(新)高中数学必修三期中测试卷及答案
高中数学必修二 必刷卷03下学期期中仿真必刷模拟卷(含答案)

2020-2021学年高一下学期数学期中仿真必刷模拟卷【人教A版2019】期中检测卷03姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知向量=(x,2),=(1,﹣1),且∥,则•=()A.4B.2C.0D.﹣4【答案】D【分析】根据∥即可求出x值,从而可得出的坐标,进而可求出的值.【解答】解:∵∥,∴﹣x﹣2=0,解得x=﹣2,∴,.故选:D.【知识点】平面向量共线(平行)的坐标表示、平面向量数量积的性质及其运算2.已知复数z=(2+i)i,其中i为虚数单位,则下列说法中,错误的是()A.|z|<3B.z的虚部为2C.z的共扼复数为2i+1D.z在复平面内对应的点在第二象限【答案】C【分析】化简复数z,求出模长|z|、虚部,写出共轭复数和z=﹣1+2i对应的点坐标即可.【解答】解:复数z=(2+i)i,则|z|=|2+i|•|i|=<3,A正确;z=(2+i)i=﹣1+2i,其虚部为2,B正确;z的共轭复数为=﹣1﹣2i,所以C错误;z=﹣1+2i对应的点为(﹣1,﹣2),在第二象限,D正确;故选:C.【知识点】复数的模3.如图,在平行四边形ABCD中,E是BC的中点,F是线段AE上靠近点A的三等分点,则=()A.B.C.D.【答案】C【分析】利用平面向量的基本定理,用和线性表示向量即可.【解答】解:由可知,=﹣=﹣=﹣++=,故选:C.【知识点】平面向量的基本定理、向量数乘和线性运算4.已知M是△ABC内的一点,且•=4,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为1,x,y,则的最小值是()A.12B.14C.16D.18【答案】C【分析】利用平面向量的数量积运算求得bc的值,根据三角形的面积公式求得x+y的值,再利用1的代换,结合基本不等式求得的最小值.【解答】解:在△ABC中,设角A,B,C所对的边分别为a,b,c,∵•=4,∠BAC=30°,∴cb cos30°=4,∴bc=8,∴S△ABC=bc sin30°=×8×=2,∴1+x+y=2,即x+y=1,且x>0,y>0,∴=()(x+y)=10++≥10+2=10+6=16,当且仅当=,即y=3x=时取等号,∴的最小值是16.故选:C.【知识点】平面向量数量积的性质及其运算5.定义复数的一种运算z1*z2=(等式右边为普通运算),若复数z=a+bi,且正实数a,b满足a+b=3,则z*最小值为()A.B.C.D.【答案】B【分析】先由新定义用a和b表示出z*,再利用基本不等式求最值即可.【解答】解:z*=,∴,z*=.故选:B.【知识点】基本不等式及其应用、虚数单位i、复数6.如图,在三棱锥S﹣ABC中,SA⊥平面ABC,AB=BC=4,∠ABC=90°,侧棱SB与平面ABC所成的角为45°,M为AC的中点,N是侧棱SC上一动点,当△BMN的面积最小时,异面直线SB与MN所成角的余弦值为()A.B.C.D.【答案】D【分析】推导出△ABC为等腰直角三角形,BM⊥AC,SA⊥BM,从而BM⊥平面SAC,BM⊥MN,当MN 最小时,△BMN的面积最小,此时MN⊥SC,过S作SE⊥SC,交CA的延长线于点E,则SE∥MN,连接BE,则∠BSE为异面直线SB与MN所成的角或其补角.由此能求出异面直线SB与MN 所成角的余弦值.【解答】解:由题意知△ABC为等腰直角三角形,因为M为AC的中点,所以BM⊥AC.又SA⊥平面ABC,所以SA⊥BM,所以BM⊥平面SAC,所以BM⊥MN,故△BMN的面积.由题意知,所以,所以,当MN最小时,△BMN的面积最小,此时MN⊥SC.当MN⊥SC时,过S作SE⊥SC,交CA的延长线于点E,则SE∥MN,连接BE,则∠BSE为异面直线SB与MN所成的角或其补角.因为SA⊥平面ABC,所以∠SBA为直线SB与平面ABC所成的角,所以∠SBA=45°,所以SA=AB=4,所以,.又,所以,所以,,在Rt△EMB中,由题意知,所以由余弦定理得:==,故当△BMN的面积最小时,异面直线SB与MN所成角的余弦值为.故选:D.【知识点】异面直线及其所成的角7.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直【答案】A【分析】直线AB与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交,可得结论.【解答】解:如图,在正方体AC1中:∵A1B∥D1C∴A1B与D1C可以确定平面A1BCD1,又∵EF⊂平面A1BCD1,且两直线不平行,∴直线A1B与直线EF的位置关系是相交,故选:A.【知识点】空间中直线与直线之间的位置关系8.如图所示,一个水平放置的平面图形的斜二测直观图是等腰梯形OA'B'C',且直观图OA'B'C'的面积为2,则该平面图形的面积为()A.2B.4C.4D.2【答案】B【分析】结合S原图=2S直观图,可得答案.【解答】解:由已知直观图OA'B'C'的面积为2,∴原来图形的面积S=2×2=4,故选:B.【知识点】斜二测法画直观图二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.【答案】AB【分析】对于A:直接利用三角形法则的应用和线性运算的应用求出结果.对于B:利用三角形法则的应用和线性运算的应用求出结果.对于C:利用平行线分线段成比例和三角形法则和线性运算的应用求出结果.对于D:直接利用平行线成比例的应用求出结果.【解答】解:在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,如图所示:根据三角形法则:对于A:,故选项A正确.对于B:E,F分别为线段AD,CD的中点,所以,故选项B正确.对于C:过E作EH∥DC,所以,所以,故,整理得,所以,即=,故选项C错误.对于D:根据平行线分线段成比例定理,点B、G、D共线,故选项D错误.故选:AB.【知识点】平面向量的基本定理10.△ABC是边长为2的等边三角形,已知向量满足,则下列结论正确的是()A.是单位向量B.C.D.【答案】ABD【分析】根据条件可求出,从而判断选项A正确;可得出,从而判断选项B正确;对两边平方即可得出,从而判断选项C错误;根据前面,可以得出,从而判断选项D正确.【解答】解:A.∵,∴由得,,∴是单位向量,该选项正确;B.∵,∴,该选项正确;C.,∴由得,,即,∴,该选项错误;D.∵,由上面得,,∴,该选项正确.故选:ABD.【知识点】数量积判断两个平面向量的垂直关系、平面向量数量积的性质及其运算11.如图,在以下四个正方体中,直线AB与平面CDE垂直的是()A.B.C.D.【答案】BD【分析】对于A,由∠BAD=,CE∥AD,得直线AB与平面CDE不垂直;对于B,由CE⊥AB,DE⊥AB,得直线AB⊥平面CDE;对于C,由AB与CE所成角为,知直线AB与平面CDE不垂直;对于D,推导出DE⊥AB,CE⊥AB,从而AB⊥平面CDE.【解答】解:对于A,∵∠BAD=,CE∥AD,∴AB与CE不垂直,∵CE⊂平面CDE,∴直线AB与平面CDE不垂直,故A错误;对于B,∵CE⊥AB,DE⊥AB,CE∩DE=E,∴直线AB⊥平面CDE,故B正确;对于C,AB与CE所成角为,∴直线AB与平面CDE不垂直,故C错误;对于D,如图,∵DE⊥BF,DE⊥AF,BF∩AF=F,∴DE⊥平面ABF,∵AB⊂平面ABF,∴DE⊥AB,同理得CE⊥AB,∵DE∩CE=E,∴AB⊥平面CDE,故D正确.故选:BD.【知识点】直线与平面垂直12.如图,在直三棱柱ABC﹣A1B1C1中,CC1=,点M是棱AA1的中点,则下列说法正确的是()A.异面直线BC与B1M所成的角为90°B.在B1C上存在点D,使MD∥平面ABCC.二面角B1﹣AC﹣B的大小为60°D.B1M⊥CM【答案】ABC【分析】选项A,连接MC1,易知BC∥B1C1,故∠MB1C1即为所求.由勾股定理可知A1B1⊥B1C1,由三棱柱的性质可知BB1⊥B1C1,再结合线面垂直的判定定理与性质定理即可证得可证得B1C1⊥MB1,即∠MB1C1=90°;选项B,连接BC1,交B1C于点D,连接MD,再取BC的中点E,连接DE、AE,易知四边形AMDE为平行四边形,故MD∥AE,再由线面平行的判定定理即可得证;选项C,取AC的中点N,连接BN、B1N,则∠BNB1即为所求,在Rt△BNB1中,由三角函数可求出tan∠BNB1的值,从而得解;选项D,在△CMB1中,利用勾股定理分别算出CM、MB1和B1C的长,判断其结果是否满足≠即可.【解答】解:选项A,连接MC1,由三棱柱的性质可知,BC∥B1C1,∴∠MB1C1即为异面直线BC与B1M.∵AB=BC=2,AC=,∴∠ABC=∠A1B1C1=90°,即A1B1⊥B1C1,由直三棱柱的性质可知,BB1⊥平面A1B1C1,∵B1C1⊂平面A1B1C1,∴BB1⊥B1C1,又A1B1∩BB1=B1,A1B1、BB1⊂平面ABB1A1,∴B1C1⊥平面ABB1A1,∴B1C1⊥MB1,即∠MB1C1=90°,∴选项A正确;选项B,连接BC1,交B1C于点D,连接MD,再取BC的中点E,连接DE、AE,则DE∥AM,DE=AM,∴四边形AMDE为平行四边形,∴MD∥AE,∵MD⊄平面ABC,AE⊂平面ABC,∴MD∥平面ABC,即选项B正确;选项C,取AC的中点N,连接BN、B1N,∵BB1⊥平面ABC,∴∠BNB1即为二面角B1﹣AC﹣B的平面角.在Rt△BNB1中,BB1=,BN=AB=,∴tan∠BNB1==,∴∠BNB1=60°,即选项C正确;选项D,在△CMB1中,CM2=AC2+AM2=,=+=,==10,显然≠,即B1M与CM不垂直,∴选项D错误.故选:ABC.【知识点】二面角的平面角及求法、直线与平面所成的角、直线与平面垂直三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(﹣1,2),=(2m﹣1,1),且⊥,则|﹣2|=.【答案】5【分析】通过向量垂直,数量积为0,求出m,然后利用向量的模的运算法则求解即可.【解答】解:向量=(﹣1,2),=(2m﹣1,1),且⊥,可得=0,即﹣(﹣2m﹣1)+2=0,解得m=,所以=(2,1),=(﹣5,0),所以|﹣2|=5.故答案为:5.【知识点】平面向量数量积的性质及其运算14.已知复数集合A={x+yi||x|≤1,|y|≤1,x,y∈R},,其中i为虚数单位,若复数z∈A∩B,则z对应的点Z在复平面内所形成图形的面积为【答案】72【分析】集合A={x+yi||x|≤1,|y|≤1,x,y∈R)在复平面内所形成的图形为正方形ABCD内包括边界,z2=(1+i)z1=(cos+i sin)z1对应的点在复平面内形成的图象为正方形PQRS,再用正方形PQRS的面积减去4个等腰直角三角形的面积可得.【解答】解:集合A={x+yi||x|≤1,|y|≤1,x,y∈R)在复平面内所形成的图形为正方形ABCD内包括边界,z2=(1+i)z1=(cos+i sin)z1对应的点在复平面内形成的图象为正方形PQRS,如图:所以所求图形的面积为﹣4×=﹣1=,故答案为:【知识点】复数的代数表示法及其几何意义15.正五角星是一个与黄金分割有着密切联系的优美集合图形,在如图所示的正五角星中,A,B,C,D,E是正五边形的五个顶点,且=,若=,则+=(用表示).【分析】根据可得出,进而得出,并且,,从而可用表示出.【解答】解:∵,∴,∴,∴=.故答案为:.【知识点】向量数乘和线性运算16.如图,平面ABC⊥平面BCDE,四边形BCDE为矩形,BE=2,BC=4,△ABC的面积为2,点P为线段DE上一点,当三棱锥P﹣ACE的体积为时,=.【分析】过A作AF⊥BC的延长线,垂足为F,证明AF⊥平面BCDE,再由已知求得AF,进一步求出三棱锥D﹣ACE的体积,利用求得,进一步得到答案.【解答】解:如图,过A作AF⊥BC的延长线,垂足为F,∵平面ABC⊥平面BCDE,平面ABC∩平面BCDE=BC,∴AF⊥平面BCDE,由BE=2,BC=4,△ABC的面积为,得,∴AF=,则=4×2×;∵=.∴,则.故答案为:.【知识点】棱柱、棱锥、棱台的体积四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.设A,B,C,D为平面直角坐标系中的四点,且A(2,﹣2),B(4,1),C(1,3).(1)若=,求D点的坐标及||;(2)设向量=,=,若k﹣与+3平行,求实数k的值.【分析】(1)可设D(x,y),然后根据即可得出D(3,6),进而可得出向量的坐标,进而求出的值;(2)可求出,,然后根据与平行即可求出k的值.【解答】解:(1)设D(x,y),则,且,,∴(2,3)=(x﹣1,y﹣3),∴,解得,∴D(3,6),,∴;(2),∴,,且与平行,∴9(2k+3)+7(3k﹣2)=0,解得.【知识点】平行向量(共线)、平面向量共线(平行)的坐标表示18.已知z∈C,z+2i和都是实数.(1)求复数z;(2)若复数(z+ai)2在复平面上对应的点在第四象限,求实数a的取值范围.【分析】(1)化简等式,利用复数为实数的条件求出a,b的值,即得复数z.(2)化简式子,利用复数与复平面内对应点之间的关系列出不等式组,解不等式组求得实数a的取值范围.【解答】解:(1)设z=a+bi(a,b∈R),则z+2i=a+(b+2)i,,∵z+2i和都是实数,∴,解得,∴z=4﹣2i.(2)由(1)知z=4﹣2i,∴(z+ai)2=[4+(a﹣2)i]2=16﹣(a﹣2)2+8(a﹣2)i,∵(z+ai)2在复平面上对应的点在第四象限,∴,即,∴,∴﹣2<a<2,即实数a的取值范围是(﹣2,2).【知识点】虚数单位i、复数、复数的代数表示法及其几何意义19.已知集合A={z||z|≤1},(1)求集合A中复数z=x+yi所对应的复平面内动点坐标(x,y)满足的关系?并在复平面内画出图形.(2)若z∈A,求|z﹣(1+i)|的最大值、最小值,并求此时的复数z(3)若B={z||z﹣ai|≤2},且A⊆B,求实数a的取值范围.【分析】(1)直接利用复数的模,求解复数z=x+yi所对应的复平面内动点坐标(x,y)满足的关系,并在复平面内画出图形单位圆即可.(2)若z∈A,求z取值时,画出图形,即可求出|z﹣(1+i)|的最大值、最小值.(3)利用B={z||z﹣ai|≤2}的几何意义,画出图象即可得到满足A⊆B时实数a的取值范围.【解答】解:(1)集合A={z||z|≤1},z=x+yi,∴x2+y2≤1(2)|z﹣(1+i)|的几何意义是圆上的点到(1,1)点的距离,如图:当z=,|z﹣(1+i)|最小值=.当z=,|z﹣(1+i)|最大值=.(3)B={z||z﹣ai|≤2},的几何意义是,复平面内的点与(0,a)的距离小于等于2,A⊆B,则满足如图所示的情况,即﹣1≤a≤1时,成立.【知识点】集合的包含关系判断及应用、复数的模20.如图,已知图1中△ABC是等腰三角形,AC=BC,D,E分别是AC,BC的中点,沿着DE把△CDE折起到△C′DE,使得平面C′DE⊥平面BADE,图2中AD=,AB=4,F为BC′的中点,连接EF.(Ⅰ)求证:EF∥平面AC′D;(Ⅱ)求四棱锥C′﹣ABED的侧面积.【分析】(Ⅰ)由中位线以及线面平行判定定理即可证明;(Ⅱ)由线面垂直、面面垂直即可求解.【解答】(Ⅰ)证明:取AC′中点G,连接DG,FG,由点F、G分别是BC′,AC′的中点,得GF∥AB,GF=AB,又DE∥AB,DE=AB.