D. 14.5【答案】A3.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A. S1=S2B. S1>S2C. S1<S2D. 3S1=2S2S矩形AEFC,即S1=S2,【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=12故选:A.【答案】A4.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,且E为AD的中点,FC=3DF,连接EF并延长交BC的延长线于点G(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求△BEG的面积.=FCDF=3,∴CG=6,∴BG=BC+CG=10,∴△BEG的面积=12×BG×AB=20.5.如图,在正方形ABCD中,AB=4,点P、Q分别在直线CB与射线DC上(点P不与点C、点B重合),且保持∠APQ=90°,CQ=1,则线段BP的长为______.【解答】解:分三种情况:设BP=x,①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BAP+∠APB=90°,∵∠APQ=90°,∴∠APB+∠CPQ=90°,∴∠BAP=∠CPQ,∴△ABP∽△PCQ,∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2,∴BP=2;②当P在CB的延长线上时,如图2,同瑆得:△ABP∽△PCQ,6.已知,如图,在圆O中,AB=CD。

湘教版九年级数学上册《相似三角形判定 》知识全解

湘教版九年级数学上册《相似三角形判定 》知识全解

《相似三角形判定》知识全解
课标要求
理解相似三角形几种判定,并能简单地应用.
知识结构
内容解析
(1)相似三角形判定预备定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.
(2)相似三角形判定1:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.
(3)相似三角形判定2:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.
(4)相似三角形判定3:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
重点难点
本节的重点是:三角形相似的判定方法及其应用.
难点:探究两个三角形相似判定方法的过程.
教法导引
(1)注重将新知识与旧知识进行联系与类比.
培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法与全等三角形判定方法的区别与联系,体验事物间特殊与一般的关系.
复习全等三角形判定方法SSS与SAS,类比全等三角形判定方法SSS与SAS,提出两个三角形相似的两个判定.
(2)让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力.
教学活动的本质是一种合作,一种交流.学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,本节课主要采用自主学习,合作探究,引领提升的方式展开教学.依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,加强与全等三角形相关内容的联系,使学生的学习形成正迁移.
学法建议
新的教学理念要求在课堂中注重探究学习,在本课中,其实有许多内容可以进行这方面的尝试.如何进行判定三角形相似呢?可以让学生进行探究和归纳.若能在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高.。

初中数学知识归纳相似三角形的判定定理分析

初中数学知识归纳相似三角形的判定定理分析

初中数学知识归纳相似三角形的判定定理分析初中数学知识归纳:相似三角形的判定定理分析相似三角形是初中数学中非常重要的概念,它可以帮助我们解决各种几何问题。

相似三角形判定定理是判断两个三角形是否相似的基本定理。

本文将对相似三角形的判定定理进行归纳和分析,帮助读者更好地理解和应用这一知识点。

一、全等三角形的性质回顾在归纳相似三角形的判定定理之前,我们首先回顾一下全等三角形的性质。

两个三角形全等的条件有三种情况:边-角-边(SAS)、角-边-角(ASA)和边-边-边(SSS)。

只要满足其中一种情况,两个三角形就是全等的。

全等三角形的性质提供了相似三角形判定的基础,我们下面来看看相似三角形的判定定理。

二、相似三角形的判定定理相似三角形的判定定理包括以下三种情况:AAA相似定理、AA相似定理和边-比-边相似定理。

我们逐一进行分析。

1. AAA相似定理AAA相似定理是指如果两个三角形的对应角度相等,那么这两个三角形相似。

具体而言,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E,∠C=∠F,那么我们可以得出结论:△ABC ∽△DEF。

其中,“∽”表示相似。

根据AAA相似定理,我们可以用角度关系判定两个三角形是否相似。

这对于求解角度未知的三角形问题非常有用。

但需要注意的是,AAA相似定理只能判定三角形之间的相似关系,并不能确定它们的实际大小。

2. AA相似定理AA相似定理是指如果两个三角形的两个对应角度相等,那么这两个三角形相似。

具体而言,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E(或∠A=∠E,∠B=∠D),那么我们可以得出结论:△ABC ∽△DEF。

