八年级二次根式测试题及答案
八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
八年级二次根式练习题及答案

一、单选题1、当x≥3时,化简二次根式√(3−x)2的结果是( ) A. 3-x B. 3+x C. x-3 D. -3-x参考答案: C 【思路分析】考查含字母的根式化简。
本考点主要是化简含字母的二次根式,熟练掌握二次根式的性质是解决问题的关键。
【解题过程】 解:∵x≥3, ∴3-x≤0,∴√(3−x)2=|3-x|=x-3。
故选C 。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2、比较二次根式的大小:2−√3( )√3−√2。
A. < B. > C. = D. ≤参考答案: B 【思路分析】先将两数分母有理化,而后再利用分子进行比较,都为正时分子大的数大,都为负时分子大的数小,正数永远大于负数。
【解题过程】解:2−√3=2+√3>0,√3−√2=√3+√2>0,∴2+√3>√3+√2∴12−√3>1√3−√2故选B 。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、比较二次根式的大小:√15−√14( )√13−√12 A. < B. >C. =D. ≤参考答案: A 【思路分析】此题考查运用分子有理化法对二次根式大小的比较,运用分子有理化法时需注意:都是正数时分母大的,原二次根式反而小。
【解题过程】先将两数分子有理化,然后比较分母。
都是正数时分母大的,原二次根式小。
解:√15−√14=√15+√14>0, √13−√12=√13+√12>0, ∵√15+√14>√13+√12, ∴√15+√14<√13+√12 ∴√15−√14<√13−√12 故选A 。
二次根式初二练习题及答案

二次根式初二练习题及答案一、选择题1. 将下列二次根式化简,得出最简形式:a) $\sqrt{8}$b) $\sqrt{75}$c) $\sqrt{27}$d) $\sqrt{50}$A) $2\sqrt{2}$ B) $3\sqrt{5}$ C) $6\sqrt{3}$ D) $5\sqrt{2}$2. 根据题意,判断下列等式是否成立:a) $\sqrt{16} = 4$b) $\sqrt{82} = 9$c) $\sqrt{5^2} = 5$d) $\sqrt{11^2} = -11$A) 是 B) 否3. 将下列二次根式化成标准形式:a) $3\sqrt{2} + \sqrt{8}$b) $5\sqrt{3} - 2\sqrt{12}$c) $4\sqrt{5} + 2\sqrt{20}$d) $2\sqrt{3} - 3\sqrt{6}$A) $5\sqrt{2}$ B) $3\sqrt{3}$ C) $6\sqrt{5}$ D) $-3\sqrt{3}$4. 计算:a) $\sqrt{25} + \sqrt{9}$b) $2\sqrt{49} - \sqrt{64}$c) $3\sqrt{36} + 4\sqrt{16}$d) $5\sqrt{81} - 2\sqrt{64}$A) 20 B) 4 C) 12 D) 85. 填空:a) $\sqrt{4} =$ ________b) $\sqrt{100} =$ ________c) $\sqrt{121} =$ ________d) $\sqrt{144} =$ ________A) 2 B) 10 C) 11 D) 12二、解答题1. 将下列各式化简为最简形式:a) $\sqrt{18}$b) $\sqrt{32}$c) $\sqrt{50}$d) $\sqrt{98}$2. 简化下列二次根式:a) $2\sqrt{27} - 3\sqrt{48}$b) $5\sqrt{15} + 3\sqrt{20}$c) $\sqrt{45} - 2\sqrt{12}$d) $4\sqrt{80} + 2\sqrt{45}$三、综合运用1. 解方程:$2x^2 - 18 = 0$2. 一个正方形的边长为$x$,则它的对角线长为多少?3. 某正方形面积等于某长方形面积的五分之一,且长方形的宽为$y$,则长方形的长是多少?四、答案选择题答案:1. A) $2\sqrt{2}$ 2. A) 是 3. B) $3\sqrt{3}$ 4. C) 12 5. A) 2解答题答案:1. a) $3\sqrt{2}$ b) $4\sqrt{2}$ c) $5\sqrt{2}$ d) $7\sqrt{2}$2. a) $\sqrt{6}$ b) $4\sqrt{5}$ c) $\sqrt{45} - \sqrt{8}$ d) $6\sqrt{5} + 3\sqrt{2}$三、综合运用答案1. 解方程:$x = 3$ 或 $x = -3$2. 对角线长为$x\sqrt{2}$3. 长方形的长为$5y$通过以上练习题的训练,相信同学们对初二阶段的二次根式有了更深的理解和掌握。
八年级初二数学数学二次根式试题含答案

一、选择题1.下列运算中,正确的是 ( )A . 3B .×=6C . 3D .2.下列计算正确的是( )A =B 3=C =D .21=3.a b =--则( )A .0a b +=B .0a b -=C .0ab =D .220a b +=4.已知44220,24,180x y x y >+=++=、.则xy=( ) A .8 B .9 C .10D .11 5.下列计算正确的是( )A .+=B .()322326a b a b -=-C .222()a b a b -=-D .2422a ab a a b a -+⋅=-++6.2= ) A .3 B .4 C .5D .6 7.下列二次根式是最简二次根式的是( )AB C D8. A .﹣3 B .3 C .﹣9 D .99.下列各组二次根式中,能合并的一组是( )A B 和C D10.在实数范围内有意义,则x 的取值范围是( )A .x >0B .x >3C .x ≥3D .x ≤3二、填空题11.2==________.12.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.13.观察下列等式:第1个等式:a11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, … 按上述规律,回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________14.)30m -≤,若整数a 满足m a +=a =__________.15的最小值是______.16.14+⋅⋅⋅=的解是______.17.===据上述各等式反映的规律,请写出第5个等式:___________________________.18.如果2y ,那么y x =_______________________.19.观察分析下列数据:0,,-3,的规律得到第10个数据应是__________.20.能合并成一项,则a =______.三、解答题21.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的:因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3.所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题:(1)计算:= - .(2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;(3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可.【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===, 则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】 本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中1x =..【分析】 根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x ==【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.