新人教版八年级数学上期末测试题带详细讲解(超经典)
新人教版八年级上期末数学试题含答案

x-11-x=4的解为正数,且使关于⎨3-A.-2B.-1110.如图5所示,∠MON=40 ,P为∠MON内一点,x=3,则x2+A.(a2+2b2)-2(-a2+b2)=3a2+b2B.a2+1a-1-a-1=17.若关于x的分式方程7第一学期期末考试8.若实数a使关于x的分式方程2+a y的不等式组八年级数学试题⎧y+2⎪y2>1的解集为y<-2,则符合条件的所有整数a的和为(答题时间100分钟,满分120分)一、选择题:本大题共有10小题,每小题3分,共30分。
每小题只有一个正确选项,⎪⎩2(y-a)≤0A.10B.12C.14D.16请将符合题目要求的字母序号填在答题纸上对应题目的答题栏内。
11.计算()-1所得结果是2A2C.2 D.22.如图1所示,序号(1)(2)(3)(4)对应的四个三B C9.若正整数x、y满足(2x-5)(2y-5)=25,则x+y等于A.18或10B.18C.10D.26图5A为OM上一点,B为O N上一点,当∆PAB的周长取最小值时,∠APB的度数为角形,都是∆ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是A.(1)B.(2)C.(3)D.(4)(1)(2)(3)(4)3.下列各式从左到右的变形中,属于因式分解的是图1A.a(m+n)=am+anB.a2-b2-c2=(a-b)(a+b)-c2C.10x2-5x=5x(2x-1)D.x2-16+6x=(x+4)(x-4)+6x4.从边长为a的正方形中剪掉一个边长为b的正方形(如图2所示),然后将剩余部分拼成一个长方形(如图3所示).根据图形的变化过程,写出的一个正确的等式是A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.b(a-b)=ab-b2D.a2-b2=(a+b)(a-b)A.80 B.100 C.110 D.120二、填空题:本大题共有8小题,每小题3分,共24分。
最新人教版八年级上学期数学《期末检测试卷》带答案解析

八年级上学期数学期末测试卷一.选择题(共10小题)1.在实数0,﹣2,π,|﹣3|中,最小的数是( )A. 0B. ﹣2C. πD. |﹣3| 2.化简12的结果是( )A. 43B. 23C. 32D. 26 3.如图,直线a ∥b ,直线AB ⊥AC ,若∠1=50°,则∠2的度数为A. 50°B. 45°C. 30°D. 40° 4.33的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间 5.(2016四川省成都市)平面直角坐标系中,点P (﹣2,3)关于x 轴对称的点的坐标为( )A. (﹣2,﹣3)B. (2,﹣3)C. (﹣3,﹣2)D. (3,﹣2) 6.如果直线y =kx +b 经过一、二、四象限,则有( )A. k >0,b >0B. k >0,b <0C. k <0,b >0D. k <0,b <0 7.满足下列条件的△ABC 不是直角三角形的是( )A. AC =1,BC 3AB =2B. AC :BC :AB =3:4:5C. ∠A :∠B :∠C =1:2:3D. ∠A :∠B :∠C =3:4:5 8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. x -y =20B. x +y =20C. 5x -2y =60D. 5x +2y =60 9.在平面直角坐标系中,将函数3y x图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A. (2,0)B. (-2,0)C. (6,0)D. (-6,0)10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是( ) A. B. C. D.二.填空题11.使3x -有意义的x 的取值范围是__________.12.如图,AB ∥CD ,DE ∥CB ,∠B =35°,则∠D =_____°.13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89.7,方差分别是2222.83, 1.71, 3.52,S S S ===甲乙丙你认为适合参加决赛的选手是_____.14.如图,在△ABC 中,∠A =70°.按下列步骤作图:①分别以点B ,C 为圆心,适当长为半径画弧,分别交BA ,BC ,CA ,CB 于点D ,E ,F ,G ;②分别以点D ,E 为圆心,大于12DE 为半径画弧,两弧交于点M ;③分别以点F ,G 为圆心,大于12FG 为半径画弧,两弧交于点N ;④作射线BM 交射线CN 于点O .则∠BOC 的度数是_____.三.解答题15.(1)计算: 91175482324+- (2)计算: 22141(2)3293-⨯-+÷ 16.(1)解方程组:320(1)2313(2)x y x y +=⎧⎨-=⎩ (2)解方程组:10(1)4()5(2)x y x y y --=⎧⎨--=⎩17.本学期初,某校为迎接中华人民共和国成立七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代“为主题的读书活动.德育处对八年级学生九月份“阅读该主题相关书籍的读书量”( 下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,绘制了两幅不完整的统计图(如图所示).(1)请补全两幅统计图;本次所抽取学生九月份“读书量“的众数为 本;(2)求本次所抽取学生九月份“读书量”的平均数;(3)已知该校八年级有500名学生,请你估计该校八年级学生中,九月份“读书量“为5本的学生人数. 18.若买3根跳绳和6个毽子共72元;买1根跳绳和5个毽子共36元.(1)跳绳、毽子的单价各是多少元?(2)元旦促销期间,所有商品按同样的折数打折销售,买10根跳绳和10个毽子只需180元,问商品按原价的几折销售?19.如图,一次函数y=kx+b的图象经过点A(﹣2,6),与x轴交于点B,与正比例函数y=3x的图象交于点C,点C的横坐标为1.(1)求AB的函数表达式;(2)若点D在y轴负半轴,且满足S△COD=13S△BOC,求点D的坐标.20.我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE垂美四边形;②若AC=4,AB=5,求GE的长.四.填空题21.2x (y﹣1)2=0,则(x+y)2020=_____.22.若a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,则a﹣5b+3的立方根是_____.23.七巧板被誉为“东方魔板”.小明利用七巧板(如图1)中各板块的边长之间的关系拼成一个凸六边形,则该凸六边形(如图2)的周长是_____.24.在8×8的格子纸上,1×1小方格的顶点叫做格点.△ABC的三个顶点都是格点(位置如图).若一个格点P使得△PBC与△P AC的面积相等,就称P点为“好点”.那么在这张格子纸上共有_____个“好点”.25.如图,直线y=2x﹣1分别交x,y轴于点A,B,点C在x轴的正半轴,且∠ABC=45°,则直线BC的函数表达式是_____.五.解答题26.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.27.在△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D .过射线AD 上一点M 作BM 的垂线,交直线AC 于点N .(1)如图1,点M 在AD 上,若∠N =15°,BC =23,则线段AM 的长为 ;(2)如图2,点M 在AD 上,求证:BM =NM ;(3)若点M 在AD 的延长线上,则AB ,AM ,AN 之间有何数量关系?直接写出你的结论,不证明. 28.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T (x ,y )的纵坐标y 与横坐标x 的函数关系式:(3)若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.答案与解析一.选择题(共10小题)1.在实数0,﹣2,π,|﹣3|中,最小的数是()A. 0B. ﹣2C. πD. |﹣3| 【答案】B【解析】【分析】根据0大于一切负数;正数大于0解答即可.【详解】解:∵|﹣3|=3,∴实数0,﹣2,π,|﹣3|按照从小到大排列是:﹣2<0<|﹣3|<π,∴最小的数是﹣2,故选:B.【点睛】本题考查实数的大小比较;解答时注意用0大于一切负数;正数大于0.2.化简12的结果是()A. 43B. 23C. 32D. 26【答案】B【解析】⨯⨯.试题解析:12=43=43=23故选B.考点:二次根式的化简.3.如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2的度数为A. 50°B. 45°C. 30°D. 40°【答案】D【解析】根据两直线平行,内错角相等可得∠3=∠1,根据垂直的定义和余角的定义计算得到∠2.【详解】解:∵直线a∥b,∠1=50°,∴∠1=∠3=50°,∵AB⊥AC,∴∠2+∠3=90°.∴∠2=40°.故选:D.【点睛】本题考查平行线的性质以及垂直的定义,属于中考常考题.4.33)A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】D【解析】【详解】解:∵25<33<36,∴5336.故选D.【点睛】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.5.(2016四川省成都市)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A. (﹣2,﹣3)B. (2,﹣3)C. (﹣3,﹣2)D. (3,﹣2)【答案】A【解析】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选A.6.如果直线y=kx+b经过一、二、四象限,则有()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<0【答案】C【解析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.【详解】解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选:C.【点睛】本题考查一次函数图象在坐标平面内的位置与k、b的关系.注意应用直线y=kx+b所在的位置与k、b的符号有直接的关系.7.满足下列条件的△ABC不是直角三角形的是()A. AC=1,BC,AB=2B. AC:BC:AB=3:4:5C. ∠A:∠B:∠C=1:2:3D. ∠A:∠B:∠C=3:4:5【答案】D【解析】【分析】根据勾股定理的逆定理可判定即可.【详解】解:A、∵12+2=4,22=4,∴12+2=22,∴AC=1,BC,AB=2满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=3×180°=90°,123++∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=5×180°=75°,345++∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.【点睛】本题主要考查直角三角形的判定,解题关键是掌握直角三角形的判定方法.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. x -y =20B. x +y =20C. 5x -2y =60D. 5x +2y =60 【答案】C【解析】【分析】设圆圆答对了x 道题,答错了y 道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【详解】设圆圆答对了x 道题,答错了y 道题,依题意得:5x-2y+(20-x-y )×0=60. 故选C .【点睛】此题考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程.9.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A. (2,0)B. (-2,0)C. (6,0)D. (-6,0) 【答案】B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A. B.C. D.【答案】B【解析】【分析】根据乌龟早出发,早到终点,结合各图象进行分析判断即可.【详解】A、兔子后出发,先到了,不符合题意;B、乌龟比兔子早出发,而早到终点,符合题意;C、乌龟先出发后到,不符合题意;D、乌龟先出发,与兔子同时到终点,不符合题意,故选B.【点睛】本题考查了函数图象,弄清题意,认真分析是解题的关键. 二.填空题11.3x-有意义的x的取值范围是__________.x≥【答案】3【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.x≥故答案为3【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;12.如图,AB ∥CD ,DE ∥CB ,∠B =35°,则∠D =_____°.【答案】145【解析】【分析】根据平行线的性质可得∠B=∠C=35°,再根据BC∥DE 可根据两直线平行,同旁内角互补可得答案.【详解】解:∵AB ∥CD ,∴∠C =∠B =35°.