AA相似定理是比较常用且直观的判定方式。

通过测量或计算出两个角度的大小,我们就能确定两个三角形的相似关系。

需要注意的是,判定相似三角形时,AA相似定理只能判定两个角度对应相等,不能判定另一个角度是否相等。

3. 边-比-边相似定理边-比-边相似定理是指如果两个三角形的对应边长成比例,那么这两个三角形相似。

初三数学相似三角形的判定定理

初三数学相似三角形的判定定理

初三数学相似三角形的判定定理相似三角形是数学中的一种重要概念,它们具有相似的形状但大小不同。

在初三数学学习中,我们经常会遇到相似三角形的题目,因此掌握相似三角形的判定定理对于解决问题非常关键。

下面我们将通过生动、全面、有指导意义的文章来介绍初三数学中相似三角形的判定定理。

首先,我们来谈谈相似三角形的定义。

当两个三角形的对应角度相等,并且对应边的比值相等时,我们称这两个三角形为相似三角形。

相似三角形之间的对应关系非常重要,它使我们能够通过已知信息推导出未知信息,从而解决一些复杂的几何问题。

因此,掌握相似三角形的判定定理对于初三数学的学习至关重要。

在判定相似三角形时,我们可以运用以下定理:1. AA判定定理:如果两个三角形的两个角分别相等,并且所对应的边的比值相等,那么这两个三角形是相似的。

这个定理非常直观易懂,通过观察角的大小和边的比值,我们可以迅速判断出两个三角形是否相似。

2. SAS判定定理:如果两个三角形的一个角相等,并且两边的比值相等,那么这两个三角形是相似的。

这个定理也比较简单,我们只需要关注一个角和两边的对应关系即可。

3. SSS判定定理:如果两个三角形的三条边的比值都相等,那么这两个三角形是相似的。

这个定理是最简单的一种判定方式,我们只需要观察三条边的比值即可确定相似性。

通过以上三个重要的判定定理,我们可以准确地判断相似三角形,从而在解决几何问题时提供指导。

在实际运用中,我们常常需要结合具体情况进行分析,综合运用上述定理才能得出准确的结论。

相似三角形的性质对于解决很多几何问题都有重要的指导意义。

除了判定定理外,相似三角形还有一些重要的性质,如对应角相等、对应边成比例等。

通过利用这些性质,我们可以解决诸如求边长、求面积、求角度等各种问题。

总之,相似三角形是初三数学中非常重要的概念,掌握相似三角形的判定定理具有非常大的指导意义。

通过灵活运用AA、SAS和SSS三种判定定理,我们可以准确地判断两个三角形是否相似,从而解决各种几何问题。

相似三角形判定定理

相似三角形判定定理
反证法
假设待证明的结论不成立,然后推导 出与已知条件或明显成立的事实相矛 盾的结论,从而证明原结论成立。
多种方法综合运用
综合法与分析法相结合
在证明过程中,既可以从已知条件出发进行正向推导,也 可以从待证明的结论出发进行逆向推导,将两种方法相结 合,寻找最佳证明路径。
多种性质综合运用
在证明过程中,需要综合运用相似三角形的多种性质,如 对应角相等、对应边成比例、面积比等于相似比的平方等 ,以推导出待证明的结论。
等性质,推导出待证明的结论。
构造辅助线
02
在证明过程中,通过构造辅助线,将复杂图形转化为简单图形
,从而更容易找到证明的思路。
利用全等三角形
03
在某些情况下,可以通过证明两个三角形全等,进而证明它们
相似。
分析法证明
逆推法
从待证明的结论出发,逆向推导,逐 步寻找使结论成立的条件,直到找到 已知条件或明显成立的事实为止。
相似三角形与全等三角形关系
01
全等三角形:两个三角形如果它们的三边及三角都分别相等,则称这 两个三角形全等。
02
关系
03
全等三角形一定是相似三角形,因为全等意味着对应角和对应边都相 等,自然满足相似的条件。
04
但相似三角形不一定是全等三角形,因为相似只要求对应角相等和对 应边成比例,并不要求对应边长度完全相等。
02
相似三角形判定定理介绍
预备定理
01
平行于三角形一边的直线和其他 两边(或两边的延长线)相交, 所构成的三角形与原三角形相似 。
02
如果一个三角形的两个角与另一 个三角形的两个角对应相等,那 么这两个三角形相似。
判定定理一:两角对应相等
如果一个三角形的两个角与另一个三 角形的两个角对应相等,则这两个三 角形相似。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本讲教育信息】
一. 教学内容:相似三角形的判定
二. 重点、难点怎样选择适当的定理判定三角形的相似是学习中的重点和难点。

