第5章 测量误差的基本知识
合集下载
第五章 测量误差的基本知识

容 = 3m 有时对精度要求较严,也可采用容 = 2m作为容许误 差。
在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。
在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。
第5章-测量误差的基本知识(091023)

[例6-8]
∴ m A = ± 1.64 = ±1.28(m)
已知:测量斜边D′=50.00±0.05m,测得倾角 α=15°00′00″±30″ 2 ′ m D = [(c o s α ) ⋅ m D ′ ] 2 求:水平距离D 及其中误差 m + [( D ′ ⋅ s in α ) α ] 2 解:1.函数式 D = D′ cos α , ρ 2.全微分 = [(c o s 1 5 o ) ⋅ 0 .0 5 ] 2 dα dD′ = (cos α ) dD′ + ( D′ ⋅ sin α ) o 3 0 ′′ 2 + [(5 0 ⋅ s in 1 5 ) ] ρ ρ 3.化为中误差
四、线性函数 线性函数 Z = K1 X 1 ± K 2 X 2 ± ⋅ ⋅ ⋅ ± K n X n ,则有
mZ = ± K1 m X1 + K 2 m X 2 + ⋅ ⋅ ⋅ + K n m X n
2 2 2 2 2 2
[例6-5] 设对某一个三角形观测了其中α、β两 个角,测角中误差分别为mα=±3.5″,mβ =±6.2″, 现按公式γ=180°-α-β求得γ角,试求γ角的中 = 误差mγ。 解:
2 2 2 2 mZ = m X1 + m X 2 + ⋅ ⋅ ⋅ + m X n
n个观测值代数和(差)的中误差平方,等于n个观 测值中误差平方之和。 在同精度观测时,观测值代数和(差)的中误差, 与观测值个数n的平方根成正比,即 m = m n
Z
m读 ≈ ±2mm [例6-4] 已知水准仪距水准尺75m时,一次读数中误差为 (包括照准误差、气泡置中误差及水准标尺刻划中误差), 若以三倍中误差为容许误差,试求普通水准测量观测n 站所得高差闭合差的容许误差。
第五章 测量误差的基本知识

2 ma
解:
α
D
+a
mS = ± 30 2 × 0.04 2 + 40 2 × 0.03 2
mS = ±1.7(m 2 )
1、求D 、 D=Lcos α = =165.50×cos15°30′ × ° =159.48m
2、求mD 、 (1)函数式 ) D=Lcosα (2)偏微分 )
中误差m ㎜,中误差 d=±0.2㎜,求实地距离 及其 ㎜ 求实地距离D及其 中误差。 中误差。 解: D=500d =
n-1 [ vv ] m=± n-1
例1:
l 1 2 3 4 5 85°42′49″ ° 85°42′40″ ° 85°42′42″ ° 85°42′46″ ° 85°42′48″ ° l0=85°42′40″ ° △l 9 0 2 6 8 25 v ﹣4 ﹢5 ﹢3 ﹣1 ﹣3 0 vv 16 25 9 1 9 60
V △l(㎜) (㎜) (㎜)
vv 4 25 256 441 9 121 856
m2 = n n
=
L = l0 +
[ vv ] 1 2 + m
∑∆ l 25" = 85°42' 40" + 5 5 =85°42′45″ °
二、求观测值的函数的中误差 S=ab (一)求偏微分 dS=b da+a db (二)以偶然误差代替微分元素
60 m=± 5 -1
m = ±3.9"
mD = 0.012 + 0.02 2 + 0.03 2
=±0.037(m) ± ( ) 六、线性函数的中误差 函数: 函数: z=k1x1+k2x2+…+knxn = + 偏微分: 偏微分: dz=k1 dx1+k2 dx2+…+kn dxn = + 中误差: 中误差:
测量学第5章测量误差的基本知识