所以四边形DEFG是平行四边形,所以DG∥EF,且EF⊄平面AC′D,DG⊂平面AC′D,所以EF∥平面AC′D;(Ⅱ)因为△ABC是等腰三角形,AC=BC,AD=,AB=4,所以∠ACB=90°,所以△ABC是等腰直角三角形,且AC=BC=2.分别取DE、AB的中点H、I,连接C′H,HI,C′I,从而有C′H⊥DE.又因为平面C′DE⊥平面BADE,平面C′DE∩平面BADE=DE,所以C′H⊥平面BADE,又HI⊂平面BADE,所以C′H⊥HI,在△C′HI中,C′H=HI=1,∴,又翻折后,C′A=C′B,在△C′IA中,,∴四棱锥C′﹣ABED的侧面积为:+=1+.【知识点】棱柱、棱锥、棱台的侧面积和表面积、直线与平面平行21.现有一块长方形钢板ABCD(如图),其中AB=4米,AD=6米,运输途中不慎将四边形AEPF部分损坏,经测量AE=1.5米,AF=3米,tan∠AEP=4,∠AFP=45°.现过点P沿直线MN将破损部分切去(M,N分别在AB,AD上),设DN=t米.(1)请将切去的△AMN的面积表示为t的函数f(t);(2)当DN的长度为多少时,切去的△AMN面积最小?并求出最小面积.【分析】(1)计算P到AB,AD的距离,根据相似比求出AM,得出三角形AMN的面积;(2)利用基本不等式即可得出f(t)的最小值及其对应的t的值.【解答】解:(1)过P分别向AD,AB作垂线,垂足分别为G,H,则四边形AGPH为矩形,△PGF为等腰直角三角形,设PG=x,则GF=x,PH=AG=AF﹣FG=3﹣x,HE=AE﹣AH=1.5﹣x,∴tan∠AEP===4,解得x=1.∴AG=2,NG=4﹣t,由△NPG∽△NMA可得,即,∴AM=,∴f(t)=•(6﹣t)=(0≤t≤3).(2)f(t)==++2≥2+2=4,当且仅当=即t=2时取等号.故当DN=2m时,切去的△AMN面积最小,最小面积为4m2.【知识点】解三角形22.已知在平行四边形ABCD中,AD=2,AB=,∠ADC=,如图,DE∥CF,且DE=3,CF=4,∠DCF=,且平面ABCD⊥平面CDEF.(Ⅰ)求证:AC⊥平面CDEF;(Ⅱ)求四棱锥F﹣ABCD的体积.【分析】(Ⅰ)利用余弦定理及勾股定理证出线线垂直,再利用面面垂直的性质得证;(Ⅱ)证明CF⊥平面ABCD,即为四棱锥的高,再利用体积公式即可求解.【解答】解:(Ⅰ)证明:由题知在△ACD中,,则由余弦定理得AC2=AD2+CD2﹣2AD•CD•cos∠ADC=,则AC2+CD2=AD2,∴AC⊥CD,又∵平面ABCD⊥平面CDEF,平面ABCD∩平面CDEF=CD,AC⊂平面ABCD,∴AC⊥平面CDEF;(Ⅱ)由于平面ABCD⊥平面CDEF,又,且CF⊂平面CDEF,平面ABCD∩平面CDEF=CD,∴CF⊥平面ABCD,∵,∴四棱锥F﹣ABCD的体积为.【知识点】直线与平面垂直、棱柱、棱锥、棱台的体积。
人教A版高中数学必修三试卷高一年级期中考参考答案.docx

高中数学学习材料唐玲出品高一年级数学期中考参考答案一、选择题(每题3分,共10题,合计30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BACCBDAAAC二、填空题(每题3分,共7题,合计21分)11.12 12.3 13 .4π14.22 15.202海里/小时 16.272 17.34三、解答题:本大题共5小题,共49分) 18.23k =-或113k =或3132k ±= ……..7分19.解:(1)213()2cos 1cos()cos cos sin 2322xf x x x x x ωπωωωω=-++=+- 332cos sin 3sin 223x x x πωωω⎛⎫=-=+ ⎪⎝⎭,………..3分 由T AB 21==π,得22T ππω==,则1ω=……………..4分 (2)由(1)得33)32sin(3)(=+=πx x f ,则31)32sin(=+πx .由⎪⎭⎫⎝⎛∈2,0πx ,得322)32cos(-=+πx ,……………..6分 =-+=∴)3232sin(sin ππx x 32cos )32sin(ππ+x 32sin)32cos(ππ+-x616223)322()21(31-=⨯---⨯=………………10分 20.解:(I)由已知⎩⎨⎧=-+=+5)1(222232d b q d ∴0322=-+d d 得1=d 或23-=d又012>+=d q ∴1=d ⇒2=q ∴1+=n a n , 212+=n n b (6)分(Ⅱ)集合A 与集合B 的相同元素和为:302222432=+++ ……10分21.解(1)由已知得: cos 3sin cos cos c B b C a c B b C ⋅+==+ 3sin cos b C b C ∴=3tan 3C ∴=6C π∴= … …3分 (2)由正弦定理得2sin sin sin a b c A B C === 2sin ,2sin 2sin()6a Ab B A π∴===+ 22224sin sin ()423sin(2)63a b A A A ππ⎡⎤∴+=++==+-⎢⎥⎣⎦… …7分由于三角形为锐角三角形 32A ππ∴<<3sin(2)123A π∴<-≤ 227423a b ∴<+≤+… …10分22.解:(1)令1n =,则32111+2a S S =,即32111+2a a a =,所以12a =或11a =-或10a =又因为数列{}n a 的各项都是正数,所以12a =令2n =,则3321222+2a a S S +=,即332121212()2()a a a a a a +=+++解得13a =或12a =-或10a = 又数列{}n a 的各项都是正数,所以23a =… …2分 (2)33332123+2(1)n n na a a a S S ++++=33332123111+2(2)(2)n n n a a a a S S n ---∴++++=≥ 由(1)(2)-得32211(+2)(+2)n n n n n a S S S S --=-化简得到212(3)n n n a S S -=++ 21122(3)(4)n n n a S S n ---∴=++≥由(3)(4)-得221112(2)(2)n n n n n n a a S S S S -----=++-++化简得到2211n n n n a a a a ---=+,即11(3)n n a a n --=≥… …6分当2121n a a =-=时,,所以11(2)n n a a n --=≥ 所以数列{}n a 是一个以2为首项,1为公差的等差数列1(1)2(1)1n a a n d n n ∴=+-=+-=+… …8分(3)113(1)2n n n n b λ-+=+-⋅因为对任意的*n N ∈,都有1n n b b +>恒成立,即有12113(1)23(1)2n n n n n n λλ++-++-⋅>+-⋅ 化简得113(1)()32n nλ--<⋅ … …10分当n 为奇数时,13()32n λ<⋅恒成立,113()32λ<⋅,即12λ<当n 为偶数时,13()32n λ>-⋅恒成立,213()32λ>-⋅,即34λ>-3142λ∴-<< … …12分附加题(本大题共10分,每小题5分)1. (0,3⎤⎦2. 372。
2020-2021厦门市双十中学高中必修三数学上期中试卷(附答案)

2020-2021厦门市双十中学高中必修三数学上期中试卷(附答案)一、选择题1.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.一组数据的平均数为m ,方差为n ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为m B .这组新数据的平均数为a m + C .这组新数据的方差为an D .这组新数据的标准差为a n3.在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<4.在去年的足球甲A 联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( )①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球. A .1个 B .2个C .3个D .4个5.设a 是甲抛掷一枚骰子得到的点数,则方程220x ax ++=有两个不相等的实数根的概率为( ) A .23B .13C .12D .5126.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数120,140的人数占大半.则说法正确的是()为60;④分数在区间[)A.①②B.①③C.②③D.②④7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,88.微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?()A.1.19B.1.23C.1.26D.1.319.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A.336B.510C.1326D.360310.若框图所给的程序运行结果为,那么判断框中应填入的关于k 的条件是A .?B .?C .?D .?11.已知函数()cos3xf xπ=,根据下列框图,输出S的值为()A.670B.16702C.671D.67212.已知平面区域()2,4yx yy x⎧⎫≥⎧⎪⎪Ω=⎨⎨⎬≤-⎪⎪⎪⎩⎩⎭,直线2y mx m=+和曲线24y x=-有两个不的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为()P M.若01m≤≤,则()P M的取值范围为()A.22,π-⎛⎤⎥π⎝⎦B.22,π+⎛⎤⎥π⎝⎦C.212,π+⎡⎤⎢⎥π⎣⎦D.212,π-⎡⎤⎢⎥π⎣⎦二、填空题13.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.14.执行如下图所示的程序框图,若输入n的值为6,则输出S的值为__________.15.执行如图所示的程序框图,则输出S的结果为________.16.用秦九韶算法计算多项式f(x)=2x 4-x 3+3x 2+7,在求x=2时对应的值时,v 3的值为___. 17.以下四个命题错误的序号为_______(1) 样本频率分布直方图中小矩形的高就是对应组的频率.(2) 过点P(2,-2)且与曲线33y x x =-相切的直线方程是9160x y +-=.(3) 若样本1210,,x x x L 的平均数是5,方差是3,则数据121021,21,,21x x x +++L 的平均数是11,方差是12.(4) 抛掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”是对立事件.18.已知样本数据12345,,,,a a a a a 的方差222222123451(20)5s a a a a a =++++-,则样本数据1234521,21,21,21,21a a a a a +++++的平均数为__________.19.为了了解某地区高三学生的身体发育情况,抽查了该地区400名年年龄为17岁~18岁的男生体重()kg ,得到频率分布直方图如图5所示:根据图2可得这200名学生中体重在[64.5,76.5]的学生人数是__________. 20.已知变量,x y 之间的一组数据如下表:x0 1 2 3 y 1357则y 与x 的线性回归方程y b x a ∧∧∧=+必过点_______________三、解答题21.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:(1)画出散点图;(2)如果y 与x 有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时生产的产品中有缺陷的零件最多为10个,那么机器的运转速度应控制在什么范围内?22.某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了6次试验,得到数据如下:(1)试对上述变量x 与y 的关系进行相关性检验,如果x 与y 具有线性相关关系,求出y 对x 的回归直线方程;(2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?附:相关性检验的临界值表()()nniii ix x y y x y nx yr ---==∑∑()()()1122211n niii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑$,$$y abx =+$42.0≈27.5≈23.现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表:(1)求y 关于x 的线性回归方程(计算结果精确到0.01);(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1).参考公式及数据:回归直线方程ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为 121(x x)(y y)ˆˆˆ,(x x)niii nii ba y bx ==--==--∑∑,其中72193,9.3,()()9.9i ii x y x x y y ===--=∑. 24.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,计算得10180i i x ==∑,101120i i y ==∑,101184i i i x y ==∑,1021720ii x==∑.(1)求家庭的月储蓄y 关于月收入x 的线性回归方程y bx a =+$$$,并判断变量x 与y 之间是正相关还是负相关;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.(注:线性回归方程y bx a =+$$$中,1221ni ii nii x y nx yb xnx==-⋅=-∑∑$,其中x ,y 为样本平均值.)25.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率; (Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.26.[2019·朝鲜中学]在如图所示的程序框图中,有这样一个执行框1()i i x f x -=,其中的函数关系式为42()1x f x x -=+,程序框图中的D 为函数()f x 的定义域.(1)若输入04965x =,请写出输出的所有x 的值; (2)若输出的所有i x 都相等,试求输入的初始值0x .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为222()214a a a ππ-=-.考点:几何概型,圆的面积公式.2.D解析:D 【解析】 【分析】计算得到新数据的平均数为am ,方差为2a n ,标准差为a n ,结合选项得到答案. 【详解】根据题意知:这组新数据的平均数为am ,方差为2a n ,标准差为a n . 故选:D 【点睛】本题考查了数据的平均值,方差,标准差,掌握数据变化前后的关系是解题的关键.3.B解析:B 【解析】 【分析】 【详解】因为,[0,1]x y ∈,对事件“12x y +≥”,如图(1)阴影部分,对事件“12x y -≤”,如图(2)阴影部分, 对为事件“12xy ≤”,如图(3)阴影部分,由图知,阴影部分的面积从下到大依次是,正方形的面积为,根据几何概型公式可得231p p p <<.