计算(1(2)(()21-【答案】(1)2;(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1=2+=(2-+=2(2)(()21-=22(181)---=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.24.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22m m-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --)=221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.25.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.26.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.27.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.28.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【详解】解:(1)原式=1(233⨯⨯-⨯=3-⨯=⨯⎭=6-;(2)原式=3﹣4+12﹣=12﹣.【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断.【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C、3,所以C选项正确;D、,不能合并,所以D选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.2.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.3.C解析:C【分析】直接利用二次根式的性质,将已知等式左边化简,可以得到a与b中至少有一个为0,进而分析得出答案即可.【详解】=--,解:∵a b∴a-b=-a-b,或b-a=-a-bab=.∴a= -a,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0故选:C.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.4.D解析:D【分析】利用完全平方公式、平方差公式化简第二个等式即可.【详解】44180+=配方得22222180⎡⎤+-+⋅=⎣⎦ 222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+=22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯=计算得:11xy =故选:D.【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握.5.D解析:D【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.【详解】解:A. =A 选项错误;B. ()()()33322363228a b a b a b -=-=-,故B 选项错误; C. 222()2a b a ab b -=-+,故C 选项错误; D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D .【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.6.C解析:C【解析】2=,2222251510x x =-=--+=,5=.故选C.7.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选B.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.8.B解析:B【分析】利用二次根式的性质进行化简即可.【详解】﹣3|=3.故选B.9.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A、是最简二次根式,被开方数不同,不是同类二次根式;BCD故选B.【点睛】本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.10.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题11.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m=5,n=3(m≥0,n≥0).n+2m=13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.12.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123=== ∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.13.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题14.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.15.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。
《二次根式》专题练习(含答案)

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.若1<x<2,则的值为() A.2x﹣4 B.﹣2 C.4﹣2x D.2 3.下列计算正确的是()A.=2B.=C.=x D.=x4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.化简+﹣的结果为() A.0 B.2 C.﹣2 D.26.已知x<1,则化简的结果是() A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x 7.下列式子运算正确的是()A. B.C. D.8.若,则x3﹣3x2+3x的值等于()A. B. C. D.二.填空题9.要使代数式有意义,则x的取值范围是.10.在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为.11.计算:= .12.化简:= .13.计算:(+)= .14.观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:an= ;(2)a1+a2+a3+…+an= .15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .16.已知:a<0,化简= .17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).三.解答题18.计算或化简:﹣(3+);19.计算:(3﹣)(3+)+(2﹣)20.先化简,再求值:,其中x=﹣3﹣(π﹣3)0.21.计算:(+)×.22.计算:×(﹣)+|﹣2|+()﹣3.23.计算:(+1)(﹣1)+﹣()0.24.如图,实数a、b在数轴上的位置,化简:.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.26.已知:a=,b=.求代数式的值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.28.化简求值:,其中.参考答案与解析一.选择题1.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零.2.(2016•呼伦贝尔)若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.(2016•南充)下列计算正确的是()A.=2B.=C.=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.