∵DE ∥CB ,∴∠D =180°﹣∠C =145°.故答案为:145.【点睛】此题考查了平行线的性质,解答关键是掌握两直线平行,同旁内角互补. 两直线平行,内错角相等.13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89.7,方差分别是2222.83, 1.71, 3.52,S S S ===甲乙丙你认为适合参加决赛的选手是_____.【答案】乙【解析】【分析】根据方差的定义,方差越小数据越稳定即可求解.【详解】∵2222.83, 1.71, 3.52,S S S ===甲乙丙而1.71<2.83 3.52<,∴乙的成绩最稳定,∴派乙去参赛更好,故答案为乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.如图,在△ABC 中,∠A =70°.按下列步骤作图:①分别以点B ,C 为圆心,适当长为半径画弧,分别交BA ,BC ,CA ,CB 于点D ,E ,F ,G ;②分别以点D ,E 为圆心,大于12DE 为半径画弧,两弧交于点M ;③分别以点F ,G 为圆心,大于12FG 为半径画弧,两弧交于点N ;④作射线BM 交射线CN 于点O .则∠BOC 的度数是_____.【答案】125°【解析】【分析】根据题意可知,尺规作图所作的是角平分线,再根据三角形内角和的性质问题可解.【详解】解:∵∠A =70°,∴∠ABC +∠ACB =180°﹣70°=110°,由作图可知OB 平分∠ABC ,CO 平分∠ACB ,∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB )=55°, ∴∠BOC =180°﹣(∠OBC +∠OCB )=125°,故答案为125°.【点睛】本题考查作图-基本作图,角平分线性质和三角形内角和的性质,解题的关键是熟练掌握基本知识.三.解答题15.(1)计算: 91175482324(2)计算: 22141(2)3293-- 【答案】(13(2)0【解析】【分析】(1)依次将各式化成最简二次根式,合并即可;(2)按照二次根式性质进行化简,再计算即可.【详解】解:(1)原式=2(2)原式=2×12﹣3+23×3=1﹣3+2=0.【点睛】本题考查了二次根式的混合加减运算以及实数的混合计算,解答关键是根据法则进行计算.16.(1)解方程组:320(1) 2313(2) x yx y+=⎧⎨-=⎩(2)解方程组:10(1)4()5(2) x yx y y--=⎧⎨--=⎩【答案】(1)23xy=⎧⎨=-⎩;(2)1xy=⎧⎨=-⎩【解析】【分析】(1)采用加减法求解消去y即可;(2)采用代入法消去x即可;【详解】解:(1)①×3+②×2得:13x=26,解得:x=2,把x=2代入①得:y=﹣3,则方程组的解为23 xy=⎧⎨=-⎩;(2)由①得:x﹣y=1③,把③代入②得:4﹣y=5,解得:y=﹣1,把y=﹣1代入③得:x=0,则方程组的解为1 xy=⎧⎨=-⎩.【点睛】本题考查了二元一次方程组的解法,解答关键是根据方程组中方程特点,灵活选用代入法或加减法求解.17.本学期初,某校为迎接中华人民共和国成立七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代“为主题的读书活动.德育处对八年级学生九月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,绘制了两幅不完整的统计图(如图所示).(1)请补全两幅统计图;本次所抽取学生九月份“读书量“的众数为本;(2)求本次所抽取学生九月份“读书量”的平均数;(3)已知该校八年级有500名学生,请你估计该校八年级学生中,九月份“读书量“为5本的学生人数.【答案】(1)3本;(2)3;(3)该校八年级学生中,九月份“读书量“为5本的学生人数有50人【解析】【分析】(1)根据统计图可知众数为3;(2)利用读书总量除以学生总数即得平均数;(3)根据百分比进行计算即可;【详解】解:(1)读4本的人数有:1830%×20%=12(人),读3本的人数所占的百分比是1﹣5%﹣10%﹣30%﹣20%=35%,补图如下:根据统计图可知众数为3本,故答案为:3本;(2)本次所抽取学生九月份“读书量”的平均数是:311822131246531821126⨯+⨯+⨯+⨯+⨯++++=3(本); (3)根据题意得:500×10%=50(本),答:该校八年级学生中,九月份“读书量“为5本的学生人数有50人.【点睛】本题是条形统计图和扇形统计图的综合运用.读懂统计图,解题关键是从不同的统计图中得到必要的信息.18.若买3根跳绳和6个毽子共72元;买1根跳绳和5个毽子共36元.(1)跳绳、毽子的单价各是多少元?(2)元旦促销期间,所有商品按同样的折数打折销售,买10根跳绳和10个毽子只需180元,问商品按原价的几折销售?【答案】(1)跳绳的单价为16元/条,毽子的单价5元/个;(2)该店的商品按原价的9折销售【解析】【分析】(1)利用设出跳绳的单价和毽子的单价用二元一次方程组解答即可;(2)设出打折数以总金额为等量列出方程即可.【详解】解:(1)设跳绳的单价为x 元/条,毽子的单价y 元/个,由题意可得:3672536x y x y +=⎧⎨+=⎩ 解得:164x y =⎧⎨=⎩答:跳绳的单价为16元/条,毽子的单价5元/个;(2)设该店的商品按原价的n 折销售,由题意可得(10×16+10×4)×n 10=180, ∴n =9,答:该店的商品按原价的9折销售.【点睛】本题考查二元一次方程组的应用问题,根据题意构造方程是解题关键.19.如图,一次函数y =kx +b 的图象经过点A (﹣2,6),与x 轴交于点B ,与正比例函数y =3x 的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式;(2)若点D 在y 轴负半轴,且满足S △COD =13S △BOC ,求点D 的坐标. 【答案】(1)y =﹣x +4;(2)D (0,﹣4)【解析】【分析】(1)先求得点C 的坐标,再根据待定系数法即可得到AB 的函数表达式;(2)设D (0,m )(m <0),依据S △COD =13S △BOC ,即可得出m=-4,进而得到D (0,-4). 【详解】解:(1)当x =1时,y =3x =3,∴C (1,3),将A (﹣2,6),C (1,3)代入y =kx +b ,得263k b k b -+=⎧⎨+=⎩, 解得14k b =-⎧⎨=⎩, ∴直线AB 的解析式是y =﹣x +4;(2)y =﹣x +4中,令y =0,则x =4,∴B (4,0),设D (0,m )(m <0),S △BOC =12×OB ×|y C |=1432⨯⨯=6, S △COD =12×OD ×|x C |=12|m |×1=﹣12m ,∵S△COD=13S△BOC,∴﹣12m=163⨯,解得m=﹣4,∴D(0,﹣4).【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题时注意利用待定系数法解题.20.我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.【答案】(1)见解析;(2)①见解析;②GE73【解析】【分析】(1)由垂美四边形得出AC⊥BD,则∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,即可得出结论;(2)①连接BG、CE相交于点N,CE交AB于点M,由正方形的性质得出AG=AC,AB=AE,∠CAG=∠BAE=90°,易求∠GAB=∠CAE,由SAS证得△GAB≌△CAE,得出∠ABG=∠AEC,由∠AEC+∠AME=90°,得出∠ABG+∠AME=90°,推出∠ABG+∠BMN=90°,即CE⊥BG,即可得出结论;②垂美四边形得出CG2+BE2=CB2+GE2,由勾股定理得出BC=22AB AC-=3,由正方形的性质得出2,2,则GE2=CG2+BE2-CB2=73,即可得出结果.【详解】(1)证明:∵垂美四边形ABCD的对角线AC,BD交于O,∴AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(2)①证明:连接BG、CE相交于点N,CE交AB于点M,如图2所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,AG ACGAB CAE AB AE=⎧⎪∠=∠⎨⎪=⎩,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形BCGE是垂美四边形;②解:∵四边形BCGE是垂美四边形,∴由(1)得:CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC3,∵正方形ACFG和正方形ABDE,∴CGAC=,BEAB=,∴GE2=CG2+BE2﹣CB2=()2+()2﹣32=73,∴GE【点睛】本题是四边形综合题,主要考查了新概念“垂美四边形”、勾股定理、正方形的性质、全等三角形的判定与性质等知识;正确理解新概念“垂美四边形”、证明三角形全等是解题的关键.四.填空题21.2x+(y﹣1)2=0,则(x+y)2020=_____.【答案】1【解析】【分析】利用偶次方的性质以及二次根式的性质得出x,y的值进而得出答案.x+(y﹣1)2=0,【详解】解:∵2∴x+2=0,y﹣1=0,解得:x=﹣2,y=1,则(x+y)2020=(﹣2+1)2020=1.故答案为:1.【点睛】本题考查了偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.22.若a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,则a﹣5b+3的立方根是_____.【答案】-3【解析】【分析】运用立方根和平方根和算术平方根的定义求解【详解】解:∵a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,∴a﹣b+6=4,2a+b﹣1=16,解得a=5,b=7,∴a﹣5b+3=5﹣35+3=﹣27,∴a﹣5b+3的立方根﹣3.故答案为:﹣3【点睛】本题考查了立方根和平方根和算术平方根,解题的关键是按照定义进行计算.23.七巧板被誉为“东方魔板”.小明利用七巧板(如图1)中各板块的边长之间的关系拼成一个凸六边形,则该凸六边形(如图2)的周长是_____.【答案】4+82【解析】【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【详解】解:如图所示:图形1:边长分别是:4,22,22;图形2:边长分别是:4,22,22;图形3:边长分别是:2,2,2;图形4:边长是:2;图形5:边长分别是:2,2,2;图形6:边长分别是:2,2;图形7:边长分别是:2,2,22;∴凸六边形的周长=2+2×22+2+2×4=4+82;故答案为:4+82.【点睛】本题考查了正方形的性质、勾股定理、等腰直角三角形的性质;熟练掌握正方形的性质,利用勾股定理进行计算是解题关键24.在8×8的格子纸上,1×1小方格的顶点叫做格点.△ABC的三个顶点都是格点(位置如图).若一个格点P使得△PBC与△P AC的面积相等,就称P点为“好点”.那么在这张格子纸上共有_____个“好点”.【答案】8【解析】【分析】要使△PBC与△PAC的面积相等,则P点到BC的距离必是P点到AC距离有2倍,通过观察便可确定P的所有位置,从而得出答案.【详解】解:∵AC=8,BC=4,∴当P到BCBC的距离是P点到AC的距离的2倍时,△PBC与△P AC的面积相等,满足这样的条件的P点共有如图所示的8个格点,∴在这张格子纸上共有8个“好点”.故答案:8.【点睛】本题考查了三角形的面积,识图能力,正确理解新定义,确定P到BC,BC的距离是P点到AC的距离的2倍是解题的关键.25.如图,直线y=2x﹣1分别交x,y轴于点A,B,点C在x轴的正半轴,且∠ABC=45°,则直线BC的函数表达式是_____.【答案】y =13x ﹣1 【解析】【分析】 过A 作AF⊥AB 交BC 于F ,过F 作FE⊥x 轴于E ,判定△ABO≌△FAE(AAS ),即可得出OB , OA 得到点F 坐标,从而得到直线BC 的函数表达式.【详解】解:∵一次函数y =2x ﹣1的图象分别交x 、y 轴于点A 、B ,∴令x =0,得y =﹣1;令y =0,则x =12, ∴A (12,0),B (0,﹣1), ∴OA =12,OB =1, 如图,过A 作AF ⊥AB 交BC 于F ,过F 作FE ⊥x 轴于E ,∵∠ABC =45°,∴△ABF 是等腰直角三角形,∴AB =AF ,∵∠OAB +∠ABO =∠OAB +∠EAF =90°,∴∠ABO =∠EAF ,∴△ABO ≌△F AE (AAS ),∴AE =OB =1,EF =OA =12, ∴F (32,﹣12), 设直线BC 的函数表达式为:y =kx +b ,则31221k b b ⎧+=-⎪⎨⎪=-⎩, 解得131k b ⎧=⎪⎨⎪=-⎩,∴直线BC 的函数表达式为:y =13x ﹣1, 故答案为:y =13x ﹣1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,解题关键是正确的作出辅助线构造全等三角形.五.解答题26.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【答案】(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.27.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.