(1) (2) (3) 考点:几何概型.4.D解析:D 【解析】在(1)中,一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1, ∴平均说来一队比二队防守技术好,故(1)正确;在(2)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴二队比一队技术水平更稳定,故(2)正确;在(3)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴一队有时表现很差,有时表现又非常好,故(3)正确;在(4)中,二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4, ∴二队很少不失球,故(4)正确. 故选:D .5.A解析:A 【解析】分析:可以按照等可能时间的概率来考虑,可以先列举出试验发生包含的事件数,再求出满足条件的事件数,从而根据概率计算公式求解.详解:因为a 是抛掷一枚骰子得到的点数,所以试验发生包含的事件总数为6, 方程220x ax ++=有两个不等实根,所以280a ->, 以为a 为正整数,所以3,4,5,6a =,即满足条件的事件有4种结果,所以所求的概率为4263P ==,故选A. 点睛:本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,利用排列组合有关知识,正确找出随机事件A 包含的基本事件的个数和试验中基本事件的总数代入公式()()n A P n =Ω.6.B解析:B 【解析】 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.7.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图8.C解析:C 【解析】 【分析】根据频率分布直方图中平均数的计算方法求解即可. 【详解】由题,区间[)[)[)[)0.8,1.0,1.0,1.2,1.2,1.4,1.6,1.8所占频率分别为:0.20.50.1,0.2 1.250.25,0.2 2.250.45,0.20.250.05,⨯=⨯=⨯=⨯=故区间[)1.4,1.6所占频率为10.10.250.450.050.15----=. 故0.90.1 1.10.25 1.30.45 1.50.15 1.70.05 1.26x =⨯+⨯+⨯+⨯+⨯=. 故选:C 【点睛】本题主要考查了补全频率分布直方图的方法以及根据频率分布直方图计算平均数的问题.属于中档题.9.B解析:B 【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为321737276510⨯+⨯+⨯+=,故选B.考点:1、阅读能力及建模能力;2、进位制的应用.10.A【解析】 【分析】根据所给的程序运行结果为,执行循环语句,当计算结果S 为20时,不满足判断框的条件,退出循环,从而到结论.【详解】由题意可知输出结果为, 第1次循环,,, 第2次循环,,,此时S 满足输出结果,退出循环,所以判断框中的条件为.故选:A . 【点睛】本题主要考查了循环结构,是当型循环,当满足条件,执行循环,同时考查了推理能力,属于基础题.11.C解析:C 【解析】 【分析】根据框图的流程,依次计算前六次的运算结果,判断终止运行的n 值,再根据余弦函数的周期性计算即可. 【详解】由程序框图知:第一次运行()11cos 32f π==,10.1122S n =+=+=; 第二次运行()212cos32f π==-,12S =,213n =+=, 第三次运行()3cos 1f π==-,12S =,314n =+=, 第四次运行()414cos 32f π==-,12S =,415n =+=, 第五次运行()515cos32f π==,1S =,6n =, 第六次运行()6cos21f π==,2S =,7n =, 直到2016n =时,程序运行终止,Q 函数cos3n y π=是以6为周期的周期函数,201563355=⨯+, 又()()2016cos336cos 21381f ππ==⨯=,∴若程序运行2016次时,输出2336672S =⨯=, ∴程序运行2015次时,输出33621671S =⨯-=.【点睛】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.12.D解析:D 【解析】 【分析】判断平面区域,利用特殊值法排除选项,然后利用特殊法,即可求解相应概率的范围,得到答案. 【详解】由题意知,平面区域()20,4y x y y x ⎧⎫≥⎧⎪⎪⎪Ω=⎨⎨⎬≤-⎪⎪⎪⎩⎩⎭,表示的图形是半圆是半圆以及内部点的集合,如图所示,又由直线2y mx m =+过半圆24y x =-上一点(2,0)-,当0m =时直线与x 轴重合,此时()1P M =,故可排除,A B , 若1m =,如图所示,可求得2()2P M ππ-=, 所以()P M 的取值范围为212,π-⎡⎤⎢⎥π⎣⎦.【点睛】本题主要考查了集合概型的应用,其中解答中判断平面区域,利用特殊值法排除选项,然后利用特殊法,求解相应概率的范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题13.【解析】14.15【解析】程序执行过程为:当i=1s=1i<6s=1当i=3i<6s=3当i=5i<6s=15当i=7i>6退出s=15填15解析:15 【解析】 程序执行过程为:当i=1,s=1,i<6,s=1,当i=3,i<6,s=3,当i=5,i<6,s=15,当i=7,i>6,退出s=15.填15.15.30【解析】时继续时继续时停止输出点睛:本题考查的是算法与流程图算法与流程图的的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循解析:30 【解析】3i =时,0236S =+⨯=,继续, 5i =时,62516S =+⨯=,继续,7i =时,162730S =+⨯=,停止, 输出30S =.点睛:本题考查的是算法与流程图.算法与流程图的的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.16.【解析】f(x)=2x4-x3+3x2+7=(((2x-1)x+3)x)x+7∴v0=2v1=2×2-1=3v2=3×2+3=9v3=9×2=18故答案为:18解析:【解析】f (x )=2x 4-x 3+3x 2+7=(((2x -1)x +3)x )x +7, ∴v 0=2,v 1=2×2-1=3,v 2=3×2+3=9,v 3=9×2=18. 故答案为:18.17.(1)(2)(4)【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;(2)先考虑点是切点的情形求出切线方程然后设切点为(x0y0)根据切点与点(2-2)的斜率等于切线的斜率建立等量关解析:(1)(2)(4) 【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;(2)先考虑点22-(,)是切点的情形,求出切线方程,然后设切点为(x 0,y 0),根据切点与点(2,-2)的斜率等于切线的斜率建立等量关系,解之即可求出切点,从而求出切线方程.对于(3),利用平均数与方差的性质分别进行解答即可得出答案. 对于(4),由对立事件的定义可知其错误.详解:对于(1),频率分布直方图中每个小矩形的高是该组的频率与组距的比值,∴(1)错误;对于(2), 设直线222233|9x l y k x y x y =+=-'=-∴'=-Q :().,, 又∵直线与曲线均过点22-(,),于是直线22y k x ()+=- 与曲线33y x x =- 相切于切点22-(,)时,9k =-. 若直线与曲线切于点0002x y x ≠(,)(), 则320000000002232122y y k y x x x x x x ++==-∴=-----Q ,,,又200|33k y x x x ='==-Q ,2220000021332240x x x x x ∴---=-∴--=,, 200021330x x k x ≠∴=-∴=-=Q ,,,故直线l 的方程为9160x y +-=或2y =-.故(2)错;对于(3),若样本1210,,x x x L 的平均数是5,方差是3,则数据121021,21,,21x x x +++L 的平均数是25111,⨯+= ,方差是22312⨯=.故(3)正确;对于(4),掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”不是对立事件.故(4)错误. 故选(1)(2)(4)点睛:本题考查了频率分布直方图的应用问题,考查了利用导数研究曲线上某点切线方程,考查了样本平均数,方差,考查了对立事件的定义,是基础题..18.或【解析】设样本数据的平均数为则方差:结合可得:即样本数据的平均数为2或-2则样本数据的平均数为:或故答案为或点睛:平均数与方差都是重要的数字特征是对总体的一种简明的描述它们所反映的情况有着重要的实解析:5或3- 【解析】设样本数据的平均数为a ,则方差:()()522152215522115221522115125125512555155i i i i i i i i i i i i i s a a a aa a a a a a a a a a a a =======-=-+⎛⎫=-+ ⎪⎝⎭⎛⎫=-⨯+ ⎪⎝⎭⎛⎫=- ⎪⎝⎭∑∑∑∑∑∑ 结合()222222123451205s a a a a a =++++-可得:2520,2a a =∴=±, 即样本数据12345,,,,a a a a a 的平均数为2或-2,则样本数据1234521,21,21,21,21a a a a a +++++的平均数为:2215⨯+=或()2213⨯-+=-.故答案为5或3-.点睛:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.要注意其区别与联系.19.232【解析】由图可知:段的频率为则频数为人解析:232 【解析】由图可知:64.576.5~段的频率为1(0.010.030.050.050.07)20.58-++++⨯=, 则频数为4000.58232⨯=人.20.【解析】由题意∴x 与y 组成的线性回归方程必过点(154) 解析:()1.5,4【解析】由题意,()()110123 1.5,1357444x y =+++==+++= ∴x 与y 组成的线性回归方程必过点(1.5,4)三、解答题21.(1)见解析;(2)ˆ0.72860.8575yx =-;(3)机器的转速应控制在14.9转/秒以下 【解析】 【分析】(1)由表中数据做图(2)根据线性回归方程中公式求ˆ,ba 即可写出方程(3)利用线性回归方程建立不等式求解. 【详解】(1)画出散点图,如图所示:(2)4421112.5,8.25,438,660,i ii i i x y x yx ======∑∑41422214438412.58.250.7286660412.ˆ54i i i i i x y xy bx x ==--⨯⨯∴==≈-⨯-∑∑,8.250.728612.50.857ˆˆ5ay bx =-≈-⨯=-. 故回归直线方程为0.72860.8575ˆyx =-. (3)要使100.72860.857510y x ≤-≤,则,14.9019x ≤.故机器的转速应控制在14.9转/秒以下. 【点睛】本题主要考查了散点图,线性回归方程,利用线性回归方程解决问题,属于中档题. 22.(1)答案见解析.(2)96 【解析】 【分析】(1)根据表中所给数据,计算出||r ,即可求得答案.(2)每小时加工零件的数量,即60x =,将60x =代入ˆ0.65757yx =+,即可求得答案. 【详解】(1)由表中数据得:6117950i ii x y==∑,6219100i i x ==∑,62139158i i y ==∑,35,80x y ==∴0.05||0.997r r ==>从而有95%的把握认为x 与y 之间具有线性相关关系,∴此求回归直线方程是有意义的.计算得:ˆˆ0.657,57ba== ∴ˆ0.65757yx =+ (2)Q 每小时加工零件的数量,即60x =将60x =代入ˆ0.65757y x =+ ˆ96.42y= 故每小时加工零件的数量额定为96比较合理 【点睛】本题考查回归直线方程以及应用,考查基本分析与求解能力,属基本题.23.(1) ˆ0.12 1.93yx =-. (2) 随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心。
高中数学选择性必修三 6 2 1 排列及排列数(精练)(含答案)

6.2.1 排列及排列数(精练)【题组一 排列数】1(2020·新疆)已知2132n A =,则n =( )A .11B .12C .13D .14【答案】B【解析】∵2132n A =,∴(1)132n n -=,整理,得,21320n n --=;解得12n =,或11n =- (不合题意,舍去);∴n 的值为12. 故选:B.2.设m ∈N *,且m <25,则(20﹣m )(21﹣m )…(26﹣m )等于( ) A .726m A - B .726m C -C .720m A -D .626m A -【答案】A【解析】根据题意,(20﹣m )(21﹣m )…(26﹣m )()()72626!19!mm A m --==-,故选:A .3.(2021·江苏常州·高二期末)(多选)由0,1,2,3,4,5,6,7,8,9这10个数字组成无重复数字的五位数,其中偶数的个数是( ) A .41139488A A A A +⋅⋅ B .41439498()A A A A +-C .54143109498()A A A A A -+- D .54143109598()A A A A A ---【答案】ABD【解析】对于A ,如果个位是0,则有49A 个无重复数字的偶数;如果个位不是0,则有113488A A A ⋅⋅个无重复数字的偶数,所以共有41139488A A A A +⋅⋅个无重复数字的偶数,故A 正确;对于B ,由于13438898A A A A ⋅=-,所以4113414394889498()A A A A A A A A +⋅⋅=+-,故B 正确; 对于C ,由于5441099A A A -≠,所以4143541439498109498()()A A A A A A A A A +-≠-+-,故C 错误;对于D ,由于541433411310959889488()41A A A A A A A A A A ---==+⋅⋅,故D 正确. 故选:ABD .4.(2020·山东莱州一中)下列等式中,错误的是( )A .11(1)m m n n n A A +++=B .!(2)!(1)n n n n =--C .!m m nnA C n =D .11m mn n A A n m+=- 【答案】C【解析】通过计算得到选项A,B,D 的左右两边都是相等的.对于选项C, !m m nnA C m =,所以选项C 是错误的.故答案为C.5.(2020·靖远县第四中学)若532m m A A =,则m 的值为( )A .5B .6C .7D .8【答案】A【解析】由532m m A A =,得(1)(2)(3)(4)2(1)(2)m m m m m m m m ----=--,且5m ≥所以(3)(4)2m m --=即27100,5m m m -+=∴=或2(5m m =≥舍去). 