果对函数f(Δ )求二阶导数等于零,可得曲线拐点的横坐标为:Δ 拐 = ±σ 。由于曲线f(Δ )横轴和直线Δ =-σ ,Δ =+σ 之间的曲边梯形面
之差称为真误差,用Δ 表示。设三角形内角和的观测值为li,真值为X,则
三角形的真误差可由下式求得
用式(5.1)算得358个三角形内角和的真误差,现将358个真误差按3″为一 区间,并按绝对值大小进行排列,按误差的正负号分别统计出在各区间的误
差个数k,并将k除以总个数n(本例n=358)误差来看,其误差的出现在数
值大小和符号上没有规律性,但观察大量的偶然误差就会发现其存在着一定 的统计规律性,并且误差的个数越多这种规律性就越明显。下面以一个测量
实例来分析偶然误差的特性。
某测区在相同的观测条件下观测了358个三角形的内角,由于观测值存在误 差,故三角形内角之和不等于理论值180°(也称真值)。观测值与理论值
值(有界性);
②绝对值较小的误差出现的概率大,绝对值大的误差出现的概率小(单峰性); ③绝对值相等的正、负误差出现的概率大致相等(对称性);
④当观测次数无限增加时,偶然误差算术平均值的极限为零(补偿性)。即
式中,“[]”为总和号,即
为了更直观地表达偶然误差的分布情况,还可以用图示形式描述误差分布, 图5.1就是按表5.1的数据绘制的。其中以横坐标表示误差正负与大小,纵坐
1)仪器及工具由于测量仪器制造和仪器校正不完善,都会使测量结果产生测
量误差。 2)观测者由于观测者的技术水平和感觉器官鉴别能力的限制,使得在安置仪
器、瞄准目标及读数等方面都会产生误差。
3)外界条件观测过程所处的外界条件,如温度、湿度、风力、阳光照射等因 素会给观测结果造成影响,而且这些因素随时发生变化,必然会给观测值带
之差称为真误差,用Δ 表示。设三角形内角和的观测值为li,真值为X,则
三角形的真误差可由下式求得
用式(5.1)算得358个三角形内角和的真误差,现将358个真误差按3″为一 区间,并按绝对值大小进行排列,按误差的正负号分别统计出在各区间的误
差个数k,并将k除以总个数n(本例n=358)误差来看,其误差的出现在数
值大小和符号上没有规律性,但观察大量的偶然误差就会发现其存在着一定 的统计规律性,并且误差的个数越多这种规律性就越明显。下面以一个测量
实例来分析偶然误差的特性。
某测区在相同的观测条件下观测了358个三角形的内角,由于观测值存在误 差,故三角形内角之和不等于理论值180°(也称真值)。观测值与理论值
值(有界性);
②绝对值较小的误差出现的概率大,绝对值大的误差出现的概率小(单峰性); ③绝对值相等的正、负误差出现的概率大致相等(对称性);
④当观测次数无限增加时,偶然误差算术平均值的极限为零(补偿性)。即
式中,“[]”为总和号,即
为了更直观地表达偶然误差的分布情况,还可以用图示形式描述误差分布, 图5.1就是按表5.1的数据绘制的。其中以横坐标表示误差正负与大小,纵坐
1)仪器及工具由于测量仪器制造和仪器校正不完善,都会使测量结果产生测
量误差。 2)观测者由于观测者的技术水平和感觉器官鉴别能力的限制,使得在安置仪
器、瞄准目标及读数等方面都会产生误差。
3)外界条件观测过程所处的外界条件,如温度、湿度、风力、阳光照射等因 素会给观测结果造成影响,而且这些因素随时发生变化,必然会给观测值带
第5章 测量误差的基本知识

第5章
1.观测误差
测量误差的基本知识
§5-1 概述
在各项测量工作中,对同一个量进行多次重复的观测 其结果是不一致的;对若干个量进行观测,如果知道 这几个量所构成的某个函数应等于某个理论值,而实 际上用观测值计算的函数值与理论值不相符(如三角 形的内角和)。这就是存在观测误差的原因。
2.产生观测误差的原因
例3:水平角观测限差的制定
水平角观测的精度与其误差的综合影响有关,对于 J6光学经纬仪来说,设计时考虑了有关误差的影响, 保证室外一测回的方向中误差为±6″。实际上,顾 及到仪器使用期间轴系的磨损及其它不利因素的影 响,设计精度一般小于±6″,新出厂的仪器,其野 外一测回的方向中误差小于±6″,在精度上有所富 裕。