三. 知识回顾
(一)定义:对应角相等,对应边成比例的两个三角形叫相似三角形。

相似三角形的对应边的比叫做相似比(也叫相似系数)。

(二)判定:
①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

②两边对应成比例且夹角相等的两个三角形相似。

③有两个角对应相等的两个三角形相似。

④三条边对应成比例的两个三角形相似。

⑤一条直角边和斜边对应成比例的两个直角三角形相似。

⑥直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似。

【典型例题】
60,BD⊥AC于D,CE⊥AB于E,求证:△ADE∽△ABC。

例1. 如图,△ABC中,∠A=
例2. 如图,过△ABC的顶点B和C,分别作AB、AC的垂线BD、CD,使交于点D,过C作CE⊥AD交AB 于E,交AD于F 求证:△ACE∽△ABC
例3. 如图,△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,求证:△AEF∽△ACB
例4. 如图,点E是正方形ABCD的边AB上一点,且AE:AB=1:4,F为边AD上一点,问:当F在AD上的什么位置时,△AEF∽△CDF。

【模拟试题】(答题时间:30分钟)
1. 判断下列各命题的真假(真命题打“T ”,否则打“F ”) (1)若一条直线截三角形的两边所得的三角形与原三角形相似,则这条直线平行于三角形的第三边( ) (2)有一个锐角相等的两个等腰三角形必定相似( ) (3)三组边分别平行的两个三角形必定相似( ) (4)有一个锐角相等的两个直角三角形必定相似( )
(5)一个顶角为︒40的等腰三角形和一个底角为︒70的等腰三角形相似( ) (6)四个角对应相等的两个梯形必定相似( ) (7)所有的菱形均相似( )
(8)所有的正方形均相似( )
2. △ABC 中,∠ACB=︒90,CD ⊥AB 于D ,DE ⊥AC 于E ,则与△ABC 相似而不全等的三角形的个数是( ) A. 2 B. 3 C. 4 D. 5
3. 已知△ABC ∽△'''C B A ,相似比为4,△'''C B A ∽△''''''C B A ,相似比为3,试问:△''''''C B A 与△ABC 是否相似?若它们相似,则相似比为多少?
4. 如图,若∠EBC=∠ABD ,∠ECB=∠DAB 求证:△ABC ∽△DBE 。

5. 过△ABC 三条角平分线的交点I ,作AI 的垂线与AB 、AC 分别交于D 、E , 求证:△BID ∽△IEC 。

6. 如图,平行四边形ABCD 中,AD=10,DC=6,E 为AB 中点,F 有BC 上,则BF 长为多少时,使得△DCF ∽△DAE ?
D A
P
B Q
C
A D S 1
S 3
S 2
B C
O
【本讲教育信息】
一. 教学内容:相似三角形的性质 二. 教学重难点:
应用相似三角形的性质进行有关的计算与证明是本周学习的重点。