故选:A6.(2020·海南枫叶国际学校)设*a N ∈,28a <,则等式()()()35282935ma a a a A ---⋅⋅⋅-=中m =______ . 【答案】8 【解析】()()()()3535343336m a A a a a a m -=---⋅⋅⋅--,2836a a m ∴-=--,解得:8m =.故答案为:8.7.(2020·江苏宿迁·高二期中)已知2247n n A A -=,那么n =________.【答案】7【解析】∵2247n n A A -=,∴()()()1745n n n n -⨯--=,5n ≥,化为:()()31070n n --=,解得7n =,故答案为:7.8.(2021·江苏)已知111095mn A =⨯⨯⨯⨯,则mn 为__________.【答案】77【解析】已知(1)(2)(1)11109mn A n n n n m =⨯-⨯-⋯⨯-+=⨯⨯⋯,5⨯,11n ∴=,15n m -+=,7m ∴=,则77mn =.故答案为:77.9.(2021·浙江余姚中学)已知则20!133n A +=,则n =________;计算323n nn A +A =+________.【答案】12 726【解析】(1)()()20!11133,2n A n n n +=+-=≥,即()()213212110n n n n --=-+=,所以12n =;(2)由题可知,323333n n n n n n +≤≥⎧⎧⇒⇒=⎨⎨≤≤⎩⎩,所以3632363654321321726n n n A +A =A +A +=⨯⨯⨯⨯⨯+⨯⨯=故答案为:(1). 12 (2). 72612.(1)解不等式288A 6A x x -<; (2)解方程4321A 140A x x +=.【答案】(1)8(2)3【解析】(1)由288A 6A x x -<,得()()8!8!68!10!x x <⨯--,化简得x 2-19x +84<0,解之得7<x <12,① 又∴2<x ≤8,②由①②及x ∈N *得x =8. (2)因为2143x x +≥⎧⎨≥⎩,,所以x ≥3,*x N ∈,由4321A 140A x x +=得(2x +1)2x (2x -1)(2x -2)=140x (x -1)(x -2).化简得,4x 2-35x +69=0,解得x 1=3,2234x =(舍去). 所以方程的解为x =3. 【题组二 排队问题】1.(2020·江西九江一中)5人随机排成一排,其中甲、乙不相邻的概率为( ) A .15B .25C .35D .45【答案】C【解析】将5人随机排成一列,共有55120A =种排列方法;当甲、乙不相邻时,先将5人中除甲、乙之外的3人排成一列,然后将甲、乙插入,故共有323461272A A=⨯=种排列方法,则5人随机排成一排,其中甲、乙不相邻的概率为7231205P==.故选:C.2.(2020·灵丘县豪洋中学)5名同学合影,其中3位男生,2位女生,站成了一排,要求3位男生不相邻的排法有()A.12种B.10种C.15种D.9种【答案】A【解析】首先排女生,再排男生,然后再根据插空法可得:23 232132112A A⋅=⨯⨯⨯⨯=.故选:A3.(2021·河南))三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有( )A.72种B.108种C.36种D.144种【答案】D【解析】:先将男生甲与男生乙“捆绑”,有22A种方法,再与另一个男生排列,则有22A种方法,三名女生任选两名“捆绑”,有23A种方法,再将两组女生插空,插入男生3个空位中,则有23A种方法,利用分步乘法原理,共有22222233144A A A A=种.故选:D.4.(2020·渝中·重庆巴蜀中学高三月考)在新冠肺炎疫情防控期间,某记者要去武汉4个方舱医院采访,则不同的采访顺序有()A.4种B.12种C.18种D.24种【答案】D【解析】由题意可得不同的采访顺序有4424A=种,故选:D.5.(2020·湖南永州·高三月考)某县政府为了加大对一贫困村的扶贫力度,研究决定将6名优秀干部安排到该村进行督导巡视,周一至周四这四天各安排1名,周五安排2名,则不同的安排方法共有( ) A .320种 B .360种 C .370种 D .390种【答案】B【解析】由题意分步进行安排:第一步:从6名优秀干部中任选4人,并排序到周一至周四这四天,有46A 种排法; 第二步:剩余两名干部排在周五,只有1种排法.故不同的安排方法共有4616543360A ⨯=⨯⨯⨯=种.故选:B.6.(2020·重庆)6月,也称毕业月,高三的同学们都要与相处了三年的同窗进行合影留念.现有4名男生、2名女生照相合影,若女生必须相邻,则有( )种排法. A .24 B .120 C .240 D .140【答案】C【解析】将2名女生捆绑在一起,当作1个元素,与另4名男生一起作全排列,有55120A =种排法,而2个女生可以交换位置,所以共有52521202240A A ⋅=⨯=排法,故选:C.7.(2021·河南)某校迎新晚会上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校迎新晚会节目演出顺序的编排方案共有( ) A .120种 B .156种 C .188种D .240种【答案】A【解析】先考虑将丙、丁排在一起的排法种数,将丙、丁捆绑在一起,与其他四人形成五个元素,排法种数为25252120240A A =⨯=,利用对称性思想,节目甲放在前三位或后三位的排法种数是一样的, 因此,该校迎新晚会节目演出顺序的编排方案共有2401202=种,故选A. 8.(2020·莒县教育局教学研究室高二期中)3名男生、3名女生排成一排,男生必须相邻,女生也必须相邻的排法种数为( ) A .2 B .9C .72D .36【答案】C【解析】根据题意男生一起有336A =排法,女生一起有336A =排法,一共有3333272A A =种排法,故选:C ..9.(2021·甘肃兰州一中)有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答) 【答案】60【解析】将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有35A =5×4×3=60(种). 10(2020·北京高二期末)某年级举办线上小型音乐会,由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目丙必须排在节目乙的下一个,则该小型音乐会节目演出顺序的编排方案共有______种.(用数字作答) 【答案】42【解析】由题意知,甲的位置影响乙的排列,∴①甲排在第一位共有4424A =种,②甲排在第二位共有133318A A =种,∴故编排方案共有241842+=种. 故答案为:42.11.(2020·江苏省太湖高级中学)已知4名学生和2名教师站在一排照相,求: (1)两名教师必须排中间,有多少种排法?(2)两名教师必须相邻且不能排在两端,有多少种排法? 【答案】(1)48种;(2)144种.【解析】解:(1)先排教师有22A 种方法,再排学生有44A 种方法, 则242422448A A ⋅=⨯=,答:两名教师必须排中间,共有48种排法. (2)24243624144A A ⨯⋅=⨯=,答:两名教师必须相邻且不能排在两端,共有144种排法. 12.(2021·防城港市防城中学)5个男同学和4个女同学站成一排 (1)4个女同学必须站在一起,有多少种不同的排法? (2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)其中甲、乙两同学之间必须有3人,有多少种不同的排法? (4)男生和女生相间排列方法有多少种?【答案】(1)17280;(2)43200;(3)302400;(4)2880. 【解析】(1)4个女同学必须站在一起,则视4位女生为以整体,可得排法为646417280A A =;(2)先排5个男同学,再插入女同学即可,所以排法为:545643200A A =;(3)根据题意可得排法为:33257325302400C A A A =;(4)5个男生中间有4个空,插入女生即可,故有排法54542880A A =.13.(2020·吉林油田第十一中学高三月考(理))一场小型晚会有3个唱歌节目和2个相声节目,要求排出一个节目单.(1)2个相声节目要排在一起,有多少种排法?(2)第一个节目和最后一个节目都是唱歌节目,有多少种排法? (3)前3个节目中要有相声节目,有多少种排法? (要求:每小题都要有过程,且计算结果都用数字表示) 【答案】(1)48;(2)36;(3)108.【解析】(1)把两个相声节目捆绑在一起作为一个节目与其他节目排列共有排法424248A A =;(2)选两个唱歌节目排在首尾,剩下的3个节目在中间排列,排法为233336A A =;(3)5个节目全排列减去后两个都是相声的排法,共有53253212012108A A A -=-=. 14(2020·江苏省前黄高级中学高二期中)3男3女共6个同学排成一行. (1)女生都排在一起,有多少种排法? (2)任何两个男生都不相邻,有多少种排法?(3)男生甲与男生乙中间必须排而且只能排2名女生,女生又不能排在队伍的两端,有多少种排法? 【答案】(1)144;(2)144;(3)24【解析】(1)将3名女生看成一个整体,就是4个元素的全排列,有44A 种排法,又3名女生内部有33A 种排法,所以共有44A ⋅33A 144=种排法.(2)女生先排,女生之间以及首尾共有4个空隙, 任取其中3个安插男生即可,所以任何两个男生都不相邻的排法共有33A ⋅34A 144=种排法.(3)先选2个女生排在男生甲、乙之间,有23A 种排法,又甲、乙有22A 种排法,这样就有23A ⋅22A 种排法,然后把他们4人看成一个整体(相当于一个男生), 这一元素以及另1名男生排在首尾,有22A 种排法, 最后将余下的女生排在中间,有1种排法,故总排法为23A ⋅222224A A ⋅=种排法,【题组三 数字问题】1.(2020·江苏高二期中)由1,2,3,4,5,6组成没有重复数字且1,3不相邻的六位数的个数是( ) A .36 B .72 C .600 D .480【答案】D【解析】根据题意将2,4,5,6进行全排列,再将1,3插空得到4245480A A ⨯=个.故选:D .2.(2021·龙港市第二高级中学)用1,2,3,4,5组成一个没有重复数字的五位数,三个奇数中仅有两个相邻的五位数有________. 【答案】72【解析】用1,2,3,4,5组成一个没有重复数字的五位数,共有55120A =个;三个奇数中仅有两个相邻;其对立面是三个奇数都相邻或者都不相邻;当三个奇数都相邻时,把这三个奇数看成一个整体与2和4全排列共有333336A A ⨯=个;三个奇数都不相邻时,把这三个奇数分别插入2和4形成的三个空内共有232312A A ⨯=个; 故符合条件的有120123672--=; 故答案为:72.3.(2020·上海浦东新·华师大二附中高二期中)由0,1,2,3组成的没有重复数字的四位数有________个; 【答案】18;【解析】因为第一个数字不能为0,所以先排第一个数字,再把剩下的三个数字排列,则一共有13333618A A =⨯=种排法.故答案为:18.4.(2020·南开大学附属中学高三月考)由123456、、、、、组成没有重复数字且13、都不与5相邻的六位偶数的个数是________ 【答案】108【解析】先确定个位数为偶数,有3种方法,再讨论:若5在首位或十位,则1,3有三个位置可选,其排列数为22323A A ⨯⨯;若5在百位、千位或万位,则1,3有两个位置可选,其排列数为22223A A ⨯⨯;从而所求排列数为222232223233108.A A A A ⨯⨯⨯+⨯⨯⨯=5.(2021·康保衡水一中联合中学)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为____ . 【答案】72【解析】要组成无重复数字的五位奇数,则个位只能排1,3,5中的一个数,共有3种排法,然后还剩4个数,剩余的4个数可以在十位到万位4个位置上全排列,共有4424A =种排法,由分步乘法计数原理得,由1,2,3,4,5组成的无重复数字的五位数中奇数有32472⨯=个.故答案为:72. 6(2020·湖北武汉为明学校)用0,1,2,3这4个数字组成是偶数的四位数,这样的数共有_____个. 【答案】10【解析】解:个位是0,有336A =个;个位不是0,有2224A =个,故共有6410+=个.故答案为:10.7.(2020·江苏省太湖高级中学高二期中)把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排成一个数列. (1)45312是这个数列的第几项? (2)这个数列的第71项是多少? (3)求这个数列的各项和.【答案】(1)第95项;(2)第71项是3开头的五位数中第二大的数;(3)3999960. 【解析】(1)先考虑大于45312的数,分为以下两类:第一类5开头的五位数有:4424A =第二类4开头的五位数有:45321一个∴不大于45312的数有:5454112024195A A --=--=(个) 即45312是该数列中第95项.(2)1开头的五位数有:4424A = 2开头的五位数有:4424A = 3开头的五位数有:4424A =共有24372⨯=(个).所以第71项是3开头的五位数中第二大的数,即35412.(3)因为1,2,3,4,5各在万位上时都有4424A =个五位数,所以万位数上的数字之和为454(12345)10A ++++⋅⋅同理,它们在千位,百位,十位,个位上也都有4424A =个五位数,所以这个数列的各项和为()4432104(12345)1010101010A ++++⋅⋅++++1524111113999960=⨯⨯=.8.(2021·黄梅国际育才高级中学高二期中(理))用0、1、2、3、4这五个数字组成无重复数字的自然数.(1)在组成的三位数中,求所有偶数的个数;(2)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301、423等都是“凹数”,试求“凹数”的个数. 【答案】(1)30;(2)20. 【解析】(1)偶数分为二类:若个位数0,则共有2412A =个;若个位数是2或4,则首位数不能为0,则共有23318⨯⨯=个; 所以,符合条件的三位偶数的个数为121830+=; (2)“凹数”分三类:若十位是0,则有2412A =个;若十位是1,则有236A =个; 若十位是2,则有222A =个;所以,符合条件的“凹数”的个数为126220++=.。
人教版高中数学必修3第三章测试卷