过射线AD上一点M作BM的垂线,交直线AC于点N.(1)如图1,点M在AD上,若∠N=15°,BC=3,则线段AM的长为;(2)如图2,点M在AD上,求证:BM=NM;(3)若点M在AD的延长线上,则AB,AM,AN之间有何数量关系?直接写出你的结论,不证明.【答案】(131;(2)见解析;(3)AB BE AB AN2+=+=.【解析】【分析】(1)证得∠ABM=15°,则∠MBD=30°,求出DM=1,则AM可求出;(2)过点M作AD的垂线交AB于点E,根据ASA可证明△BEM≌△NAM,得出BM=NM;(3)过点M作AD的垂线交AB于点E,同(2)可得△AEM为等腰直角三角形,证明△BEM≌△NAM,BE=AN,则问题可解;【详解】解:(1)∵∠N=15°,∠BMN=∠BAN=90°,∴∠ABM=15°,∵AB=AC,∠BAC=90°,AD⊥BC,∴∠ABC=∠C=45°,BD=CD,∴∠MBD=∠ABD﹣∠ABM=45°﹣15°=30°.∴DM 331=.∴3AM AD DM=-=1.31;(2)过点M作AD的垂线交AB于点E,∵∠BAC =90°,AB =AC ,AD ⊥BC ,∴∠NAB =90°,∠BAD =45°,∴∠AEM =90°﹣45°=45°∠BAD ,∴EM =AM ,∠BEM =135°,∵∠NAB =90°,∠BAD =45°,∴∠NAD =135°,∴∠BEM =∠NAD ,∵EM ⊥AD ,∴∠AMN +∠EMN =90°,∵MN ⊥BM ,∴∠BME +∠EMN =90°,∴∠BME =∠AMN ,在△BEM 和△NAM 中,BEH NAM BME AMN EM AM∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BEM ≌△NAM (ASA ),∴BM =NM ;(3)数量关系是:AB +AN 2AM .证明:过点M 作AD 的垂线交AB 于点E ,同(2)可得△AEM 为等腰直角三角形,∴∠E =45°,AM =EM ,∵∠AME =∠BMN =90°,∴∠BME =∠AMN ,在△BEM 和△NAM 中,AMN BME BEM MAN EH AM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEM ≌△NAM (AAS ),∴BE =AN , ∴AB BE AB AN 2+=+=AM .【点睛】本题考查的是全等三角形的判定与性质,直角三角形的性质,等腰直角三角形的判定与性质,解题关键是掌握全等三角形的判定定理.28.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T (x ,y )的纵坐标y 与横坐标x 的函数关系式:(3)若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.【答案】(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点, ∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x ﹣3=3y ﹣2,整理得,y =x ﹣13; (3)设点E 的坐标为(a ,a +2), 则点T 的坐标为(33a +,23a +), 当∠THD =90°时,点E 与点T 的横坐标相同, ∴33a +=a , 解得,a =32,此时点E的坐标为(32,72),当∠TDH=90°时,点T与点D的横坐标相同,∴33a=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(32,72)或(6,8)【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.。
人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题(本试卷共三大题,23小题,共4页;满分120分,考试时间120分钟)一、.填空题(共6小题,每小题3分,共18分)1.因式分解:2x 2﹣2=2.一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为.3.已知3x =5,9y =8,则3x ﹣2y =.4.二次三项式4x 2﹣(k ﹣3)x+9是完全平方式,则k 的值是.5.如图所示,在△ABC 中,BAC ∠=90°,ACB ∠=30°,AD BC⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC的长为.6.在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有个.二选择题:(本大题满分32分,共8小题,每题4分)7.数字0.0000036用科学记数法表示为()A .3.6×10﹣5B .3.6×10﹣6C .36×10﹣6D .0.36×10﹣58.甲骨文是中国的一种古代文字,又称“契文”、“甲骨卜辞”、“殷墟文字”或“龟甲兽骨文”,是汉字的早期形式,是现存中国王朝时期最古老的一种成熟文字,如图为甲骨文对照表中的部分内容,其中可以抽象为轴对称图形的甲骨文对应的汉字是()A .方B .雷C .罗D .安9.下列运算正确的是()A .326x x x =÷B .x x2121=-C .6234)2(x x =-D .63222a a a -=-10.关于x 的分式方程11--x m =2的解为正数,则m 的取值范围是()A .m >﹣1B .m≠1C .m >1且m≠﹣1D .m >﹣1且m≠111.已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=()A .29B .37C .21D .3312.如图,已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB的度数是()A .90°B .60°C .45°D .30°13.如图,MN 是等边三角形ABC 的一条对称轴,D 为AC 的中点,点P 是直线MN 上的一个动点,当PC+PD 最小时,∠PCD 的度数是()A .30°B .15°C .20°D .35°14.如图,在△ABC 中,AB =AC ,∠BAC =90∘,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,连接EF 交AP 于点G ,给出以下五个结论:①∠B =∠C =45∘;②AE =CF ,③AP =EF ,④△EPF 是等腰直角三角形,⑤四边形AEPF 的面积是△ABC 面积的一半。
最新人教版八年级上册数学期末考试试题(附答案)

最新人教版八年级上册数学期末考试试题(附答案)最新人教版八年级上册数学期末考试试题(附答案)考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷。
2.请将所有试题的解答都写在答题卷上。
3.全卷共五个大题,满分150分,时间120分钟。
一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上。
1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()A。
B。
C。
D。
2.使分式x-1有意义的x的取值范围是()A.x=1.B.x≠1.C.x=-1.D.x≠-1.3.计算:(-x)3·2x的结果是()A.-2x4B.-2x3C.2x4D.2x34.化简:=()-x-1x-1A.1.B.0.C.x。
D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11.B.12.C.13.D.11或136.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6.B.p=1,q=-6.C.p=1,q=6.D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有()①x2-y2-1x y x-y-1②x3x xx2 1③x-y x2-2xy y2④x2-9y2x3y x-3y 2A.1个B.2个C.3个D.4个.9.如图,在Rt△ABC中,∠A=90°,∠C=30°,∠ABC的平分线BD交AC于点D,若AD=3,则BD+AC=()A、10.B、15.C、20.D、30.10.XXX准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x套,根据题意可得方程为()A。
人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.数据0.00000011用科学记数法表示正确的是()A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯3.已知一个n 边形的内角和等于1800°,则n =()A .6B .8C .10D .124.下列运算中正确的是()A .235x y xy+=B .()3263x y x y =C .824x x x ÷=D .32622x x x ⋅=5.若216x ax -+是完全平方式,则a 的值等于()A .2B .4或4-C .2或2-D .8或8-6.若分式41x x +-的值为零,则x 的值是()A .4x =B .4x =-C .1x =D .1x =-7.下列四个图中,正确画出△ABC 中BC 边上的高是()A .B .C .D .8.已知三角形的两边长分别为4和9,则下列数据中,能作为第三边长的是()A .2B .3C .4D .99.如图,∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是()A .AC =ADB .AC =BC C .∠ABC =∠ABD D .∠BAC =∠BAD10.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A .2B .2.5或3.5C .3.5或4.5D .2或3.5或4.5二、填空题11.若点(),1A a 与点()3,B b -关于x 轴对称,则ab =__________.12.计算:22c a a bc⋅=_______.13.分解因式:2m m +=___________.14.使得分式263x x -+有意义的条件是________.15.计算:1022021-+=______16.如图,AB ,CD 相交于点E ,若ABC ADE △≌△,且点B 与点D 对应,点C 与点E 对应,28BAC ∠=︒,则B Ð的度数是_____°.17.如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_______________.18.如图,ABC DEF ≅ ,B 、E 、C 、F 在同一直线上,7BC =,4EC =,则CF 的长为___________.三、解答题19.化简:()()()331x x x x +---.20.解方程:132x x =-21.先化简22213111-+⎛⎫÷- ⎪-+⎝⎭x x x x ,再从-1,2,3三个数中选一个合适的数作为x 的值代入求值.22.如图,点B ,F ,C ,E 在一直线上,B E ∠=∠,BF EC =,AB DE =.求证://AC DF .23.如图,在Rt ABC 中,90B ∠=︒.(1)作AC 的垂直平分线ED ,交BC 于点E ,交AC 于点D (尺规作图,不写作法,保留作图痕迹);(2)当3AB =,5BC =时,求ABE △的周长.24.如图,在ABC 中,AB AC =,点D 在BC 边上,点E 在AC 边上,连接AD ,DE .已知12∠=∠,AD DE =.(1)求证:ABD DCE △△≌;(2)若2BD =,5CD =,求AE 的长.25.已知:在△ABC 中,AD 是BC 边上的高.(1)尺规作图:作∠BAC 的平分线AE ,交BC 于点E ;(2)在(1)的条件下:若∠ABC =105°,∠C =45°,求∠EAD 的度数.26.某服装店用960元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.()1该服装店第一次购买了此种服装多少件?()2两次出售服装共盈利多少元?27.如图,点D 在射线BC 上运动,ABC 与ADE 都是以点A 为直角顶点的等腰直角三角形.(1)在图1中证明:①ABD ACE △△≌;②EC BC ⊥;(2)如图2,当点D 在BC 的延长线上时,若6BC =,()6BD x x =>,CDE △的面积为y ,试求出y 与x 之间的关系式.参考答案1.B【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A.是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2.B【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000011=71.110-⨯,故选B .【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【分析】根据多边形的内角和公式,计算可得结论.【详解】解:∵(n ﹣2)×180=1800,∴n =12.故选:D .【点睛】本题考查了多边形的内角和,掌握多边形的内角和公式是解决本题的关键.4.B【分析】根据合并同类项、积的乘方、同底数幂的除法、单项式与单项式的乘法法则逐项分析即可.【详解】A.2x 与3y 不是同类项,不能合并,故不正确;B.()3263x y x y =,正确;C.826x x x ÷=,故不正确;D.32522x x x ⋅=,故不正确;故选B .