Δ2 0 1 49 4 1 1 64 0 9 1 130
0 -4 +3 +2 -3 24
+1 +8 0 +3 -1 24
2
中误差Biblioteka m1 2 2 .7 n
m
2
n
3 .6
1 2
n
2.4
正态分布
1 f ( x) e 2 x 0 ( x )2 2 2
1 1
√2π m 1 √2π m 2
y = f (Δ )
f 1 (Δ ) f 2 (Δ )
若 0, 1 1 则f ( x) e 2
( x) 2
2
-
-m1
+m1 +
x =Δ
m2
m2
两组观测值中误差图形的比较:
m1=2.7 m2=3.6
m1较小, 误差分布比较集中,观测值精度较高; m2较大,误差分布比较离散,观测值精度较低。
1.观测误差
测量误差的基本知识
§5-1 概述
在各项测量工作中,对同一个量进行多次重复的观测 其结果是不一致的;对若干个量进行观测,如果知道 这几个量所构成的某个函数应等于某个理论值,而实 际上用观测值计算的函数值与理论值不相符(如三角 形的内角和)。这就是存在观测误差的原因。
2.产生观测误差的原因
例3:水平角观测限差的制定
水平角观测的精度与其误差的综合影响有关,对于 J6光学经纬仪来说,设计时考虑了有关误差的影响, 保证室外一测回的方向中误差为±6″。实际上,顾 及到仪器使用期间轴系的磨损及其它不利因素的影 响,设计精度一般小于±6″,新出厂的仪器,其野 外一测回的方向中误差小于±6″,在精度上有所富 裕。
Δ2 0 1 49 4 1 1 64 0 9 1 130
0 -4 +3 +2 -3 24
+1 +8 0 +3 -1 24
2
中误差Biblioteka m1 2 2 .7 n
m
2
n
3 .6
1 2
n
2.4
正态分布
1 f ( x) e 2 x 0 ( x )2 2 2
1 1
√2π m 1 √2π m 2
y = f (Δ )
f 1 (Δ ) f 2 (Δ )
若 0, 1 1 则f ( x) e 2
( x) 2
2
-
-m1
+m1 +
x =Δ
m2
m2
两组观测值中误差图形的比较:
m1=2.7 m2=3.6
m1较小, 误差分布比较集中,观测值精度较高; m2较大,误差分布比较离散,观测值精度较低。
05章测量误差基本知识

2 1 2 x1 2 x2 2 2 2 xn
例1.量得某圆形建筑物的直径D=34.50m,其中误 差 mD 0.01m ,求建筑物的园周长及其中误差。 解:圆周长
P πD 3.1416 34.50 108.38 中误差mP π mD 3.1416 ( 0.01) 0.03m 结果可写成P 108.38 0.03(m)
例6:用同样观测方法,经由长度为L1,L2,L3的三条不同路
线,测量两点间的高差,分别得出高差为h1,h2,h3。已 知每公里的高差中误差为mkm,求三个高差的权。
解: m1 mkm L 1 , m2 mkm L 2 , m3 mkm L 3 λ λ pi 2 2 mi mkm L i λ 令c 2 ,则 mkm c pi Li 1 取c 1,则pi ,即1km高差的权为单位权 Li 2 若取c 2,则pi ,即2km高差的权为单位权 Li
f m x 2
2
f ... m x n
2
2 xn
求任意函数中误差的步骤
列函数关系式 全微分 求出中误差关系式
例题一:设在三角形ABC中,直接观测∠A和∠B,其 中误差分别为mA=±3”和mB=±4”,试求由∠A和∠B 计算∠C的中误差mC 。 解:函数关系式为: ∠C= 1800-∠A-∠B
δ L X 2
(l X) (l2 X) ... (ln X) [Δ] [l ] X 1 n n n
1 2 2 (Δ1 Δ2 ... Δn 2Δ1Δ2 2Δ1Δ3 ... 2Δn1Δn ) 2 n2 [ΔΔ] 2(Δ1Δ2 2Δ1Δ3 ... 2Δn1Δn ) n2 n2