测试卷一.选择题: (每小题5分,共60分)1. 某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是()A.1000名学生是总体B.每个学生是个体C.100名学生的成绩是一个个体D.样本的容量是1002. 将两个数a=8,b=17下面语句正确一组是(A. B.3. 给出以下四个问题,①输入一个数x,输出它的相反数.②求面积为6的正方形的周长.③求三个数a,b,c中的最大数.④求函数.1.2{)(≥-<+= xx xxxf的函数值. 其中不需要用条件语句来描述其算法的有( )A. 1个B. 2个C. 3个D. 4个4. 一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )(A)81.2, 4.4 (B)78.8, 4.4 (C)81.2, 84.4 (D)78.8, 75.65.关于频率分布直方图的下列有关说法正确的是( )(A)直方图的高表示取某数的频率(B)直方图的高表示该组上的个体在样本中出现的频率(C)直方图的高表示取某组上的个体在样本中出现的频数与组距的比值(D)直方图的高表示取该组上的个体在样本中出现的频率与组距的比值6. 将389 化成四进位制数的末位是( )A. 1B. 2C. 3D. 07. 下列各数中最小的数是( )A.)9(85 B.)6(210 C.)4(1000 D.)2(1111118. 用秦九韶算法计算多项式1876543)(23456++++++=xxxxxxxf当4.0=x时的值时,需要做乘法和加法的次数分别是( )A. 6 , 6B. 5 , 6C. 5 , 5D. 6 , 59. 某校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一,高二,高三各年级抽取的人数分别为()A.45,75,15B.45,45,45C.30,90,15D.45,60,3010. 甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为和,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A.甲B.乙C.甲、乙相同D.不能确定11. 从2 006名学生中选取50名组成参观团,若采用以下方法选取:先用简单随机抽样从2 006名学生中剔除6名,再从2 000名学生中随机抽取50名.则其中学生甲被剔除和被选取的概率分别是( )(A) 311 00340, (B) 311 00040,(C) 3251 0031003, (D) 3251 0001 003,12. 上右程序运行后输出的结果为 ( ) A. 3 4 5 6 B. 4 5 6 7 C. 5 6 7 8 D. 6 7 8 9 二. 填空题.(每小题4分,共16分) 13.. (1)将二进制数(2)101101化为十进制数为______________(2)将十进制1375转化为六进制数为_____________(6) (3)212(8)= (2)14. 在一次实验中,测得(x, y)的四组值分别是 A(1,2),B(2,3),C(3,4),D(4,5).则y 与x 之间的回归直线方程为______________________________15. 下左程序运行后输出的结果为_________________________.16问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有 500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个 容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法.其中问题与方法 能配对的是① ② 。
(典型题)高中数学必修三第三章《概率》测试题(包含答案解析)(1)

一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A .15B .13C .35D .233.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .344.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-5.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4136.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( )A .916B .58C .181288D .5127.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线下方的概率为( ) A .25B .35 C .34D .128.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .239.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为 A .25B .35C .38D .5810.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+11.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为26,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为20,现从1、2、3、4、5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .310B .15C .110D .32012.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()3323π- B ()323π-C ()323π+ D ()23323ππ-+二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.15.一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为______.16.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.17.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.18.在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为 .19.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.20.在边长为2的正△ABC 所在平面内,以A 3AB ,AC 于D ,E.若在△ABC 内任丢一粒豆子,则豆子落在扇形ADE 内的概率是________.三、解答题21.某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为[)0,10,[)10,20,[)20,30,[)30,40,[]40,50.(1)求频率分布直方图中a的值;(2)从统计学的角度说明学校是否需要推迟5分钟上课;(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求这两个学生的单程时30,40上的概率.间均落在[)22.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?23.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.一次购物量1至5件6至10件11至15件16至20件21件及以上顾客数(人)x3025y5结算时间(分钟/人)12345(1)确定,x y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率)24.安庆市某中学教研室从高二年级随机抽取了50名学生的十月份语文成绩(满分100分,成绩均为不低于40分的整数),得到如图所示的频率分布直方图.(1)若该校高二年级共有学生1000人,试估计十月份月考语文成绩不低于60分的人数; (2)为提高学生学习语文的兴趣,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[]90,100中选两位同学,共同帮助[)40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲乙恰好被安排在同一小组的概率.25.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a 的值,并由频率分布直方图估计该单位职工一天步行数的中位数; (2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数; (3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间150,(170]的概率.26.已知集合{(,)|[0,2],[1,1]}M x y x y =∈∈-. (1)若,x y Z ∈,求0x y +≥的概率; (2)若,x y R ∈,求0x y +≥的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭,可以求得sin()1θϕ+=,tan 2ϕ=,求出小正方形的边长和直角三角形两直角边的长,进而得到大正方形的边长,然后根据几何概型概率公式求解即可. 【详解】 由πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭可得sin 2cos 5θθ+=, 即5sin()5θϕ+=,即sin()1θϕ+=,且tan 2ϕ=,所以2πθϕ+=,所以直角三角形较大的锐角为ϕ,较小的锐角为θ,如图,设小正方形的边长为a ,直角三角形较大的锐角为θ、较大的锐角为为ϕ, 较小的直角的边长b ,则直角三角形较大的直角边长为+a b ,∵tan 2a bbϕ+==, ∴a b =,∴22(2)5a a a +=, 由几何概型概率公式可得,所求概率为2215(5)P a ==. 故选:B . 【点睛】解答几何概型概率的关键是分清概率是属于长度型的、面积型的、还是体积型的,然后再根据题意求出表示基本事件的点构成的线段的长度(或区域的面积、空间几何体的体积),最后根据公式计算即可.2.A解析:A 【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可. 【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1), 而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A. 【点睛】本题主要考查了古典概型,基本事件,属于容易题.3.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.4.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-.故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.5.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.6.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=, 这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.7.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.8.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.9.D解析:D 【分析】直接列举出所有的抽取情况,再列举出符合题意的事件数,即可计算出概率。
2019年高中必修三数学上期中第一次模拟试卷(附答案)(1)

2019年高中必修三数学上期中第一次模拟试卷(附答案)(1)一、选择题1.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据: 天数x (天) 3 4 56 繁殖个数y (千个)2.5344.5由最小二乘法得y 与x 的线性回归方程为ˆˆ0.7yx a =+,则当7x =时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95D .6.153.在本次数学考试中,第二大题为多项选择题.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分,小明因某原因网课没有学习,导致题目均不会做,那么小明做一道多选题得5分的概率为( ) A .115B .112C .111D .144.从区间[]0,2随机抽取4n 个数1232,,,...,n x x x x ,1232,,,...,n y y y y 构成2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,其中两数的平方和小于4的数对有m 个,则用随机模拟的方法得到的圆周率疋的近似值为( ) A .2m nB .2mnC .4m nD .16m n5.如图所示的程序框图的算法思路源于世界数学名题“3x +1问题”.执行该程序框图,若输入的N =3,则输出的i =A .9B .8C .7D .66.若干个人站成一排,其中为互斥事件的是( )A .“甲站排头”与“乙站排头”B .“甲站排头”与“乙不站排尾”C .“甲站排头”与“乙站排尾”D .“甲不站排头”与“乙不站排尾” 7.已知0,0,2,a b a b >>+=则14y a b=+的最小值是 ( ) A .72B .4C .92D .58.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A .()()1212,p p E E ξξ><B .()()1212,p p E E ξξC .()()1212,p p E E ξξ>>D .()()1212,p pE E ξξ<<9.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到200住在第一营区,从201到500住在第二营区,从501到600住在第三营区,三个营区被抽中的人数依次为( ). A .16,26,8 B .17,24,9C .16,25,9D .17,25,810.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x (万元)8.28.6 10.0 11.3 11.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元11.抛掷一个质地均匀的骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”,则一次试验中,事件A 或事件B 至少有一个发生的概率为( ) A .23B .13C .1 2D .5612.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k <二、填空题13.若x 是从区间[0,3]内任意选取的一个实数,y 也是从区间[0,3]内任意选取的一个实数,则221x y +<的概率为__________.14.如图所示,正六边形ABCDEF 中,线段AD 与线段BE 交于点G ,圆O 1,O 2分别是△ABG 与△DEG 的内切圆,圆O 3,O 4分别是四边形BCDG 与四边形AGEF 的内切圆,则往六边形ABCDEF 中任意投掷一点,该点落在图中阴影区域内的概率为_________.15.以下四个命题错误的序号为_______(1) 样本频率分布直方图中小矩形的高就是对应组的频率.(2) 过点P(2,-2)且与曲线33y x x =-相切的直线方程是9160x y +-=.