【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.5.D【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定a 的值.【详解】解:∵x 2-ax+16=x 2-ax+42,∴-ax=±2•x•4,解得a=8或-8.故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.6.B【分析】根据分式的值为0的条件,即可求解.【详解】解:根据题意得:40x +=且10x -≠,解得:4x =-.故选:B【点睛】本题主要考查了分式的值为0的条件,熟练掌握分式的值为0的条件——分子等于0,且分母不等于0是解题的关键.7.C【分析】根据三角形的高的定义,即可判断,从三角形一个端点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称三角形这条边上的高.【详解】A 选项不是三角形的高,不符合题意;B 选项是AC 边上的高,不符合题意;C 选项是BC 边上的高,符合题意;D 选项不是三角形的高,不符合题意;故选C .【点睛】本题考查了三角形的高的定义,理解定义是解题的关键.8.D【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】解:设这个三角形的第三边为x .根据三角形的三边关系定理,得:9-4<x <9+4,解得5<x <13.故选:D .【点睛】本题考查了三角形的三边关系定理.掌握构成三角形的条件:两边之和>第三边,两边之差<第三边是解决问题的关键.9.A【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL 证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD 或AC=AD.【详解】解:需要添加条件为:BC=BD 或AC=AD,理由为:若添加的条件为:BC=BD在Rt △ABC 与Rt △ABD 中,BC BD AB AB=⎧⎨=⎩∴Rt △ABC ≌Rt △ABD(HL);若添加的条件为:AC=AD在Rt △ABC 与Rt △ABD 中,AC AD AB AB=⎧⎨=⎩∴Rt △ABC ≌Rt △ABD(HL).故选:A.【点睛】本题考查了利用HL 公理判定直角三角形全等,熟练运用HL 公理是解题的关键10.D【详解】解:∵Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,∴AB=2BC=4(cm ).∵BC=2cm ,D 为BC 的中点,动点E 以1cm/s 的速度从A 点出发,∴BD=12BC=1(cm ),BE=AB ﹣AE=4﹣t (cm ),若∠DBE=90°,∵∠ABC=60°,∴∠BDE=30°.∴BE=12BD=12(cm ).当A→B 时,t=4﹣0.5=3.5;当B→A 时,t=4+0.5=4.5.若∠EDB=90°时,∵∠ABC=60°,∴∠BED=30°.∴BE=2BD=2(cm ).当A→B 时,∴t=4﹣2=2;当B→A 时,t=4+2=6(舍去).综上可得:t 的值为2或3.5或4.5.故选D .11.3【分析】关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,先求出a 、b 的值,然后得到答案.【详解】解:∵点(),1A a 与点()3,B b -关于x 轴对称,∴3a =-,1b =-,∴3(1)3ab =-⨯-=;故答案为:3.【点睛】本题考查了关于x 轴对称点的坐标,解题的关键是掌握点的坐标的变化规律.12.acb【分析】分式的乘法法则:把分子的积作为积的分子,把分母的积作为积的分母,再约分即可.【详解】解:22,c a ac a bc b⋅=故答案为:ac b【点睛】本题考查的是分式的乘法运算,掌握“分式的乘法运算的运算法则”是解题的关键.13.(1)m m +【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式的技巧正确计算是解题关键.14.x≠﹣3【分析】根据分式有意义的条件可得:x+3≠0,再解即可.【详解】解:由题意得:x+3≠0,解得:x≠﹣3,故答案为:x≠﹣3.【点睛】本题考查了分式有意义的条件,熟知分母不为零是解题的关键.15.32##1.5【分析】根据负整指数幂和0次幂的运算法则计算即可.【详解】解:原式=112+=32故答案为:32【点睛】本题主要考查负整指数幂和0次幂的运算,掌握相关运算方法是解题的关键.16.48【分析】由题意知28AC AE B D DAE BAC =∠=∠∠=∠=︒,,,AEC ACE ∠=∠,由三角形的内角和定理得AEC ∠的值,三角形的外角的性质得D ∠,进而得到B Ð的值.【详解】解:∵ABC ADE△≌△∴28AC AE B D DAE BAC =∠=∠∠=∠=︒,,∴AEC ACE∠=∠∵++180AEC ACE BAC ∠∠∠=︒∴180762BAC AEC ︒-∠∠==︒∵AEC D DAE∠=∠+∠∴48D ∠=︒∴48B ∠=︒故答案为:48︒.【点睛】本题考查了三角形全等的性质,等边对等角,三角形的内角和定理,三角形外角的性质等知识.解题的关键在于对知识的灵活运用.17.8【分析】连接AD ,AM ,由EF 是线段AB 的垂直平分线,得到AM=BM ,则△BDM 的周长=BD+BM+DM=AM+DM+BD ,要想△BDM 的周长最小,即要使AM+DM 的值最小,故当A 、M 、D 三点共线时,AM+DM 最小,即为AD ,由此再根据三线合一定理求解即可.【详解】解:如图所示,连接AD ,AM ,∵EF 是线段AB 的垂直平分线,∴AM=BM ,∴△BDM 的周长=BD+BM+DM=AM+DM+BD ,∴要想△BDM 的周长最小,即要使AM+DM 的值最小,∴当A 、M 、D 三点共线时,AM+DM 最小,即为AD ,∵AB=AC ,D 为BC 的中点,∴AD ⊥BC ,122BD BC ==,∴1122ABC S AD BC =⋅=△,∴AD=6,∴△BDM 的周长最小值=AD+BD=8,故答案为:8.【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当A 、M 、D 三点共线时,AM+DM 最小,即为AD .18.3【分析】直接用全等三角形的性质可得CF=EF-CE=BC-CE ,然后进行求解即可;【详解】∵△ABC ≌△DEF ,∴BC=EF ,∵BC=7,EC=4,∴CF=7-4=3,故答案为:3.【点睛】本题考查了全等三角形的性质以及应用,正确理解全等三角形的性质是解题的关键.19.9x -【分析】由平方差公式、整式乘法、整式的加减运算进行化简,即可得到答案.【详解】解:()()()2233199x x x x x x x x +---=--+=-.【点睛】本题考查了整式的混合运算,解题的关键是掌握运算法则,正确的进行化简.20.1x =-【分析】方程两边同乘以()2x x -,将分式方程化为整式方程,再解一元一次方程,最后要检验.【详解】解:方程两边同乘()2x x -,得23x x -=,移项及合并同类项,得22x =-,系数化为1,得1x =-,经检验,1x =-是原分式方程的解,∴原分式方程的解是1x =-.【点睛】本题考查解分式方程,是重要考点,掌握相关知识是解题关键.21.12x x --,2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可.【详解】解:原式=2(1)13()(1)(1)11x x x x x x -+÷-+-++=1211x x x x --÷++=1112x x x x -+⋅+-=12x x --,∵x≠±1且x≠2,∴x=3,则原式=3132--=2.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.22.见详解【分析】由题意易得BC EF =,然后可根据“SAS”证明三角形全等,进而根据全等三角形的性质可求证.【详解】证明:∵BF EC =,CF CF =,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌,∴ACB DFE ∠=∠,∴//AC DF .23.(1)见解析(2)8【分析】(1)利用基本作图作DE 垂直平分AC ;(2)根据线段垂直平分线的性质得到EA=EC ,然后利用等线段代换得到△ABE 的周长=AB+BC .(1)解:如图,ED为所作;(2)解:∵DE 垂直平分AC ,∴EA=EC ,∴△ABE 的周长=AB+BE+AE=AB+BE+EC=AB+BC=3+5=8.【点睛】本题考查了作图——基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.24.(1)见解析(2)3【分析】(1)根据AAS 可证明ABD DCE ≌△△.(2)根据ABD DCE ≌△△,得出AB =DC =5,CE =BD =3,求出AC =5,则AE 可求出.(1)证明:∵AB AC =,∴B C ∠=∠.又∵12∠=∠,AD DE =,∴ABD DCE ≌△△(AAS ).(2)解:∵ABD DCE ≌△△,∴5AB DC ==,2CE BD ==.∵AC AB =,∴5AC =.∴523AE AB EC =-=-=.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.25.(1)作图见解析;(2)30.︒【分析】(1)以A 为圆心,任意长为半径画弧,得与,AB AC 的两个交点,再分别以这两个交点为圆心,大于这两个交点间的距离的一半为半径画弧,得两弧的交点,以A 为端点,过两弧的交点作射线AE 交BC 于E ,即可得到答案;(2)根据三角形的内角和定理求解BAC ∠,再利用角平分线的定义求解BAE ∠,再利用三角形的高的含义与外角的性质求解BAD ∠,最后利用角的和差关系可得答案.【详解】解:(1)如图,射线AE 即为所求,(2)10545ABC C ∠=︒∠=︒ ,,1801054530BAC ∴∠=︒-︒-︒=︒,AE ∵平分BAC ∠,1152EAB BAC ∴∠=∠=︒,105ABC AD ∠=︒ ,为高,1059015BAD ABC ADC ∴∠=∠-∠=︒-︒=︒,151530.EAD EAB BAD ∴∠=∠+∠=︒+︒=︒【点睛】本题考查的是三角形的高的含义,角平分线的定义与作图,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.26.(1)该服装店第一次购买了此种服装30件;(2)两次出售服装共盈利960元【分析】(1)设该服装店第一次购买了此种服装x 件,则第二次购进2x 件,根据单价总价数量结合第二次购进单价比第一次贵5元,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据销售单价x 销售数量两次进货总价利润,即可求出结论.【详解】解:()1设该服装店第一次购买了此种服装x 件,则第二次购进2x 件,根据题意得:222096052x x-=,解得:x 30=,经检验,x 30=是原方程的根,且符合题意.答:该服装店第一次购买了此种服装30件.()()246303029602220960(⨯+⨯--=元).答:两次出售服装共盈利960元.【点睛】本题考查分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量间的关系,列式计算.27.(1)①证明见解析;②证明见解析(2)213(6)2y x x x =->【分析】(1)①由等腰直角三角形的性质得:90BAC ∠=︒,90DAE ∠=︒,AB AC =,AD AE =,和同角的余角相等可证BAD CAE ∠=∠,继而利用边角边可证得ABD ACE △△≌②根据全等三角形的性质和等腰三角形的性质可证(2)证明ABD ∆≌ACE ,根据全等三角形的性质得到BD EC =,45ACE B ∠=∠=︒,根据三角形的面积公式,求出y 与x 之间的关系式.(1)证明:①ABC ∆ 与ADE ∆都是以点A 为直角顶点的等腰直角三角形90BAC ∴∠=︒,90DAE ∠=︒,AB AC =,AD AE =90BAD DAC CAE DAC ∴∠+∠=∠+∠=︒BAD CAE∴∠=∠又AB AC = ,AD AE=ABD ∴∆≌()ACE SAS ∆②ABD ∆ ≌ACE ∆,45ACE B ∴∠=∠=︒.45ACB =︒∠ ,90ECD ∴∠=︒,EC BC ∴⊥;(2)解:90BAD DAC CAE DAC ∠-∠=∠-∠=︒ BAD CAE∴∠=∠又AB AC = ,AD AE=ABD ∴∆≌()ACE SAS ∆BD EC ∴=,45ACE B ∠=∠=︒45ACB =︒∠ 90ECD ∴∠=︒EC BC∴⊥12ECD S CD EC∆∴=⋅211(6)3(6)22y x x x x x ∴=-⋅=->.。
