离散数学单元测试题
离散数学(下)单元测试(二)

离散数学(下)单元测试(二)一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末括号里)1.谓词公式∀x(P(x)∨∃yR(y))→Q(x)中量词∀x的作用域是(C)A. ∀x(P(x)∨∃yR(y))B.P(x)C. (P(x)∨∃yR(y))D.P(x),Q(x)2.谓词公式∀x(P(x)∨∃yR(y))→Q(x)中变元x是(D )A.自由变量B.约束变量C.既不是自由变量也不是约束变量D.既是自由变量也是约束变量3.若个体域为整数域,下列公式中哪个值为真?(A)A.∀x∃y(x+y=0)B.∃y∀x(x+y=0)C.∀x∀y(x+y=0)D.⌝∃x∃y(x+y=0)4.设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∧Q(x))在下面哪个个体域中是可满足的?( D )A.自然数集B.整数集C.实数集D.以上均不成立5.设C(x):x是运动员,G(x):x是强壮的。
命题“没有一个运动员不是强壮的”可符号化为(C)A.⌝∀x(C(x)∧⌝G(x))B.⌝∀x(C(x)→⌝G(x))C.⌝∃x(C(x)∧⌝G(x))D.⌝∃x(C(x)→⌝G(x))6.设A(x):x是人,B(x):x犯错误,命题“没有不犯错误的人”符号化为(D)A.∀x(A(x)∧B(x))B.⌝∃x(A(x)→⌝B(x))C.⌝∃x(A(x)∧B(x))D.⌝∃x(A(x)∧⌝B(x))7.设Z(x):x是整数,N(x):x是负数,S(x,y):y是x的平方,则“任何整数的平方非负”可表示为下述谓词公式(A)∀x (Z(x) →⌝∃y (N(y) ∧S(x,y))A.∀x∀y(Z(x)∧S(x,y)→⌝N(y))B.∀x∃y(Z(x)∧S(x,y)→⌝N(y))C.∀x∀y(Z(x)→S(x,y)∧⌝N(y))D.∀x(Z(x)∧S(x,y)→⌝N(y))8.令F(x):x是火车,G(y):y是汽车,H(x,y):x比y快。
离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
《离散数学》考试试卷(试卷库14卷)及答案

第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分 考试时限:120 分钟一、选择题(每题2分,共20分)1. 下述命题公式中,是重言式的为( )(A ))()(q p q p ∨→∧ (B )q p ∨))()((p q q p →∨→⇔(C )q q p ∧→⌝)((D )q q p →⌝∧)(2. 对任意集合A,B,C,下列结论正确的是( )(A )若A ⊆B,B ∈C,则A ⊆C ; (B )若A ∈B,B⊆C,则A ⊆C ; (C )若A ⊆B,B ∈C,则A ∈C ; (D )若A ∈B,B ⊆C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系,,则由R 产生的S S ⨯上一个划分共有( )个分块。
(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是一棵树当且仅当G 中( )(A )有些边是割边 (B )每条边都是割边(C )所有边都不是割边 (D )图中存在一条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平面图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下面命题公式中真值为1的是( )(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=<V,E>中,结点总度数与边数的关系是( )(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公用一个电源,则至少需有五插头的接线板数( )(A )7 (B )8 (C )9 (D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为( )(A )11 (B )14 (C )17(D )15二、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。
离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
离散数学第一部分测试题-有答案 (1)

离散数学第一部分测试题 一、 填空题1.当p,q,r 分别取1,0,1时,(p→q) (p→r)的真值为 假,或02.设P :他富有,Q :他幸福,“他既不富有也不幸福” 的符号化为 ┐ P ∧┐ Q3.“所有的人都长着黑头发”用谓词表达式符号化为 M(x):x 为人,F(x): x 长着黑头发, x(M(x)→F(x))4.如果6大于4,则4大于5用谓词表达式符号化为 G(x,y): x ﹥y ,G(6,4) →G(4,5)二、 选择题1.2x+3<4( C )A.是命题也是复合命题B.是命题但不是复合命题C.不是命题D.以上都不对2. 下列语句是命题的有( D )A. 什么时候开会呀?B. 请快开门!C. x+y>10。
D. 苹果树和梨树都是落叶乔木。
3.设p 表示命题“天下大雨”,q 表示命题“他乘公共汽车上班”,r 表示命题“他骑自行车上班”。
则命题“如果天不下大雨,他乘公共汽车上班或者骑自行车上班。
”符号化为( B )A .(⌝p ∧q) →rB .⌝p →(q ∨r )C .⌝p ∧(q →r )D .p →(q ∧r )三、 计算题1.求(p ∨q) →r 的主析取范式解 本公式含有三个命题变项,所以极小项均含有三个文字。
75310)()()()()()()()()()()())()(()()()()()(m m m m m r q p r q p r q p r q p r q p r q p r q p r q p r q p r q p r q p r q q p p r r q p rq p rq p rq p ∨∨∨∨⇔∧∧∨∧⌝∧∨∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔∧∧∨∧⌝∧∨∧∧⌝∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔∧∨⌝∧∨⌝∨∨⌝∧⌝∧⌝⇔∨⌝∧⌝⇔∨∨⌝⇔→∨2.求公式的主合取范式:()()R Q Q P ∧→∨证明:()()()()P Q Q R P Q Q R ∨→∧⇔⌝∨∨∧()()P Q Q R ⇔⌝∧⌝∨∧()()()()()P Q Q P P Q R ⇔⌝∧⌝∨∧⌝∨∧∧()()()()()()R Q P P R R Q P ∧∧∨⌝∨∨⌝∧⌝∧⌝⇔()()()()R Q P R Q P R Q P R Q P ∧∧∨∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔四、 证明题1.用等演算法证明下面等值式。
离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
软件学院离散数学单元测试题(半群与群答案)