(3) 若样本1210,,x x x L 的平均数是5,方差是3,则数据121021,21,,21x x x +++L 的平均数是11,方差是12.(4) 抛掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”是对立事件.16.根据下图所示的流程图,回答下面问题:若a =50.6,b =0.65,c =log0.65,则输出的数是________.17.下方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为14,乙组数据的平均数为16,则x y +的值为__________.18.为了调查某班学生做数学题的基本能力,随机抽查部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为[)45,55,[)55,65,[)65,75,[)75,85,[)85,95,由此得到频率分布直方图如下图,则这些学生的平均分为__________.19.如图,古铜钱外圆内方,外圆直径为6cm ,中间是边长为2cm 的正方形孔,随机地在古铜钱所在圆内任取一点,则该点刚好位于孔中的概率是__________;20.如图程序框图的输出结果是_________.三、解答题21.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,计算得10180i i x ==∑,101120i i y ==∑,101184i i i x y ==∑,1021720ii x==∑.(1)求家庭的月储蓄y 关于月收入x 的线性回归方程y bx a =+$$$,并判断变量x 与y 之间是正相关还是负相关;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.(注:线性回归方程y bx a =+$$$中,1221ni ii nii x y nx yb xnx==-⋅=-∑∑$,其中x ,y 为样本平均值.)22.我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务与责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准.为此,对全市家庭日常用水量的情况进行抽样抽查,获得了n 个家庭某年的用水量(单位:立方米),统计结果如下表及图所示.分组 频数 频率 [)0,10 25[)10,200.19[)20,3050[)30,40 0.23 [)40,500.18[)50,605(1)分别求出n ,,a b 的值;(2)若以各组区间中点值代表该组的取值,试估计全市家庭年均用水量;(3)从样本中年用水量在[]50,60(单位:立方米)的5个家庭中任选3个,作进一步的跟踪研究,求年用水量最多的家庭被选中的概率(5个家庭的年用水量都不相等). 23.某地随着经济的发展,居民收入逐年增长该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表: 年份x2014 2015 2016 2017 2018 储蓄存款y (千亿元)567810为便于计算,工作人员将上表的数据进行了处理(令2013,t x =-5=-z y ),得到下表:(1)求z 关于t 的线性回归方程;(2)通过(1)中的方程,求出y 关于x 的回归方程;(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?附:线性回归方程ˆˆˆybx a =+,其中1221ˆni ii nii x y nx yb xnx ==-⋅=-∑∑,ˆˆay bx =-. 24.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.(I )求线性回归方程;(参考数据:411120i ii x y==∑,421440i i x ==∑)(II )根据(I )的回归方程估计当气温为10℃时的用电量. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:1221ˆni ii nii x y nx ybxnx ==-⋅=-∑∑,ˆˆay b x =-⋅. 25.某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为m 、13、n ,己知三个社团他都能进入的概率为124,至少进入一个社团的概率为34,且m n >.(1)求m 与n 的值;(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.26.某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为[]0,100,样本数据分组为[)0,20,[)20,40,[)40,60,[)60,80,[]80,100.(1)求直方图中a 的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿; (3)求该校学生上学路上所需的平均时间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为222()214a a a ππ-=-.考点:几何概型,圆的面积公式. 2.B解析:B 【解析】 【分析】根据表格中的数据,求得样本中心为97(,)22,代入回归直线方程,求得ˆ0.35a =,得到回归直线的方程为ˆ0.70.35yx =+,即可作出预测,得到答案. 【详解】由题意,根据表格中的数据,可得34569 2.534 4.57,4242x y ++++++====, 即样本中心为97(,)22,代入回归直线方程ˆˆ0.7yx a =+,即79ˆ0.722a=⨯+, 解得ˆ0.35a=,即回归直线的方程为ˆ0.70.35y x =+,当7x =时,ˆ0.770.35 5.25y=⨯+=,故选B . 【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.3.C解析:C 【解析】 【分析】根据题意结合组合的知识可知,总的答案的个数为11个,而正确的答案只有1个,根据古典概型的计算公式,即可求得结果. 【详解】总的可选答案有:AB ,AC ,AD ,BC ,BD ,CD , ABC ,ABD ,ACD ,BCD ,ABCD ,共11个, 而正确的答案只有1个, 即得5分的概率为111p =. 故选:C. 【点睛】本题考查了古典概型的基本知识,关键是弄清一共有多少个备选答案,属于中档题.4.B解析:B 【解析】 【分析】根据随机模拟试验的的性质以及几何概型概率公式列方程求解即可. 【详解】 如下图:由题意,从区间[]0,2随机抽取的2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,落在面积为4的正方形内,两数的平方和小于4对应的区域为半径为2的圆内,满足条件的区域面积为2124ππ⋅=,所以由几何概型可知42π=m n ,所以2π=m n. 故选:B【点睛】本题主要考查几何概型,属于中档题.5.B解析:B 【解析】模拟执行程序,当3,1n i == ,n 是奇数,得10,2n i ==,不满足条件1n =,不满足条件n 是奇数,5,3n i == ,不满足条件1n =,满足条件n 是奇数,16,4n i ==,不满足条件1n =,不满足条件n 是奇数,8,5n i ==,不满足条件1n =,不满足条件n 是奇数,4,6n i ==,不满足条件1n =,不满足条件n 是奇数,2,7n i ==,不满足条件1n =,不满足条件n 是奇数,1,8n i ==,满足条件1n =,输出8i =,选B.点睛:本题主要考查的知识点是循环结构的程序框图,当循环的次数不多或有规律时,常常采用模拟循环的方法解答,属于基础题.6.A解析:A 【解析】 【分析】根据不能同时发生的两个事件,叫互斥事件,依次判断. 【详解】根据互斥事件不能同时发生,判断A 是互斥事件;B 、C 、D 中两事件能同时发生,故不是互斥事件; 故选A . 【点睛】本题考查了互斥事件的定义.是基础题.7.C解析:C 【解析】 【分析】由题意结合均值不等式的结论即可求得14y a b=+的最小值,注意等号成立的条件. 【详解】 由题意可得:14y a b =+()11414522b a a b a b a b ⎛⎫⎛⎫=⨯++=⨯++ ⎪ ⎪⎝⎭⎝⎭152⎛≥⨯+ ⎝92=, 当且仅当24,33a b ==时等号成立. 即14y a b =+的最小值是92.故选:C. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8.A解析:A 【解析】()11222m n m np m n m n m n +=+⨯=+++, ()()()()()()()()2112111313m m n n mn p m n m n m n m n m n m n --=+⨯+⨯++-++-++-()()2233231m m mn n n m n m n -++-=++-,()()()()()()()()2222123212332233223161m n m n m m mn n nm n m m mn n n p p m n m n m n m n m n ++---++-+-++--=-=+++-++-()()()51061mn n n m n m n +-=>++-,故12p p >,()()()112201222nm n m n E m n m n m n ξ++⎛⎫=⨯⨯+⨯= ⎪+++⎝⎭,()()()()()()()()22212133201131331n n mn m m mn n n E m n m n m n m n m n m n ξ⎛⎫⎛⎫--++-=⨯⨯+⨯+⨯ ⎪⎪ ⎪ ⎪++-++-++-⎝⎭⎝⎭()()2233231m m mn n n m n m n -++-=++-,由上面比较可知()()12E E ξξ>,故选A考点:独立事件的概率,数学期望.9.D解析:D 【解析】 【分析】由题意可知,首次抽到003号,以后每隔12个号抽到一个人,则抽到的号构成以3为首项,12为公差的等差数列,从而求出三个营区被抽中的人数. 【详解】由题意可知,首次抽到003号,以后每隔12个号抽到一个人,则抽到的号构成以3为首项,12为公差的等差数列,记为{},n a n N +∈,其中13a =,公差12d =,则第n 个号()11129n a a n d n =+-=-.令200n a ≤,即5129200,1712n n -≤∴≤,所以第一营区抽17人;令500n a ≤,即5129500,4212n n -≤∴≤,所以第二营区抽421725-=人; 三个营区共抽50人,所以第三营区抽5017258--=人. 故选: D . 【点睛】本题考查系统抽样,属于基础题.10.B解析:B 【解析】 试题分析:由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.11.A解析:A 【解析】 【分析】由古典概型概率公式分别计算出事件A 和事件B 发生的概率,又通过列举可得事件A 和事件B 为互斥事件,进而得出事件A 或事件B 至少有一个发生的概率即为事件A 和事件B 的概率之和. 【详解】事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”, ∴P (A )2163==,P (B )2163==, 又小于5的偶数点有2和4,不小于5的点数有5和6, 所以事件A 和事件B 为互斥事件,则一次试验中,事件A 或事件B 至少有一个发生的概率为 P (A ∪B )=P (A )+P (B )112333=+=, 故选:A .【点睛】本题主要考查古典概型计算公式,以及互斥事件概率加法公式的应用,属于中档题.12.C解析:C 【解析】 【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体. 【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=, 3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=, 5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”. 故选:C . 【点睛】本题考查循环结构程序框图. 解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证. 二、填空题13.【解析】分析:不等式组表示的是正方形区域面积为满足的平面区域为阴影部分的面积利用几何概型概率公式可得结果详解:根据题意画出图形如图所示则不等式组表示的是正方形区域面积为其中满足的平面区域为阴影部分的 解析:36p 【解析】分析:不等式组0303x y ≤≤⎧⎨≤≤⎩表示的是正方形区域,面积为339⨯=,满足221x y +<的平面区域为阴影部分的面积21144ππ⋅=,利用几何概型概率公式可得结果.详解:根据题意,画出图形,如图所示,则不等式组0303x y ≤≤⎧⎨≤≤⎩表示的是正方形区域,面积为339⨯=,其中满足221x y +<的平面区域为阴影部分的面积21144ππ⋅=,故所求的概率为4936P ππ==,故答案为36p . 点睛:对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.14.【解析】【分析】不妨设小圆与正三角形相切小圆的半径为大圆与菱形相切大圆直径是菱形的高也等于正三角形的高圆半径为由几何概型概率公式可得结果【详解】依题意不妨设小圆与正三角形相切小圆的半径为大圆与菱形相 解析:133108π【解析】 【分析】不妨设2AB =,小圆与正三角形相切,小圆的半径为3363AB =,大圆与菱形相切,大圆直径是菱形的高,也等于正三角形的高,圆半径为1332AB =率公式可得结果. 【详解】依题意,不妨设2AB =, 小圆与正三角形相切,小圆的半径为3363AB =, 大圆与菱形相切,大圆直径是菱形的高,也等于正三角形的高, 可得大圆半径为1332AB =由几何概型概率公式可得该点落在图中阴影区域内的概率为:2222108Pππ⨯⨯+⨯⨯==,故答案为108.【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误. 15.(1)(2)(4)【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;(2)先考虑点是切点的情形求出切线方程然后设切点为(x0y0)根据切点与点(2-2)的斜率等于切线的斜率建立等量关解析:(1)(2)(4)【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;(2)先考虑点22-(,)是切点的情形,求出切线方程,然后设切点为(x0,y0),根据切点与点(2,-2)的斜率等于切线的斜率建立等量关系,解之即可求出切点,从而求出切线方程.对于(3),利用平均数与方差的性质分别进行解答即可得出答案.对于(4),由对立事件的定义可知其错误.详解:对于(1),频率分布直方图中每个小矩形的高是该组的频率与组距的比值,∴(1)错误;对于(2), 设直线222233|9xl y k x y x y=+=-'=-∴'=-Q:().,,又∵直线与曲线均过点22-(,),于是直线22y k x()+=-与曲线33y x x=-相切于切点22-(,)时,9k=-.