例1.量得某圆形建筑物的直径D=34.50m,其中误 差 mD 0.01m ,求建筑物的园周长及其中误差。 解:圆周长
P πD 3.1416 34.50 108.38 中误差mP π mD 3.1416 ( 0.01) 0.03m 结果可写成P 108.38 0.03(m)
例6:用同样观测方法,经由长度为L1,L2,L3的三条不同路
线,测量两点间的高差,分别得出高差为h1,h2,h3。已 知每公里的高差中误差为mkm,求三个高差的权。
解: m1 mkm L 1 , m2 mkm L 2 , m3 mkm L 3 λ λ pi 2 2 mi mkm L i λ 令c 2 ,则 mkm c pi Li 1 取c 1,则pi ,即1km高差的权为单位权 Li 2 若取c 2,则pi ,即2km高差的权为单位权 Li
f m x 2
2
f ... m x n
2
2 xn
求任意函数中误差的步骤
列函数关系式 全微分 求出中误差关系式
例题一:设在三角形ABC中,直接观测∠A和∠B,其 中误差分别为mA=±3”和mB=±4”,试求由∠A和∠B 计算∠C的中误差mC 。 解:函数关系式为: ∠C= 1800-∠A-∠B
δ L X 2
(l X) (l2 X) ... (ln X) [Δ] [l ] X 1 n n n
1 2 2 (Δ1 Δ2 ... Δn 2Δ1Δ2 2Δ1Δ3 ... 2Δn1Δn ) 2 n2 [ΔΔ] 2(Δ1Δ2 2Δ1Δ3 ... 2Δn1Δn ) n2 n2
第5章 误差基本知识

②仪器构造本身也有一定误差。
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n
n
13
•
从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n
n
13
•
从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。
第5章 测量误差理论的基础知识

第五章 测量误差理论的基本知识
5.1 测量误差概述 5.2 衡量精度的指标 5.3 误差传播定律及其应用 5.4 等精度直接观测平差 5.5 不等精度观测的最或然值及其中误差
§5.1 测量误差概述
大量实践表明,当对某一未知量进行多次 观测时,无论观测仪器多么精密,观测进行得
多么仔细,观测值之间总是存在着差异。例如,
2 2 2 2 mZ A12 m12 A2 m2 An mn
§5.3.2 误差传播定律的应用
例1 量得某圆形建筑物得直径 D=34.50m, 其中误差mD 0.01m,
求建筑物得圆周长及其中误差。
解:圆周长:
P D 3.1416 34.50 108.38 中误差:
将以上各式两边平方、取平均,可得
Z 2 x12 x22 xn 2 n f2 f 2 ... f 2 xi x j 1 fi f j k 1 2 n k k k k i, j
i j
因 x 的观测值 l 彼此独立,则 xi x j 在 i j 时亦为偶 i i 然误差。根据偶然误差第4特性,上式末项当 k 时趋近于 零,故:
测量某一平面三角形的三个内角,其观测值之
和常常不等于理论值180°。这说明测量结果
不可避免地存在误差。
§5.1.1 测量误差的来源
测量工作是在一定条件下进行的,外界环境、观 测者的技术水平和仪器本身构造的不完善等原因,都 可能导致测量误差的产生。通常把测量仪器、观测者 的技术水平和外界环境三个方面综合起来,称为观测 条件。观测条件不理想和不断变化,是产生测量误差 的根本原因。通常把观测条件相同的各次观测,称为 等精度观测;观测条件不同的各次观测,称为不等精 度观测。
5.1 测量误差概述 5.2 衡量精度的指标 5.3 误差传播定律及其应用 5.4 等精度直接观测平差 5.5 不等精度观测的最或然值及其中误差