近世代数单元测试题(二) (院系:软件学院 年级:2007级)一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末括号里)1.下列运算中,哪中运算关于整数集不能构成半群( )。
A .max{,}a b a b =B .a b b =C .||a b a b =-D . 2a b ab =2.在自然数集合N 上定义运算*为:对任意a ,b ∈N ,a *b =a +b +ab ,则下面说法正确的是( )。
A . <N , *>是群B . <N , *>是幺半群但不是群C . <N , *>是半群但不是幺半群D . <N , *>不是半群3.R 为实数集,运算*定义为:,*||a b ,a b a b ∈=⋅R ,则代数系统*,><R 是( )。
A .半群 B .独异点 C .群 D . 阿贝尔群4.下列代数系统中,哪个是群( )。
A .{1,3,4,5,9}S = ,*是模11乘法B .S =Q (有理数集合) ,*是普通乘法C .S =Z (整数集合) *是一般减法D . {0,1,3,5}S =,*是模7加法5.下列代数系统,*G <>中,哪个不构成群( )。
A .{1,10}G = ,*是模11乘法B .{1,3,4,5,9}G =,*是模11乘法C .G =Q (有理数集合) +是普通法D . G =Q (有理数集合) *是普通法6.下面4个代数系统中构成群的是( )。
A. 〈R +,×〉B. <N ,+>C. <P(A),U>D. <A A , >7.下面4个代数系统中不构成群的是( )。
A. <Z ,+>B. <P(A),⊕>C. <Q +,×>D. <N ,×>8.<Z 11*,11⊗>是群(其中Z 11*={1,2,3,…,10},11⊗是模11乘法运算),下面子集中( )不是它的子群。
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。
A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。
B. 有些狗不会游泳。
C. 所有的狗都不会游泳。
D. 以上都不是真命题。
4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。
A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。
B. 有些鸟不会飞。
C. 所有的哺乳动物都是温血动物。
D. 以上都不是假命题。
9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。
A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。
A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。
2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数单元测试题(一) (院系:软件学院 年级:2007级)
一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末括号里)
1.设S={a,b},则S 上总共可定义的二元运算的个数是( )
B.8 2.设集合{1,2,3,...,10}A =,下面定义的哪种运算关于集合A 是不封闭的( )。
A .*max{,}x y x y =
B .*min{,}x y x y =
C .*(,)x y GC
D x y = 即,x y 的最大公约数
D .*{,}x y LCM x y = 即,x y 的最小公倍数
3.下面定义的哪种运算关于给定的集合是封闭的( )。
A . 集合S ={1,-1}关于普通的减法运算
B . 集合S ={0,1}关于普通的加法运算
C . 集合}|12{+∈-=Z x x S 关于普通的加法运算
D . 集合{2|}n S n Z +=∈关于普通的乘法运算
4.在自然数集N 上,下列哪种运算是可结合的( )
*b =a -b *b =max{a ,b } *b =a +2b *b =|a-b |
5.对自然数集N ,下列哪种运算是不可结合( )。
A .*3a b a b =++
B .*min{,}a b a b =
C .*2a b a b =+
D . *(mod3)a b ab =
6.设ο是正整数集+Z 上的二元运算,其中{}b a b a ,m ax =ο(即取a 与b 中的
最大者),那么ο在+
Z 中( )
A .不适合交换律;
B .不适合结合律;
C .存在单位元;
D .每个元都有逆元。
二、填空题
1.集合A={a , b , c }上总共可定义的二元运算的个数为______。
2、设S 是非空有限集,代数系统(),,P S <>U I 中,()P S 对U 运算的单位是 ________,()P S 对I 运算的单位元____。
4.设{0,1,2,...,1}n n =-Z ,在代数系统,,n <⊕⊗>Z 中,,⊕⊗分别表示模n 的加法和乘法,则n Z 对⊕运算的单位元是______, n Z 对⊗的单位元是_______。
5.设G={1 , 2 , 3 , 4 , 5, 6},G 关于模7乘法构成代数系统,群G 的幺元是_________,元素3与______互为逆元。
三、判断题
1. 设(N,*)是代数系统,其中N 为自然数集,*为二元运算,定义为:对任何的a,b?N ,有a*b=a ,则*是可结合的。
( )
2. 在一个代数系统中,若一个元素的逆元是惟一的,则运算必定是可结合的。
( )
3. 设*是S 上的可结合运算,若a ?S 是可逆的,则a 也是可消去的。
( )
4. 设*是S 上的可结合运算,若a ?S 是可消去的,则a 也是可逆的。
( )
5. 设(A ,ο,*)是一个代数系统,对于任意的a ,b ?A ,有a οb =a ,而*是A 上的任意二元运算,则*对ο不一定是可分配的。
( )
四、解答题
1、在实数集合R 上定义二元运算*226X Y XY X Y =--+
(1) 验证*是否满足交换律和结合律。
(2) 求*的单位元。
(3) 对任何实数X ,求其逆元。
2.设代数系统,*A <>,其中{,,,}A a b c d =,*运算定义如下表,请指出*运算是否是可交换的;是否有单位元;如果有单位元,指出哪些元素是可逆的,并给出它们的逆元。
*
a b a
b
c
d a b c d b c d c d a c d a b d a b c
3.设代数系统>⊕=<},,{b a P V ,⊕为集合的求对称差运算,求V 的所有子代数,并说明哪些是非平凡的真子代数。
4.设代数系统{1,2,3},,1V =<>o ,其中x y o 表示求x 和y 之中的较大的数,求V 的所有子代数,并说明哪些是非平凡的真子代数。