人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试题一、单选题(每小题3分,共30分;每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2,2,4B.3,4,5C.1,2,3D.2,3,63.下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3 4.如图,∠1=()A.40°B.50°C.60°D.70°5.下列各组图形中,AD是△ABC的高的图形是()A.B.C.D.6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC 7.化简的结果是()A.﹣x B.x C.x﹣1D.x+18.下列多项式乘法中可以用平方差公式计算的是()A.(2x+y)(y﹣2x)B.(x+2)(2+x)C.(﹣a+b)(a﹣b)D.(x﹣2)(x+1)9.如图,AD⊥BC,垂足为D,BF⊥AC,垂足为F,AD与BF交于点E,AD=BD=5,DC=2,则AE的长为()A.2B.5C.3D.710.如图,设△ABC和△CDE都是正三角形,且∠EBD=62°,则∠AEB的度数是()A.124°B.122°C.120°D.118°二、填空题(每题3分,满分18分,将答案填在答题纸上)11.若分式的值为0,则x的值为.12.DNA分子直径为0.00000069cm,这个数可以表示为6.9×10n,其中n=.13.计算:3a4•(﹣2a)=.14.如果一个正n边形的每一个外角都是72°,那么n=.15.如图,△ABC中,∠C=90°,AD平分∠CAB,且BC=12,BD=8,则点D到AB的距离为.16.如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A6的横坐标是.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.化简:a(a﹣2)﹣(a﹣1)2.18.因式分解:am2﹣6ma+9a.19.解方程:=﹣1.20.如图,(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使△PAB周长最短.只需作图,保留作图痕迹.21.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.22.为了抗击疫情,支援武汉一线,某工厂接到上级下达赶制60万只医用一次性口罩的任务,为使医用一次性口罩早日到达防疫一线,开工后每天加工口罩的数量是原计划的1.5倍,结果提前5天完成任务,则该厂原计划每天加工多少万只医用一次性口罩?23.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线对称,进而判断得出答案.【解答】解:B、C、D都是轴对称图形,A不是轴对称图形,故选:A.2.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2,2,4B.3,4,5C.1,2,3D.2,3,6【分析】根据三角形的任意两边之和大于第三边,对各选项分析判断后利用排除法求解.【解答】解:A、2+2=4,不能组成三角形,故本选项不符合题意;B、3+4=7>5,能组成三角形,故本选项符合题意;C、1+2=3,不能组成三角形,故本选项不符合题意;D、2+3=5<6,不能组成三角形,故本选项不符合题意.故选:B.3.下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.4.如图,∠1=()A.40°B.50°C.60°D.70°【分析】根据三角形的外角的性质计算即可.【解答】解:∠1=130°﹣60°=70°,故选:D.5.下列各组图形中,AD是△ABC的高的图形是()A.B.C.D.【分析】根据过三角形的顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:△ABC的高AD是过顶点A与BC垂直的线段,只有D选项符合.故选:D.6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.7.化简的结果是()A.﹣x B.x C.x﹣1D.x+1【分析】根据分式的运算法则即可求出答案.【解答】解:原式===x,故选:B.8.下列多项式乘法中可以用平方差公式计算的是()A.(2x+y)(y﹣2x)B.(x+2)(2+x)C.(﹣a+b)(a﹣b)D.(x﹣2)(x+1)【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,由此进行判断即可.【解答】解:A、(2x+y)(y﹣2x),能用平方差公式进行计算,故本选项符合题意;B、(x+2)(2+x),不能用平方差公式进行计算,故本选项不符合题意;C、(﹣a+b)(a﹣b),不能用平方差公式进行计算,故本选项不符合题意;D、(x﹣2)(x+1)不能用平方差公式进行计算,故本选项不符合题意;故选:A.9.如图,AD⊥BC,垂足为D,BF⊥AC,垂足为F,AD与BF交于点E,AD=BD=5,DC=2,则AE的长为()A.2B.5C.3D.7【分析】由“SAS”可证△DBE≌△DAC,可得CD=DE=2,即可求解.【解答】解:∵AD⊥BC,BF⊥AC,∴∠ADC=∠ADB=∠BFC=90°,∴∠C+∠DAC=90°=∠C+∠DBF,∴∠DAC=∠DBF,在△DBE和△DAC中,,∴△DBE≌△DAC(SAS),∴CD=DE=2,∴AE=AD﹣DE=3,故选:C.10.如图,设△ABC和△CDE都是正三角形,且∠EBD=62°,则∠AEB的度数是()A.124°B.122°C.120°D.118°【分析】由题中条件,可得△ACE≌△BCD,得出∠DBC=∠CAE,进而再通过角之间的转化,可最终求解出结论.【解答】解:∵△ABC和△CDE都是正三角形,∴AC=BC,CE=CD,∠ACB=∠ECD =60°,又∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,∴∠BCD=∠ACE,△ACE≌△BCD,∴∠DBC=∠CAE,即62°﹣∠EBC=60°﹣∠BAE,即62°﹣(60°﹣∠ABE)=60°﹣∠BAE,∴∠ABE+∠BAE=60°+60°﹣62°=58°,∴∠AEB=180°﹣(∠ABE+∠BAE)=180°﹣58°=122°.故选:B.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.若分式的值为0,则x的值为﹣3.【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:由题意,知x+3=0且x﹣1≠0.解得x=﹣3.故答案是:﹣3.12.DNA分子直径为0.00000069cm,这个数可以表示为6.9×10n,其中n=﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000069=6.9×10﹣7,则n=﹣7.故答案为:﹣7.13.计算:3a4•(﹣2a)=﹣6a5.【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:3a4•(﹣2a)=﹣6a5.故答案为:﹣6a5.14.如果一个正n边形的每一个外角都是72°,那么n=5.【分析】根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.【解答】解:n=360°÷72°=5.故答案为:5.15.如图,△ABC中,∠C=90°,AD平分∠CAB,且BC=12,BD=8,则点D到AB的距离为4.【分析】过D作DE⊥AB于E,根据角平分线性质得出CD=DE,求出CD长即可.【解答】解:如图,过点D作DE⊥AB于E.∵BC=12,BD=8,∴CD=BC﹣BD=4.又∵∠C=90°,AD平分∠BAC交BC于点D,∴DE=CD=4.故答案为:4.16.如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A6的横坐标是31.5.【分析】观察图形,找到图形变化的规律,利用规律求解即可.【解答】解:∵OB1=1,∠ODB1=60°,∴OD==,B1(1,0),∠OB1D=30°,∴D(0,﹣),如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A6的横坐标是=31.5,故答案为:31.5.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.化简:a(a﹣2)﹣(a﹣1)2.【分析】直接利用完全平方公式以及单项式乘多项式计算得出答案.【解答】解:原式=a2﹣2a﹣(a2﹣2a+1)=a2﹣2a﹣a2+2a﹣1=﹣1.18.因式分解:am2﹣6ma+9a.【分析】先提公因式,然后利用公式法分解因式.【解答】解:原式=a(m2﹣6m+9)=a(m﹣3)2.19.解方程:=﹣1.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边同时乘以(x﹣2)得,x﹣3=﹣3﹣(x﹣2),2x=4,x=2.检验:当x=2时,x﹣3≠0,故x=2是原分式方程的解.20.如图,(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使△PAB周长最短.只需作图,保留作图痕迹.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可,写出各个点的坐标即可.(3)连接BA1交Y轴于点P,连接AP,点P即为所求.【解答】解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C2的即为所求作.A2(﹣3,﹣2)、B2(﹣4,3)、C2(﹣1,﹣1).(3)如图,点P即为所求作.21.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【分析】根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC =∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可,利用全等三角形的性质进行解答.【解答】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.22.为了抗击疫情,支援武汉一线,某工厂接到上级下达赶制60万只医用一次性口罩的任务,为使医用一次性口罩早日到达防疫一线,开工后每天加工口罩的数量是原计划的1.5倍,结果提前5天完成任务,则该厂原计划每天加工多少万只医用一次性口罩?【分析】设该厂原计划每天加工x万只医用一次性口罩,则实际每天加工1.5x万只医用一次性口罩,根据工作时间=工作总量÷工作效率结合实际比原计划提前5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该厂原计划每天加工x万只医用一次性口罩,则实际每天加工1.5x万只医用一次性口罩,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该厂原计划每天加工4万只医用一次性口罩.23.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.【分析】(1)由点N运动路程=点M运动路程+AB间的路程,列出方程求解,捷克得出结论;(2)由等边三角形的性质可得AN=AM,可列方程求解,即可得出结论;(3)由全等三角形的性质可得CM=BN,可列方程求解,即可得出结论.【解答】解:(1)设运动t秒,M、N两点重合,根据题意得:2t﹣t=15,∴t=15,答:点M,N运动15秒后,M、N两点重合;(2)如图1,设点M、N运动x秒后,△AMN为等边三角形,∴AN=AM,由运动知,AN=15﹣2x,AM=x,∴15﹣2x=x,解得:x=5,∴点M、N运动5秒后,△AMN是等边三角形;(3)假设存在,如图2,设M、N运动y秒后,得到以MN为底边的等腰三角形AMN,∴AM=AN,∴∠AMN=∠ANM,∵△ABC是等边三角形,∴AB=AC,∠C=∠B=60°,∴△ACN≌△ABM(AAS),∴CN=BM,∴CM=BN,由运动知,CM=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M,N 运动的时间为20秒.。
人教版数学八年级上册《期末测试卷》及答案解析