若直线与曲线切于点0002x y x≠(,)(),则320000000002232122y yk y x x x xx x++==-∴=-----Q,,,又200|33k y x x x='==-Q,2220000021332240x x x x x∴---=-∴--=,,200021330x x k x≠∴=-∴=-=Q,,,故直线l的方程为9160x y+-=或2y=-.故(2)错;对于(3),若样本1210,,x x xL的平均数是5,方差是3,则数据121021,21,,21x x x+++L的平均数是25111,⨯+=,方差是22312⨯=.故(3)正确;对于(4),掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”不是对立事件.故(4)错误.故选(1)(2)(4)点睛:本题考查了频率分布直方图的应用问题,考查了利用导数研究曲线上某点切线方程,考查了样本平均数,方差,考查了对立事件的定义,是基础题..16.6【解析】因为所以输出 解析:6 【解析】因为a b c >>,所以输出50.6.a =17.9【解析】阅读茎叶图由甲组数据的中位数为可得乙组的平均数:解得:则:点睛:茎叶图的绘制需注意:(1)叶的位置只有一个数字而茎的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录不能遗漏特别解析:9 【解析】阅读茎叶图,由甲组数据的中位数为14 可得4x = ,乙组的平均数:824151810165y+++++= ,解得:5y = ,则:459x y +=+= .点睛:茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.18.64【解析】结合频率分布直方图可得平均分为:即这些学生的平均分为64分点睛:利用频率分布直方图求众数中位数和平均数时应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形解析:64 【解析】结合频率分布直方图可得,平均分为:()()()()()500.02010600.04010700.02510800.01010900.0051064⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=,即这些学生的平均分为64分.点睛:利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.19.【解析】古铜钱外圆内方外圆直径为面积为中间是边长为的正方形孔面积为根据几何概型概率公式可得随机地在古铜钱所在圆内任取一点则该点刚好位于孔中的概率为故答案为【方法点睛】本题題主要考查面积型的几何概型属解析:49π 【解析】古铜钱外圆内方,外圆直径为6cm ,面积为29cm π,中间是边长为2cm 的正方形孔,面积为24cm ,根据几何概型概率公式可得,随机地在古铜钱所在圆内任取一点,则该点刚好位于孔中的概率为49π,故答案为49π. 【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.20.【解析】执行程序框图第一次循环;第二次循环;第三次循环;第十五次循环;退出循环输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点:(1)不要混淆 解析:15S =【解析】执行程序框图,第一次循环,1S = ;第二次循环,2S = ;第三次循环,3S = ;... 第十五次循环,15S = ;退出循环,输出15S =,故答案为15.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.三、解答题21.(1)$0.30.4y x =-,正相关(2)1.7千元 【解析】 【分析】(1)利用公式求出ˆb,ˆa ,即可得出所求回归方程,再根据变量y 的值随x 的值增加而增加,可判断正相关还是负相关;(2)当7x =时带入,即可预测该家庭的月储蓄. 【详解】解:(1)由题意知10n =,111801208,21010n n i i i i x x y y n n ========∑∑, 222172010880nxx i i l x nx ==-=-⨯=∑,1184108224n xy i i i l x y nxy ==-=-⨯⨯=∑,由此得24ˆ0.380xy l blxx ===, 所以ˆˆ20.380.4ay bx =-=-⨯=-, 故所求回归方程为0.30.4y x =-.由于变量y 的值随x 的值增加而增加(0.30)b =>,故x 与y 之间是正相关. (2)将7x =代入回归方程0.30.4y x =-. 可得:0.370.4 1.7y =⨯-=(千元)可以预测该家庭的月储蓄为0.370.4 1.7y =⨯-=(千元) 【点睛】本题考查线性回归方程的求法,以及最小二乘法和变量间的相关关系,还考查计算能力. 22.(1)200n =,0.0025a =,0.0125b =(2)27.25(立方米)(3)35【解析】 【分析】(1)观察图和表,用水量在[)20,30内的频数是50,频率是0.025100.25⨯=,由此可求得样本容量n ,再由相应的频率求出,a b ; (2)用每组中点值代表这组的估计值计算均值.(3)可把五个家庭编号用列举法写出任取3个各种情况,同时得用水量最多的家庭被选中的情况,计数后可得概率. 【详解】解:(1)用水量在[)20,30内的频数是50,频率是0.025100.25⨯=, 则502000.25==n , 用水量在[)0,10内的频率是250.125200=,则0.1250.012510==b , 用水量在[)50,60内的频率是50.025200=,则0.0250.002510a ==; (2)估计全市家庭年均用水量为50.125150.19250.25350.23450.18550.02527.25⨯+⨯+⨯+⨯+⨯+⨯=;(3)设,,,,A B C D E 代表年用水量从多到少的5个家庭, 从中任选3个,总的基本事件为,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10个,其中包含A 的有,,,,,ABC ABD ABE ACD ACE ADE ,共6个,所以63105P ==,即年用水量最多的家庭被选中的概率是35.【点睛】本题考查频率分布直方图和频率分布表,考查古典概型,属于基础题.23.(1) 1.2 1.4z t =-$(2)$1.22412y x =-(3)12千亿元【解析】 【分析】 (1)求出t 、z 、15i i i t z =∑、521ii t=∑后代入公式即可得解;(2)由题意可得$()5 1.22013 1.4y x -=--,化简即可得解; (3)把2020x =代入线性回归方程即可得解. 【详解】 (1)由题意()11234535t =++++=,()101235 2.25z =++++=, 则51102132435545i ii t z==⨯+⨯+⨯+⨯+⨯=∑,521149162555ii t==++++=∑,∴55122154553 2.2ˆ 1.25559i i i i i t z t zbt nt==-⋅-⨯⨯===-⨯-∑∑,ˆˆ 2.2 1.23 1.4a z bt=-=-⨯=-, ∴ 1.2 1.4zt =-$. (2)由令2013,t x =-5=-z y ,结合(1)中结论可得$()5 1.22013 1.4y x -=--即$1.22412y x =-(3)由题意,当2020x =时,$1.22020241212y =⨯-=, 所以可预测到2020年年底,该地储蓄存款额可达12千亿元. 【点睛】本题考查了线性回归方程的求解和应用,考查了计算能力,属于中档题.24.(1)250y x =-+. (2) 30度. 【解析】分析:()I 求出,x y 的均值,再由公式,计算出系数的值,即可求出线性回归方程;()II 10x =代入线性回归方程,计算出y 得值,即为当气温为10℃时的用电量.详解:()44211103011204402i i i i i I x y x y x b ======∴=-∑∑,,,,把()1030,代入回归方程得30210a =-⨯+,解得50a =. ∴回归方程为250y x =-+;()II 当10x =时,30y =,估计当气温为10℃时的用电量为30度.点睛:本题主要考查了线性回归分析的实际应用问题,其中根据最小二乘法求解回归系数是解答的关键和计算的难点,着重考查了推理与运算能力,属于基础题. 25.(1)11,24m n == ; (2)16.【解析】 【分析】(1)根据题意,假设该同学通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为m 、13、n ,已知三个社团都能进入的概率为124,至少进入一个社团的概率为34,且m n >,利用相关公式建立方程组,即可求得m 与n 的值; (2)根据题意,可知不低于4分包括了得分为4分、5分、6分三种情况,之后应用乘法和加法公式求得结果. 【详解】(1)依题()()1132413111134mn m n m n⎧=⎪⎪⎪⎛⎫----=⎨ ⎪⎝⎭⎪⎪>⎪⎩,解得1214m n ⎧=⎪⎪⎨⎪=⎪⎩(2)由题令该新同学在社团方面获得本选修课学分的分数为i X , 获得本选修课学分分数不低于4分为事件A , 则()4121123412P X =⨯⨯=;()5111123424P X =⨯⨯=;()6111123424P X =⨯⨯=. 故()11111224246P A =++=. 【点睛】该题考查的是有关概率的问题,涉及到的知识点有相互独立事件同时发生的概率,互斥事件有一个发生的概率,注意对公式的正确应用是解题的关键. 26.(1)0.0135a =(2)276人(3)32.8 【解析】 【分析】(1)由直方图中频率和(小矩形面积和)为1可求得a ;(2)求出上学路上所需时间不少于40分钟的学生的频率,然后乘以1200可得; (3)用各小矩形中点估算为这一组的均值,然后乘以频率,并相加可得. 【详解】解:(1)由200.025200.0055200.0032201a ⨯+⨯+⨯+⨯⨯=, 解得0.0135a =.(2)Q 上学路上所需时间不少于40分钟的学生可申请在学校住宿,招收学生1200人,∴估计所招学生中有可以申请住宿人数为:()+⨯⨯⨯=.0.00550.0032201200276(3)该校学生上学路上所需的平均时间为:⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯= 100.013520300.02520500.005520700.00320900.0032032.8【点睛】本题考查频率分布直方图,考查数学期望,解题关键是掌握频率分布直方图的性质:直方图中所有频率之和为1,即各小矩形面积和为1.。
(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)

一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .182.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为( )A .110B .310C .12D .353.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8πB .16π C .18π-D .116π-4.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5165.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31456.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .357.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .348.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .389.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .3511.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29212.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A .()23323ππ-- B .()323π-C .()323π+ D .()23323ππ-+二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.15.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.16.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.17.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.18.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.19.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++23.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 24.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.25.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数; (2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表); (3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.26.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.B解析:B 【解析】设3名女志愿者为,,A B C ,2名男志愿者为,a b ,任取2人共有,,,,,,,,,Aa Ab Ba Bb Ca Cb AB AC BC ab ,共10种情况,都是女性的情况有,,AB AC BC三种情况,故选到的都是女性志愿者的概率为310,故选B. 3.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.4.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =.故选:D.【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.5.A解析:A【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:139 25P=⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:237 59P=⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率.