应用相似三角形的知识时,由于知识的综合程度较高,对分析思维的能力有一定的要求,所以是学习的难点所在。

三. 知识回顾:
(一)相似三角形的性质
1. 相似三角形的对应角相等,对应边成比例。

2. 相似三角形对应的高、中线和对应的角平分线以及周长之比都等于相似比。

3. 相似三角形的面积之比等于相似比的平方。

(二)与相似三角形有关的辅助线
主要是掌握如何根据线段的比例式作平行辅助线。

【典型例题】
例1. 如图,AB ⊥BC ,CD ⊥BC ,B 、C 是垂足,AC 、BD 交于P 。

过P 作PQ ⊥BC 于Q 。

求证:∠AQP=∠PQD
例2. 如图,△ACB 中,∠ACB=90°,D 在BC 边上,连AD ,过B 作BE ⊥EF ⊥CB 于F ,求证:BF=CD 。

例3. 如图,梯形ABCD 中,AD//CB ,对角线AC 、BD 相交于点O ,设梯形ABCD 的面积为S ,△AOD 、△BOC 、△AOB 的面积分别为321S S S 和、。

【模拟试题】(答题时间:25分钟)
1. △ABC 中,D 、E 分别为AB 、AC 的中点,连DE ,则△ADE 与△ABC 的周长比为_______________;它们的面积比为_______________。

D E C
F
A D P
B Q C
R C
A D B
E
F
2. 两个相似三角形的面积比为9:4,若较大三角形的一个内角的平分线长6cm ,则另一个三角形对应角的平
分线长为_______________。

3. 如图,平行四边形ABCD 中,E 在CD 上,DE :CE=2:3,连AE ,BE ,BD ,且AE 、
BD 相交于点F ,则ABF EBF DEF S :S :S ∆∆∆为( )
A. 4:10:25
B. 4:9:25
C. 2:3:5
D. 2:5:25
4. 正方形ABCD 中,E 为CD 的中点,F 在BC 上,且CF :BC=1:4。

求证:
CE
AD
EF AE =。

5. 如图,平行四边形ABCD 中,过
A 作直线交BD 于P ,交BC 于Q ,交DC 的延长线于R ,求证:PR PQ AP 2⋅=。

如图,∠ACB=Rt ∠,CD ⊥AB ,DE ⊥AC ,DF ⊥BC 。

(1)求证:AE BF
AC
BC 3
3= (2)若AE=8,BF=1,求DE 、DF 和AB 的长。

∵∠ACB=90°,CD⊥AB, ∴CD 2=AD·BD,故CD 4=AD 2·BD 2. 又∵Rt△ADC 中,DE⊥AC, Rt△BDC 中,DF⊥BC, ∴AD 2=AE·AC,BD 2=BF·BC. ∴CD 4=AE·BF·AC·BC. 又∵AC·BC=AB·CD,
A
B D C
E
F
∴CD 4=AE·BF·AB·CD,即AE·BF·AB=CD 3.
例1. 如图,△ABC 中,∠BAC=Rt ∠,AD ⊥BC 于D ,BF 平分∠ABC ,交AD 于E 。

求证:
CF
AF
AE DE。

【试题答案】
1. 1:2
1:4
2. 4cm
3. A
4. 由21AD CE DE CF ==,∠C=∠D 可知△CEF ∽△DAE ,∴CE
AD
EF AE =。

5. 提示:由△APB ∽△DPR ,得PD
BP
PR AP =
① 由△BPQ ∽△DAP ,得PD
BP
AP PQ =
② ∴由①、②知AP
PQ
PR AP =
,即PR PQ AP 2⋅= 6. 成立,只需证明△ABD ∽△ACB 即可。

7. 不会。

提示:不妨设AB=a ,CD=b ,BD=x ,且过P 作PE ⊥BD 于E ,易证△ABD ∽△PED 。

∴x
ED a PE =
同理,x
BE
b PE =
∴1x
x x ED BE b PE a PE ==+=+
∴b
a ab
PE +=为定值。

相关文档
最新文档