八年级上学期数学期末测试卷一、选择题1.下列交通标志图案是轴对称图形的是( ) A. B. C. D.2.分式11x -有意义时x 的取值范围是( ) A. x ≠1 B. x >1 C. x ≥1 D. x <13.下列计算正确的是( )A. 3332b b b =B. (x +2)(x —2)=x 2—2C. (a+b ) 2=a 2+ b 2D. (-2a ) 2=4a 2 4.在平面直角坐标系中,点(2,3)关于y 轴对称的点的坐标是( )A. (﹣2,﹣3)B. (2,﹣3)C. (﹣2,3)D. (2,3)5.在△ABC 和△DEF 中,已知AB=DE ,∠B=∠E ,增加下列条件后,不能判定△ABC ≌△DEF 的是( )A. BC EF =B. AC DF =C. A D ∠∠=D. C F ∠∠= 6.下列因式分解正确的是( )A. x 2+2x+1=x(x+2)+1B. (x 2-4)x=x 3-4xC. ax+bx=(a+b)xD. m 2-2mn+n 2=(m+n)2 7.等腰三角形的一边长是5,另一边长是10,则周长为( )A. 15B. 20C. 20或25D. 258.如图,点P 是∠AOB 平分线OC 上一点,PD ⊥OB ,垂足为D ,若PD =3,则点P 到边OA 的距离是( )A. 1B. 2C. 3D. 49.甲乙两地相距420千米,新修高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x 千米/时,可列方程为( )A. 42042021.5x x+= B.42042021.5x x -= C. 1.514204202x x += D. 1.514204202x x -= 10.已知关于x 的多项式24x mx -++的最大值为5,则m 的值可能为( )A. 1B. 2C. 4D. 5二、填空题11.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为_______ 米. 12.若n 边形的每一个外角都是72°,则边数n 为_____.13.已知25,23m n ==,则+2m n =__________.14.如图,△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交BC 于D ,交AB 于E .若BD +AC =3a ,则AC =_________.(用含a 的式子表示)15.若a -b =3,ab =1,则a 2+b 2=______.16.如图,在△ABC 中,AB =AC ,∠ABM =∠CBN ,MN =BN ,则∠MBC 的度数为_________°.三、解答题17.(1)计算:()()10211222--⎛⎫++--- ⎪⎝⎭; (2)因式分解:3mx 2-3my 2.18.先化简,再求值:223211(1)131x x x x x x -++⋅-+---,其中x=2. 19.如图,已知点B 、E 、C 、F同一条直线上,AB ∥DE, AC ∥DF, BE =CF.求证: AC =DF.20.△ABC 在平面直角坐标系中的位置如图所示,其中A (0,4),B(-2,2),C((-1,1),先将△ABC 向右平移3个单位,再向下平移1个单位到△A 1B 1C 1,△A 1B 1C 1和△A 2B 2C 2关于x 轴对称.(1)画出△A 1B 1C 1和△A 2B 2C 2,并写出A 2,B 2,C 2的坐标;(2)在x 轴上确定一点P ,使BP +A 1P 的值最小,请在图中画出点P ;(3)点Q 在y 轴上且满足△ACQ 为等腰三角形,则这样的Q 点有 个.四、解答题 21.某市为节约水资源,从2018年1月1日起调整居民用水价格,每立方米水费比2017年上涨29.小明家2017年8月的水费是18元,而2018年8月的水费是33元.已知小明家2018年8月的用水量比2017年8月的用水量多5 m 3.(1)求该市2017年居民用水的价格;(2)小明家2019年8月用水量比2018年8月份用水量多了20%,求小明家2019年8月份的水费.22.因为()()2632x x x x +-=+-,令26x x +-=0,则(x+3)(x-2)=0,x=-3或x=2,反过来,x =2能使多项式26x x +-的值为0.利用上述阅读材料求解:(1)若x ﹣4是多项式x 2+mx+8的一个因式,求m 的值;(2)若(x ﹣1)和(x+2)是多项式325x ax x b +-+的两个因式,试求a,b 的值;(3)在(2)的条件下,把多项式325x ax x b +-+因式分解的结果为 .23.如图,在等腰△ABC 中,AC =BC ,D ,E 分别为AB ,BC 上一点,∠CDE =∠A .(1)如图1,若BC =BD ,∠ACB =90°,则∠DEC 度数为_________°;(2)如图2,若BC =BD ,求证:CD =DE ; (3)如图3,过点C 作CH ⊥DE ,垂足为H ,若CD =BD ,EH =1,求DE -BE 的值.五、解答题24.阅读材料:若22228160m mn n n -+-+=,求,m n 的值.解:∵22228160m mn n n -+-+=,∴222(2)8160m mn n n n -++-+=(),22()(4)0m n n +--=,∴2()0m n -=,2(4)0n -=,∴4,4n m ==.根据你的观察,探究下面的问题:(1)已知2222690x xy y y -+++=,求xy 的值;(2)已知△ABC 的三边长,,a b c ,且满足221012610a b a b +--+=,求c 的取值范围;(3)已知22413P x y =++,2261Q x y x =-+-,比较,P Q 的大小.25.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.26.如图1,在平面直角坐标系中,点A(0,3),点B(-1,0),点D(2,0),DE⊥x轴且∠BED=∠ABD,延长AE交x轴于点F.(1)求证:∠BAE=∠BEA;(2)求点F的坐标;(3)如图2,若点Q(m,-1)在第四象限,点M在y轴的正半轴上,∠MEQ=∠OAF,设AM-MQ=n,求m与n的数量关系,并证明.答案与解析一、选择题1.下列交通标志图案是轴对称图形的是( ) A.B. C. D. 【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解即可;【详解】解:选项A 中,没有对称轴,不是轴对称图形,故选项A 错误;选项B 中,有对称轴,是轴对称图形,故选项B 正确;选项C 中,没有对称轴,不是轴对称图形,故选项C 错误;选项D 中,没有对称轴,不是轴对称图形,故选项D 错误;故选B.【点睛】本题主要考查了轴对称图形的概念,掌握轴对称图形的概念是解题的关键.2.分式11x -有意义时x 的取值范围是( ) A. x ≠1B. x >1C. x ≥1D. x <1 【答案】A【解析】试题解析:根据题意得:x −1≠0,解得:x ≠1.故选A.点睛:分式有意义的条件:分母不为零.3.下列计算正确的是( )A. 3332b b b =B. (x +2)(x —2)=x 2—2C. (a+b ) 2=a 2+ b 2D. (-2a ) 2=4a 2【答案】D【解析】【分析】分别根据同底数幂乘法、积的乘方、平方差公式、完全平方公式,对各选项计算后利用排除法求解. 详解】解:A.336b b b =,故A 选项不正确;B. (x +2)(x —2)=x 2-4,故B 选项不正确;C. (a+b ) 2=a 2+ b 2+2ab,故C 选项不正确;D. (-2a ) 2=4a 2,故D 选项正确.故选D【点睛】本题考查了整式乘法,熟练掌握运算性质是解题的关键.4.在平面直角坐标系中,点(2,3)关于y 轴对称的点的坐标是( )A. (﹣2,﹣3)B. (2,﹣3)C. (﹣2,3)D. (2,3)【答案】C【解析】【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(﹣x ,y ),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y 轴对称的点的坐标是(﹣2,3).故选C .【点睛】本题考查关于x 轴、y 轴对称的点的坐标,利用数形结合思想解题是关键.5.在△ABC 和△DEF 中,已知AB=DE ,∠B=∠E ,增加下列条件后,不能判定△ABC ≌△DEF 的是( )A. BC EF =B. AC DF =C. A D ∠∠=D. C F ∠∠= 【答案】B【解析】【分析】全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,根据以上判定定理判断即可.【详解】如图,A 、根据SAS 能推出△ABC ≌△DEF ,故本选项错误;B 、根据AB=DE ,∠B=∠E ,AC=DF ,不能推出△ABC ≌△DEF ,故本选项正确;C 、根据ASA 能推出△ABC ≌△DEF ,故本选项错误;D 、根据AAS 能推出△ABC ≌△DEF ,故本选项错误.故选B .【点睛】本题考查了对全等三角形的判定定理的应用,题目较好,但是一道比较容易出错的题目.6.下列因式分解正确的是()A. x2+2x+1=x(x+2)+1B. (x2-4)x=x3-4xC. ax+bx=(a+b)xD. m2-2mn+n2=(m+n)2【答案】C【解析】【分析】直接利用因式分解法的定义以及提取公因式法和公式法分解因式得出即可.【详解】解:A、x2+2x+1=x(x+2)+1,不是因式分解,故此选项错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故此选项错误;C、ax+bx=(a+b)x,是因式分解,故此选项正确;D、m2﹣2mn+n2=(m﹣n)2,故此选项错误.故选C.【点睛】此题主要考查了提取公因式法和公式法分解因式等知识,正确把握因式分解的方法是解题关键.7.等腰三角形的一边长是5,另一边长是10,则周长为()A. 15B. 20C. 20或25D. 25【答案】D【解析】【分析】由于没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选D.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.8.如图,点P是∠AOB 平分线OC上一点,PD⊥OB,垂足为D,若PD=3,则点P到边OA的距离是()A. 1B. 2C. 3D. 4【答案】C【解析】作PE⊥OA于E,根据角平分线的性质解答.【详解】解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=3,故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. 42042021.5x x+= B.42042021.5x x-=C.1.514204202x x+= D.1.514204202x x-=【答案】B【解析】【分析】设原来的平均速度为x千米/时,高速公路开通后的平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.【详解】解:设原来的平均速度为x千米/时,由题意得,42042021.5x x-=,故选:B.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.已知关于x的多项式24x mx-++的最大值为5,则m的值可能为()A. 1B. 2C. 4D. 5【答案】B【解析】利用配方法将24x mx -++进行配方,即可得出答案. 【详解】解:22244,24m m x mx x ⎛⎫-++=--++ ⎪⎝⎭ 故245,4m += 解得: 2.m =±故选B.【点睛】本题考查了配方法的运用,掌握配方法是解题的关键.二、填空题11.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为_______ 米.【答案】3.4×10-6 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000034=3.4×10-6, 故答案为:3.4×10-6. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若n 边形的每一个外角都是72°,则边数n 为_____.【答案】5【解析】试题分析:n 边形的每一个外角都是72°,由多边形外角和是360°,可求得多边形的边数是5.13.已知25,23m n ==,则+2m n =__________.【答案】15【解析】【分析】逆用同底数幂的乘法法则,即a m+n =a m ·a n 解答即可.【详解】解:∵2m=5,2n=3,∴2m+n=2m•2n=5×3=15.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆运用,灵活运用公式是解题的关键.14.如图,△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,交AB于E.若BD+AC=3a,则AC=_________.(用含a的式子表示)【答案】a【解析】【分析】利用线段垂直平分线的性质得出AD=BD,然后根据三角形的外角的性质求得∠ADC=30°,最后由直角三角形中的30°角所对的直角边是斜边的一半可求出AC的长度.【详解】解:连接AD.∵AB的垂直平分线交BC于D,交AB于E,∴AD=BD,∴∠B=∠BAD=15°.∴∠ADC=30°,又∠C=90°,∴AC=12AD=12BD=12(3a-AC),∴AC=a.故答案为:a.【点睛】本题考查了线段垂直平分线的性质以及含30°的直角三角形的性质,正确作出辅助线是解题的关键.15.若a-b=3,ab=1,则a2+b2=______.【答案】11.【解析】【分析】根据题意,把a-b=3两边同时平方可得,a2-2ab+b2=9,结合题意,将a2+b2看成整体,求解即可.【详解】∵a-b=3,ab=1,∴(a-b)2=a2-2ab+b2=9,∴a2+b2=9+2ab=9+2=11.故答案为11.【点睛】本题考查对完全平方公式的变形应用能力.16.如图,在△ABC中,AB=AC,∠ABM=∠CBN,MN=BN,则∠MBC的度数为_________°.【答案】60【解析】【分析】可设∠ABM=∠CBN=α,∠MBN=∠BMN=β,利用三角形外角的性质,得出β=α+∠A,而∠C=∠ABC=2α+β,结合三角形内角和定理可求出β+α=60°,即可得出∠MBC的度数.【详解】解:设∠ABM=∠CBN=α,∵BN=MN,可设∠MBN=∠BMN=β,∵∠BMN是△ABM的外角,∴∠BMN=α+∠A,即β=α+∠A,∴∠A=β-α,∵AB=AC,∴∠ABC=∠C=2α+β,∵∠A+∠B+∠C=180°,∴β-α+2(2α+β)=180°,∴β+α=60°,∴∠MBC=β+α=60°.故答案为:60.【点睛】本题利用了三角形内角和定理、等腰三角形的性质、三角形外角的性质.注意解此题可设出未知数,表示角的时候比较容易计算.三、解答题17.(1)计算:(()1021122--⎛⎫+--- ⎪⎝⎭; (2)因式分解:3mx 2-3my 2.【答案】(1)54-;(2)3m(x+y)(x-y); 【解析】【分析】(1)先根据整数指数幂的运算法则计算,再根据有理数的加减运算即可;(2)先提公因式3m ,再利用平方差公式因式分解即可.【详解】解:(1)(()1021122--⎛⎫+--- ⎪⎝⎭=1+(-2)-14=54-; (2)3mx 2-3my 2=3m(x 2-y 2)=3m(x+y)(x-y).