§5.1 测量误差概述
大量实践表明,当对某一未知量进行多次 观测时,无论观测仪器多么精密,观测进行得
多么仔细,观测值之间总是存在着差异。例如,
2 2 2 2 mZ A12 m12 A2 m2 An mn
§5.3.2 误差传播定律的应用
例1 量得某圆形建筑物得直径 D=34.50m, 其中误差mD 0.01m,
求建筑物得圆周长及其中误差。
解:圆周长:
P D 3.1416 34.50 108.38 中误差:
将以上各式两边平方、取平均,可得
Z 2 x12 x22 xn 2 n f2 f 2 ... f 2 xi x j 1 fi f j k 1 2 n k k k k i, j
i j
因 x 的观测值 l 彼此独立,则 xi x j 在 i j 时亦为偶 i i 然误差。根据偶然误差第4特性,上式末项当 k 时趋近于 零,故:
测量某一平面三角形的三个内角,其观测值之
和常常不等于理论值180°。这说明测量结果
不可避免地存在误差。
§5.1.1 测量误差的来源
测量工作是在一定条件下进行的,外界环境、观 测者的技术水平和仪器本身构造的不完善等原因,都 可能导致测量误差的产生。通常把测量仪器、观测者 的技术水平和外界环境三个方面综合起来,称为观测 条件。观测条件不理想和不断变化,是产生测量误差 的根本原因。通常把观测条件相同的各次观测,称为 等精度观测;观测条件不同的各次观测,称为不等精 度观测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式工中程测量[Δ]
——偶然误差的代数和,
1
2
n
13
5 测量误差的基本知识 §5.2 衡量精度的标准
在测量工作中,常采用以下几种标准评定测 量成果的精度。
中误差
相对中误差
极限误差
工程测量
14
5 测量误差的基本知识 §5.2 衡量精度的标准
中误差
设在相同的观测条件下,对某量进行n次重复观测, 其观测值为l1,l2,…,ln,相应的真误差为Δ1,Δ2,…, Δn。则观测值的中误差m为:
4
24″~27″
1
0
1
27″以上
0
0
0
工程测量 合计
107
110Βιβλιοθήκη 217115 测量误差的基本知识 §5.1 偶然误差的特性
(1)绝对值较小的误差比绝对值较大的 误差个数多;
(2)绝对值相等的正负误差的个数大致 相等;
(3)最大误差不超过27″。
工程测量
12
5 测量误差的基本知识 §5.1 偶然误差的特性 偶然误差的四个特性:
工程测量
10
5 测量误差的基本知识 §5.1 偶然误差的特性
真误差绝对值大小统计结果
误差区间 正误差个数 负误差个数
总计
0″~3″
30
29
59
3″~6″
21
20
41
6″~9″
15
18
33
9″~12″
14
16
30
12″~15″
12
10
22
15″~18″
8
8
16
18″~21″
5
6
11
21″~24″
2
2
(1)在一定观测条件下,偶然误差的绝对值有一定的限值, 或者说,超出该限值的误差出现的概率为零;
(2)绝对值较小的误差比绝对值较大的误差出现的概率大;
(3)绝对值相等的正、负误差出现的概率相同;
(4)同一量的等精度观测,其偶然误差的算术平均值,随着
观测次数n的无限增大而趋于零,即
lim 0 n n
三内角和的观测值 真误差△ -3″ -2″ +2″ +4″ -1″ 0″ -4″ +3″ +2″ -3″ 24
△平方 9 4 4 16 1 0 16 9 4 9 72
工程测量
17
5 测量误差的基本知识
相对误差
相对中误差是中误差的 绝对值与相应观测结果 之比,并化为分子为1 的分数,即相对误差用 下式求得:
在相同观测条件下,对某量进行一系列观测,如果误 差出现的符号和大小均相同,或按一定的规律变化,这种 误差称为系统误差。
系统误差在测量成果中具有累积性,对测量成果影响 较大,但它的符号和大小又具有一定的规律性,一般可采 用下列方法消除或减弱其影响。