【详解】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:1329 515 2P=⨯=,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:2377 5915P=⨯=,∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P=+=+=,故选:A.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.6.B解析:B【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果.【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C AAA A A⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C CC A C C AA A⋅=种分法,∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.7.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.8.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.9.C解析:C 【分析】 由题意求出7AB BD =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即7AB BD =,所以7AB FD =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.12.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 323π⨯⨯=,其中一个弓形的面积为233π-, 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222322333πππ⎛⎫+⨯-=- ⎪⎝⎭, ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.15.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.16.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.17.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.18.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案 23【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径, 即32R =,即3R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为34(3)433ππ⨯=, 则该点取自四棱锥P ABCD -的内部的概率823343P π==, 故答案为239π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.19.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:5 6【解析】【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解.【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法,所以取出的2个数之差的绝对值小于或等于2的概率为15166 P=-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.20.78【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24=16种解析:【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故答案为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318.【解析】试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为17 18.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为13 18.试题(Ⅰ)设至少回答对一个问题为事件A,则()11117 133218P A=-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.根据题意,()11111033218P X=-=⨯⨯=, ()2112023329P X==⨯⨯⨯=,()2212103329P X==⨯⨯=,()11112033218P X==⨯⨯=,()21123023329P X==⨯⨯⨯=,()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B ,则()2122139189918P B =+++=. 22.(1)有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)13203. 【分析】(1)先求出,x y ,再根据独立性检验可得结论; (2)由组合的应用和古典概率公式可求得其概率. 【详解】 (1)由题知2056012y +=,即5y =,∴25x =,35A =,25B =, ∴2260(1052520)10815.42910.828352530307K ⨯⨯-⨯==≈>⨯⨯⨯,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,则213525533013203C C C P C +==. 【点睛】本题考查补全列联表,独立性检验,以及组合的应用和古典概率公式,求解时注意“至少”,“至多”等,属于中档题. 23.(1)4m =,8n =(2)4255【分析】(1)设该盒子里有红球m 个,白球n 个,利用古典概型、对立事件概率计算公式列出方程组,能求出m ,n .(2) “一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率. 【详解】解:(1)设该盒子里有红球m 个,白球n 个.根据题意得221310111m m n m m n C C +⎧=⎪+⎪⎨⎪-=⎪⎩, 解方程组得4m =,8n =, 故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件A .设“一次从盒子里任取3个球,取到的白球个数为3个”为事件B ,则3831214()55C P B C ==设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件C ,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(E)=1/ 20 =0.05
(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,
P(F)=9 /20 =0.45
(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},
三、解答题:(共75分,解答题应书写合理的解答或推理过程)
14.(6分)为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为 ,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?
(3)通过该统计图,可以估计该地学生跳绳次数的众数是,中位数是。
15.(14分)下面是计算应纳税所得额的算法过程,其算法如下:
第一步 输入工资x(注x<=5000);
第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);
否则 y=25+0.1(x-1300)
16解:(1)甲网站的极差为:73-8=65;
乙网站的极差为:71-5=66(4分)
(2)甲网站点击量在[10,40]间的频率为4 /14 =2 7
(3)甲网站的点击量集中在茎叶图的下方,
而乙网站的点击量集中在茎叶图的上方.
从数据的分布情况来看,甲网站更受欢迎.
17解:把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个
C. ,A比B成绩稳定
D. ,A比B成绩稳定
4.某程序框图如右图所示,该程序运行后输
出的最后一个数是( ).
A. B. C. D.
5.O为边长为6的等边三角形内心,P是三角形内任一点,
使得OP< 的概率是( ).
A. B.
B.C. D.
6.如右图,是某算法流程图的一部分,其算法的逻辑结构为()
A. 顺序结构 B. 判断结构 C. 条件结构 D. 循环结构
A.至少有1名男生与全是女生 B.至少有1名男生与全是男生
C.至少有1名男生与至少有1名女生 D.恰有1名男生与恰有2名女生
3.A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是 ,观察茎叶图,下列结论正确的是( ).
A. ,B比A成绩稳定
B. ,B比A成绩稳定
A、分层抽样法,系统抽样法 B、分层抽样法,简单随机抽样法
C、系统抽样法,分层抽样法 D、简单随机抽样法,分层抽样法
8.下列对一组数据的分析,不正确的说法是()
A、数据极差越小,样本数据分布越集中、稳定
B、数据平均数越小,样本数据分布越集中、稳定
C、数据标准差越小,样本数据分布越集中、稳定
D、数据方差越小,样本数据分布越集中、稳定
7.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是 ( )
高一数学必修3期中测试1
一、选择题(每小题6分,共60分)
1.从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是( ).
A. 5,15,25,35,45B. 1,2,3,4,5C. 2,4,6,8,10D. 4,13,22,31,40
2.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是( ).
(3)甲、乙两个网站哪个更受欢迎?并说明理由。 (4分)
17.(15分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。
分组
151.5~158.5
158.5~165.5
165.5~172.5
172.5~179.5
频数
6
2l
频率
0.1
则表中的 , 。
13.如右图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是
正方形的一顶点,半径为正方形的边长。在这个图形上随机撒一粒黄豆,
它落在扇形外正方形内的概率为。(用分数表示)
2X+6表示早上6点-8点,2Y+7表示早上7点-9点,依序计算,如果满足2X+6>2Y+7,那小王离家前不能看到报纸,统计共有多少为M,则M 100即为估计的概率.
19.解:(1)∵循环变量的初值为1,终边为50,
根据循环要实现的功能,故循环体内的①语句应为:i<=50;
②语句应为:p=p+I故答案为:①i<=50;②p=p+i.
∴全体学生的达标率估计是(17+15+9+3)/50 =0.88…6分
(3)在频率分布直方图中最高的小长方形的底边的中点就是这组数据的众数,
即(110+120)/2 =115,…7分
处在把频率分布直方图所有的小长方形的面积分成两部分的一条垂直与横轴的线对应的横标就是中位数121.3…8分
15解①程序如下:②框图如下:
P(G)=2 /20 =0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次.
则一天可赚90×1-10×5=40,每月可赚1200元。
18解:(1)如图,设送报人到达的时间为X,小王离家去工作的时间为Y.
(X,Y)可以看成平面中的点,
试验的全部结果所构成的区域为Ω={(x,y)|6≤X≤8,7≤Y≤9}一个正方形区域,
1. 把程序框图补充完整:
(1)________________________
(2)________________________
2. 程序:
高一数学必修3期中测试1答案
一、选择题
1.A 2.D 3.A 4.B 5.D 6.C 7.B 8.B 9.C 10.D
二、填空题
11输入语句,输出语句,赋值语句,条件语句,循环语句
(1)你离家前不能看到报纸(称事件A)的概率是多少?
(2)请你设计一种随机模拟的方法近似计算事件A的概率(包括手工的方法或用计算器、计算机的方法)
19.(10分)给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推. 要求计算这50个数的和. 先将下面给出的程序框图补充完整,再根据程序框图写出程序.
面积为SΩ=4,事件A表示小王离家前不能看到报纸,所构成的区域为
A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}即图中的阴影部分,面积为SA=0.5.这是一个几何概型,
所以P(A)=SA/ SΩ=0.5/ 4 =0.125.
答:小王离家前不能看到报纸的概率是0.125.…(6分)
(2)用计算机产生随机数摸拟试验,X是0-1之间的均匀随机数,Y也是0-1之间的均匀随机数,各产生100
9. 输入两个数a,b,要输出b,a,下面语句正确一组是 ( ).
A. B. C. D.
10.先后抛掷质地均匀的硬币三次,则至少一次正面朝的概率是( )
A. B. C. D.
二、填空题(每小题5分,共15分)
11.计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:,,,,。
12.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:
第三步 输出税款y, 结束。
请写出该算法的程序框图和程序。(注意:程序框图与程序必须对应)
16.(15分)为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如下所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差分别是多少? (4分)
(2)甲网站点击量在[10,40]间的频率是多少? (4分)
12由题设条件m=60×0.1=6
故身高在165.5~172.5之间的频数是60-6-21-6=27
故a=27/ 60 =0.45
故答案为:6;0.45.
13令正方形的边长为a,则S正方形=a2,
则扇形所在圆的半径也为a,则S扇形=1 /4 (πa2)
则黄豆落在阴影区域内的概率P=1-S扇形/S正方形=(4-π)/ 4.
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
18.(15分)假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间
故答案为:(4-π)/ 4.
三解答题
14.解:(1)∵从左到右各小长方形的面积之比为2:4:17:15:9:3,
第二小组频数为12.
∴样本容量是(2+4+17+15+9+3)×12 4 =150,