【点睛】本题考查了整数指数幂的运算以及因式分解,掌握基本运算法则和公式是解题的关键.18.先化简,再求值:223211(1)131x x x x x x -++⋅-+---,其中x=2. 【答案】11x -;1 【解析】【分析】先因式分解,再约分,化简,代入求值.【详解】解:原式=()()()2131111311x x x x x x x x +--⎛⎫⋅-+ ⎪+----⎝⎭ =111x x x x +--- =11x - 当x =2时,原式=1121=- 【点睛】本题考查分式计算题,一般需要熟练掌握因式分解,通分,约分的技巧.(1)因式分解一般方法:提取公因式:()ma mb mc m a b c ++=++;公式法:()()22a b a b a b -=+-, (平方差公式);()2222?a ab b a b ±+=±, (完全平方公式);十字相乘法:(x+a )(a+b )=()2x a b x ab +++ . (2)分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.(3)通分:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.(4)易错示例:1+111a aaa a a+=+=;22111aa aa a a a++=+=.19.如图,已知点B、E、C、F在同一条直线上,AB∥DE, AC∥DF, BE=CF.求证:AC=DF.【答案】证明见解析【解析】【分析】根据平行线的性质可得∠B=∠DEF,∠ACB=∠F,由BE=CF可得BC=EF,运用ASA证明△ABC与△DEF 全等,从而可得出结果.【详解】证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,∵AB∥DE,∴∠DEF=∠B,∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,=B DEFBC EFACB F∠∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF (ASA),∴AC=DF.【点睛】此题考查了全等三角形的判定与性质,证明线段相等,通常证明它们所在的三角形全等.20.△ABC在平面直角坐标系中的位置如图所示,其中A(0,4),B(-2,2),C((-1,1),先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称.(1)画出△A1B1C1和△A2B2C2,并写出A2,B2,C2的坐标;(2)在x轴上确定一点P,使BP+A1P的值最小,请在图中画出点P;(3)点Q在y轴上且满足△ACQ为等腰三角形,则这样的Q点有个.【答案】(1)作图见解析,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);(2)见解析;(3)4.【解析】【分析】(1)△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称,根据平移的性质和轴对称的性质先找出对应顶点的坐标,顺次连接即可;(2)依据轴对称的性质,连接BA2,交x轴于点P,此时BP+A1P的值最小;(3)在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,即可得到Q点的数量.【详解】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求,根据图形可得,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);(2)如图所示,连接BA2,交x轴于点P,则点P即为所求;(3)根据点Q在y轴上且满足△ACQ为等腰三角形,在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,可得这样的Q点有4个.故答案为:4.【点睛】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,多数情况要作点关于某直线的对称点.四、解答题21.某市为节约水资源,从2018年1月1日起调整居民用水价格,每立方米水费比2017年上涨29.小明家2017年8月的水费是18元,而2018年8月的水费是33元.已知小明家2018年8月的用水量比2017年8月的用水量多5 m3.(1)求该市2017年居民用水的价格;(2)小明家2019年8月用水量比2018年8月份用水量多了20%,求小明家2019年8月份的水费.【答案】(1)该市2017年的用水价格为每立方米95元;(2)小明家2019年8月的水费为39.6元.【解析】【分析】(1)设该市2017年居民用水价格为每立方米x元,则2018年的用水价格为每立方米(1+29)x元,结合水费再分别表示出用水量,根据用水量之间的关系列方程求解;(2)根据2018年8月的水费以及2019年8月用水量比2018年8月份用水量多20%,可得出2019年8月的水费.【详解】解:(1)设该市2017年居民用水价格为每立方米x元,则2018年的用水价格为每立方米(1+29)x元,根据题意得,1833+5=2(1+)9x x ,解得95x =, 经检验,95x =是原方程的解. 答:该市2017年的用水价格为每立方米95元; (2)根据题意得,小明家2019年8月用水量比2018年8月份用水量多了20%,则2019年8月的水费比2018年8月的水费多20%,则33×(1+20%)=39.6(元).答:小明家2019年8月份的水费为39.6元.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意解分式方程必须检验.22.因为()()2632x x x x +-=+-,令26x x +-=0,则(x+3)(x-2)=0,x=-3或x=2,反过来,x =2能使多项式26x x +-的值为0.利用上述阅读材料求解:(1)若x ﹣4是多项式x 2+mx+8的一个因式,求m 的值;(2)若(x ﹣1)和(x+2)是多项式325x ax x b +-+的两个因式,试求a,b 的值;(3)在(2)的条件下,把多项式325x ax x b +-+因式分解的结果为 .【答案】(1)m=-6;(2)26a b =-⎧⎨=⎩;(3)(x-1)(x+2)(x-3) 【解析】【分析】(1)由已知条件可知,当x=4时,x 2+mx+8=0,将x 的值代入即可求得;(2)由题意可知,x=1和x=-2时,x 3+ax 2-5x+b=0,由此得二元一次方程组,从而可求得a 和b 的值; (3)将(2)中a 和b 的值代入x 3+ax 2-5x+b ,则由题意知(x-1)和(x+2)也是所给多项式的因式,从而问题得解.【详解】解:(1)∵x ﹣4是多项式x 2+mx+8的一个因式,则x=4使x 2+mx+8=0,∴16+4m+8=0,解得m=-6;(2)∵(x ﹣1)和(x+2)是多项式325x ax x b +-+的两个因式,则x=1和x=-2都使325x ax x b +-+=0,得方程组:15084100a b a b +-+=⎧⎨-+++=⎩,解得26a b =-⎧⎨=⎩; (3)由(2)得,x 3-2x 2-5x+6有两个因式(x ﹣1)和(x+2),又36(1)2(3)x x x x =⋅⋅=-⨯⨯-,,则第三个因式为(x-3),∴x 3-2x 2-5x+6=(x-1)(x+2)(x-3).故答案为:(x-1)(x+2)(x-3).【点睛】本题考查了分解因式的特殊方法,根据阅读材料仿做,是解答本题的关键.23.如图,在等腰△ABC 中,AC =BC ,D ,E 分别为AB ,BC 上一点,∠CDE =∠A .(1)如图1,若BC =BD ,∠ACB =90°,则∠DEC 度数为_________°;(2)如图2,若BC =BD ,求证:CD =DE ;(3)如图3,过点C 作CH ⊥DE ,垂足为H ,若CD =BD ,EH =1,求DE -BE 的值.【答案】(1)67.5;(2)证明见解析;(3)DE -BE=2.【解析】【分析】(1)先根据等腰三角形的性质,得出∠A=∠B=45°=∠CDE ,再根据BC=BD ,可得出∠BDC 的度数,然后可得出∠BDE 的度数,最后根据三角形外角的性质可得出∠DEC 的度数;(2)先根据条件得出∠ACD=∠BDE ,BD=AC ,再根据ASA 判定△ADC ≌△BED ,即可得到CD=DE ; (3)先根据条件得出∠DCB=∠CDE ,进而得到CE=DE ,再在DE 上取点F ,使得FD=BE ,进而判定△CDF ≌△DBE (SAS ),得出CF=DE=CE ,再根据CH ⊥EF ,运用三线合一即可得到FH=HE ,最后得出CE-BE=DE-DF=EF=2HE ,即可得出结论.【详解】(1)解:∵AC=BC ,∠ACB=90°,∴∠A=∠B=45°=∠CDE ,又BC=BD ,∴∠BDC=∠BCD=12(180°-∠B)=67.5°, ∴∠BDE=∠BDC-∠CDE=67.5°-45°=22.5°,∴∠DEC=∠B+∠BDE=67.5°;故答案为:67.5;(2)证明:∵AC=BC ,∠CDE=∠A ,∴∠A=∠B=∠CDE ,∵∠CDB=∠A+∠ACD=∠CDE+∠BDE ,∴∠ACD=∠BDE ,又∵BC=BD ,∴BD=AC ,在△ADC 和△BED 中,ACD BDE AC BDA B ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADC ≌△BED (ASA ),∴CD=DE ;(3)解:∵CD=BD ,∴∠B=∠DCB ,由(2)知:∠CDE=∠B ,∴∠DCB=∠CDE ,∴CE=DE ,如图,在DE 上取点F ,使得FD=BE ,在△CDF 和△DBE 中,DF BE CDE B CD BD =⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△DBE (SAS ),∴CF=DE=CE ,又∵CH ⊥EF ,∴FH=HE ,∴DE -BE=DE -DF=EF=2HE=2.【点睛】本题主要考查了全等三角形的判定与性质,以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形以及等腰三角形.五、解答题24.阅读材料:若22228160m mn n n -+-+=,求,m n 的值.解:∵22228160m mn n n -+-+=,∴222(2)8160m mn n n n -++-+=(), 22()(4)0m n n +--=,∴2()0m n -=,2(4)0n -=,∴4,4n m ==.根据你的观察,探究下面的问题:(1)已知2222690x xy y y -+++=,求xy 的值;(2)已知△ABC 的三边长,,a b c ,且满足221012610a b a b +--+=,求c 的取值范围;(3)已知22413P x y =++,2261Q x y x =-+-,比较,P Q 的大小.【答案】(1)xy 的值是9;(2)1<c<11;(3)P>Q .【解析】【分析】(1)根据x 2-2xy+2y 2+6y+9=0,先仿照例子得出(x-y )2+(y+3)2=0,求出x 、y 的值,从而得出结果; (2)首先根据a 2+b 2-10a-12b+61=0,先得出(a-5)2+(b-6)2=0,求出a 、b 的值,然后根据三角形的三条关系,可求出c 的取值范围;(3)利用作差法,得出P-Q=x 2-6x+y 2+4y+14=(x-3)2+(y+2)2+1>0,从而可得出结果.详解】解:(1)∵x 2-2xy+2y 2+6y+9=0,∴(x 2-2xy+y 2)+(y 2+6y+9)=0,∴(x-y)2+(y+3)2=0,∴x-y=0,y+3=0,∴x=-3,y=-3,∴xy=(-3)×(-3)=9, 即xy 的值是9;(2)∵a2+b2-10a-12b+61=0,∴(a2-10a+25)+(b2-12b+36)=0,∴(a-5)2+(b-6)2=0,∴a-5=0,b-6=0,∴a=5,b=6,根据三角形的三边关系可得,6-5<c<6+5,∴1<c<11;(3)P-Q=x2-6x+y2+4y+14=(x-3)2+(y+2)2+1>0,∴P>Q.【点睛】此题主要考查了因式分解的运用,关键是利用完全平方公式将式子进行配方,然后利用非负数的性质求解,将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.25.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.【答案】(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG 为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG为等边三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.26.如图1,在平面直角坐标系中,点A(0,3),点B(-1,0),点D(2,0),DE⊥x轴且∠BED=∠ABD,延长AE交x轴于点F.(1)求证:∠BAE=∠BEA;(2)求点F的坐标;(3)如图2,若点Q(m,-1)在第四象限,点M在y轴的正半轴上,∠MEQ=∠OAF,设AM-MQ=n,求m与n的数量关系,并证明.【答案】(1)证明见解析;(2)F(3,0);(3)m=n,证明见解析.