(1)进行计算改正
(2)选择适当的观测方法
工程测量
6
5 测量误差的基本知识 §5.1 观测误差及其分类
工程测量
9
5 测量误差的基本知识 §5.1 偶然误差的特性
例如,对三角形的三个内角进行测量,由于观测值含 有偶然误差,三角形各内角之和l不等于其真值180˚。用X 表示真值,则l与X的差值Δ称为真误差(即偶然误差), 即
lX
现在相同的观测条件下观测了217个三角形,计算出 217个内角和观测值的真误差。再按绝对值大小,分区间 统计相应的误差个数,列入表中。
m
K
D
1 D
m
工程测量
18
5 测量误差的基本知识
例如测量了两段距离,一段为100m,另一段 为200m,观测值的中误差均为±20mm。显 然不能认为两段距离的精度相同,因为距离 的测量精度与距离本身长度的大小有关。为 了客观地反映观测精度,必须引入一个评定 精度的标准,即相对误差。相对误差K就是观 测值的中误差绝对值与观测值之比,通常以 分子为1的分式表示。相对误差能够确切描述 观测量的精确度。
2.偶然误差
在相同的观测条件下,对某量进行一系 列的观测,如果观测误差的符号和大小都不 一致,表面上没有任何规律性,这种误差称 为偶然误差。
工程测量
7
5 测量误差的基本知识 §5.1 偶然误差的特性
偶然误差从表面上看没有任何规律性,但是随 着对同一量观测次数的增加,大量的偶然误差就表 现出一定的统计规律性,观测次数越多,这种规律 性越明显。
m
n
式中 [∆∆]——真误差的平方和, 21 22 2n
工程测量
15
5 测量误差的基本知识
§5.2 衡量精度的标准
[ 例5-1] :对 10 个三角形的内角进行了观测,根据观 测值中的偶然误差(三角形的角度闭合差,即真误差), 计算其中误差。
工程测量3.6
工程测量
8
5 测量误差的基本知识
§5.1 偶然误差的特性
例如,对三角形的三个内角进行测量,由于观测值含 有偶然误差,三角形各内角之和l不等于其真值180˚。用X 表示真值,则l与X的差值Δ称为真误差(即偶然误差), 即
lX
现在相同的观测条件下观测了217个三角形,计算出 217个内角和观测值的真误差。再按绝对值大小,分区间 统计相应的误差个数,列入表中。
道路工程测量
第5章 测量误差的基本知识
教学课件
5 测量误差的基本知识
本章的主要内容: 1、测量误差的基本概念;
2、衡量观测值精度的指标(中误差);
3、误差传播律;
4、权、算术平均值、加权平均值及其中误差 。
工程测量
2
5 测量误差的基本知识 §5.1 观测误差的概述
一、测量误差产生的原因
在观测结果中,有时还会出现错误,称之为粗 差。
粗差在观测结果中是不允许出现的,为了杜绝
粗差,除认真仔细作业外,还必须采取必要的检核
措施。
工程测量
4
5 测量误差的基本知识 §5.1 观测误差及其分类
二、测量误差的分类
系统误差 偶然误差
工程测量
5
5 测量误差的基本知识 §5.1 观测误差及其分类
1.系统误差
1.测量仪器和工具
由于仪器和工具加工制造不完善或校正之后残余误差 存在所引起的误差。
2.观测者
由于观测者感觉器官鉴别能力的局限性所引起的误差。
3.外界条件的影响
外界条件的变化所引起的误差。
工程测量
3
5 测量误差的基本知识 二、 观测误差及其分类
人、仪器和外界条件,通常称为观测条件。 观测条件相同的各次观测,称为等精度观测; 观测条件不相同的各次观测,称为非等精度观测。
16
5 测量误差的基本知识
序号
1 2 3 4 5 6 7 8 9 10 ∑
中误差
观测值 L 180 ° 00 ′ 03 ″ 180 ° 00 ′ 02 ″ 179 ° 59 ′ 58 ″ 179 ° 59 ′ 56 ″ 180 ° 00 ′ 00 ″ 180 ° 00 ′ 04 ″ 180 ° 00 ′ 03 ″ 179 ° 59 ′ 57 ″ 179 ° 59 ′ 58 ″ 180 ° 00 ′ 03 ″