【解析】【分析】(1)先证明△ABO≌△BED,从而得出AB=BE,然后根据等边对等角可得出结论;(2)连接OE,设DF=x,先求出点E的坐标,再根据S△AOE+S△EOF=S△AOF可得出关于x的方程,求出x,从而可得出点F的坐标;(3)过Q作QP∥x轴交y轴于P,过E作EG⊥OA,EH⊥PQ,垂足分别为G,H,在GA上截取GK=QH,先证明△EQH≌△EKG,再证明△KEM≌△QEM,得出MK=MQ,从而有AM-MQ=AM-MK=AK=n①;连接EP,证明△AEK≌△PEQ,从而有AK=PQ=m②,由①②即可得出结论.【详解】解:(1)∵A(0,3),B(-1,0),D(2,0),∴OB=1,OD=2,OA=3,∴AO=BD,又∠AOB=∠BDE=90°,∠BED=∠ABD,∴△ABO≌△BED(AAS),∴BA=BE,∴∠BAE=∠BEA;(2)由(1)知,△ABO≌△BED,∴DE=BO=1,∴E(2,1),连接OE,设DF=x,∵S△AOE+S△EOF=S△AOF,∴3×2×12+(2+x)×1×12=3(2+x)×12,∴x=1,∴点F的坐标为(3,0);(3)m=n,证明如下:∵OA=OF=3,∴∠OAF=45°=∠MEQ,过Q作QP∥x轴交y轴于P,过E作EG⊥OA,EH⊥PQ,垂足分别为G,H,在GA上截取GK=QH,∵Q(m,-1),E(2,1),∴EG=EH=PH=PG=2,又GK=QH,∠EGK=∠EQH=90°,∴△EQH≌△EKG(SAS),∴EK=EQ,∠GEK=∠HEQ,∵∠GEH=90°,∠MEQ=45°,∴∠QEH+∠GEM=45°,∴∠GEK+∠GEM=45°,即∠KEM=45°=∠MEQ,又EM=EM,∴△KEM≌△QEM(SAS),∴MK=MQ,∴AM-MQ=AM-MK=AK=n①,∴MQ=MG+KG=MG+QH.连接EP,△EHP为等腰直角三角形,∠EPH=45°,∴∠EPQ=∠EPA=45°,△EHP为等腰直角三角形,PE=AE,∠PEA=90°,∵∠KEM=∠MEQ=45°,∴∠KEQ=90°,∴∠AEK=∠PEQ,∠EPQ=∠KAE,∴△AEK≌△PEQ,∴AK=PQ=m②,由①②可得,m=n.【点睛】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质以及平面直角坐标系中求点的坐标与图形的面积问题等,第(3)小题的关键是作出辅助线构造全等三角形解决问题.。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学上期末测试题带详细讲解(超经典)一.选择题(共12小题,满分36分,每小题3分)1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°5.下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=16.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x 7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣D.x2﹣5x+6=(x+2)(x+3)5x+68.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠09.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x10.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.A B=AC B.D B=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.分解因式:x3﹣4x2﹣12x=_________.14.若分式方程:有增根,则k=_________.15.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________.(只需填一个即可)16.(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_________度.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?24.(12分)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:_________.2013--2014新人教版八年级数学上期末测试题带详细讲解(超经典)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE考点:全等三角形的性质.分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)(2012•益阳)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=1考点:完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.分析:A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.解答:解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.点评:此题考查了整式的有关运算公式和性质,属基础题.6.(3分)(2012•柳州)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x考点:整式的混合运算.分析:根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.解答:解:根据图可知,S正方形=(x+a)2=x2+2ax+a2,故选C.点评:本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)(2012•济宁)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣D.x2﹣5x+6=(x+2)(x+3)5x+6考点:因式分解的意义.分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8.(3分)(2012•宜昌)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)(2012•安徽)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.解答:解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.解答:解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.点评:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.12.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.A B=AC B.D B=DC C.∠ADB=∠ADC D.∠B=∠C考点:全等三角形的判定.分析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.解答:解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.点评:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.二.填空题(共5小题,满分20分,每小题4分)13.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=x(x+2)(x﹣6).考点:因式分解-十字相乘法等;因式分解-提公因式法.分析:首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.解答:解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).点评:此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.14.(4分)(2012•攀枝花)若分式方程:有增根,则k=1或2.考点:分式方程的增根.专题:计算题.分析:把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.解答:解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.点评:本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.(4分)(2011•昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)考点:全等三角形的判定.专题:开放型.分析:要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).解答:解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).点评:本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.16.(4分)(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.考点:三角形的外角性质;等腰三角形的性质.分析:根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.考点:平方差公式的几何背景.分析:根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.考点:整式的加减—化简求值.分析:首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解答:解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.点评:熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.考点:提公因式法与公式法的综合运用;整式的加减.专题:开放型.分析:本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.解答:解:情况一:x2+2x﹣1+x2+4x+1=x2+6x=x(x+6).情况二:x2+2x﹣1+x2﹣2x=x2﹣1=(x+1)(x﹣1).情况三:x2+4x+1+x2﹣2x=x2+2x+1=(x+1)2.点评:本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.熟记公式结构是分解因式的关键.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2.20.(8分)(2012•咸宁)解方程:.考点:解分式方程.分析:观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程即:.(1分)方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.(4分)化简,得2x+4=8.解得:x=2.(7分)检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.(8分)点评:此题考查了分式方程的求解方法.此题比较简单,注意转化思想的应用,注意解分式方程一定要验根.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.考点:等腰直角三角形;全等三角形的性质;全等三角形的判定.分析:(1)要证AD=CE,只需证明△ABD≌△CBE,由于△ABC和△DBE均为等腰直角三角形,所以易证得结论.(2)延长AD,根据(1)的结论,易证∠AFC=∠ABC=90°,所以AD⊥CE.解答:解:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=CE.(2)垂直.延长AD分别交BC和CE于G和F,∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∴∠AFC=∠ABC=90°,∴AD⊥CE.点评:利用等腰三角形的性质,可以证得线段和角相等,为证明全等和相似奠定基础,从而进行进一步的证明.22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.考点:全等三角形的判定与性质.专题:证明题.分析:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?考点:分式方程的应用.专题:应用题.分析:(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.解答:解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.点评:本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.24.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:8.考点:轴对称-最短路线问题.分析:(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.解答:解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.点评:此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小值,求出DP+PE的最小值即可是解题关键.。