(2016•营口)化简+﹣的结果为()A.0 B.2 C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3+﹣2=2,故选:D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A.B.C. D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解:A、和不是同类二次根式,不能计算,故A错误;B、=2,故B错误;C、=,故C错误;D、=2﹣+2+=4,故D正确.故选:D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.【分析】把x的值代入所求代数式求值即可.也可以由已知得(x﹣1)2=3,即x2﹣2x﹣2=0,则x3﹣3x2+3x=x(x2﹣2x﹣2)﹣(x2﹣2x﹣2)+3x﹣2=3x﹣2,代值即可.【解答】解:∵x3﹣3x2+3x=x(x2﹣3x+3),∴当时,原式=()[﹣3()+3]=3+1.故选C.【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.(2016•贺州)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0 .【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.(2016•乐山)在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为 3 .【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得:a﹣5<0,a﹣2>0,则+|a﹣2|=5﹣a+a﹣2=3.故答案为:3.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.(2016•聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.(2016•威海)化简:= .【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.(2016•潍坊)计算:(+)= 12 .【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.(2016•黄石)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:an= =﹣;;(2)a1+a2+a3+…+an= ﹣1 .【分析】(1)根据题意可知,a1==﹣1,a2==﹣,a3==2﹣,a4==﹣2,…由此得出第n个等式:an==﹣;(2)将每一个等式化简即可求得答案.【解答】解:(1)∵第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,∴第n个等式:an==﹣;(2)a1+a2+a3+…+an=(﹣1)+(﹣)+(2﹣)+(﹣2)+…+(﹣)=﹣1.故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知:a<0,化简= ﹣2 .【分析】根据二次根式的性质化简.【解答】解:∵原式=﹣=﹣又∵二次根式内的数为非负数∴a﹣=0∴a=1或﹣1∵a<0∴a=﹣1∴原式=0﹣2=﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到a的值.17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).=1++===,求【分析】由Sn,得出一般规律.【解答】解:∵S=1++===,n∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.变形,得出一般规律,寻找抵消规律.【点评】本题考查了二次根式的化简求值.关键是由Sn三.解答题(共11小题)18.(2016•泰州)计算或化简:﹣(3+);【分析】先化成最简二次根式,再去括号、合并同类二次根式即可;【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.(2016•盐城)计算:(3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式=9﹣7+2﹣2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(2016•锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4﹣﹣1,=2﹣﹣1,=﹣1.把x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×=×+×;然后根据二次根式的混合运算顺序,先计算乘法,再计算加法,求出算式(+)×的值是多少即可.【解答】解:(+)×=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.【解答】解:原式=﹣+2+8=﹣3+2+8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1)(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣1+2﹣1,然后进行加减运算.【解答】解:原式=3﹣1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数a、b在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知,a<0,且b>0,∴a﹣b<0,∴,=|a|﹣|b|﹣[﹣(a﹣b)],=(﹣a)﹣b+a﹣b,=﹣2b.【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定a、b及a﹣b的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定a、b及a﹣b的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;(2)由(1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当a>0时,=a;②当a<0时,=﹣a;③当a=0时,=0.26.已知:a=,b=.求代数式的值.【分析】先求得a+b=10,ab=1,再把求值的式子化为a与b的和与积的形式,将整体代入求值即可.【解答】解:由已知,得a+b=10,ab=1,∴===.【点评】本题关键是先求出a+b、ab的值,再将被开方数变形,整体代值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.28.化简求值:,其中.【分析】由a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式=+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵a=2+>0,b=2﹣>0,∴a+b=4,ab=1,∴原式=+=+=+=,当a+b=4,ab=1,原式=×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.。
初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.2.当a<0时,化简|2a- |的结果是………()A.a B.-a C.3a D.-3a【答案】D.【解析】∵a<0,∴|a|=-a,则原式=|2a-|a||=|2a+a|=-3a.故选D【考点】二次根式的性质与化简.3.下列计算错误的是 ( )A.B.C.D.【答案】D.【解析】A.,计算正确;B.,计算正确;C.,计算正确;D.,计算错误.故选D.考点: 二次根式的运算.4.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B5.已知,求的值.【答案】2005【解析】解:因为,所以,即,所以.故,从而,所以,所以.6.下列说法错误的是()A.5是25的算术平方根B.1是1的一个平方根C.的平方根是-4D.0的平方根与算术平方根都是0【答案】C【解析】A.因为=5,所以A正确;B.因为±=±1,所以1是1的一个平方根说法正确;C.因为±=±=±4,所以C错误;D.因为=0, =0,所以D正确.故选C.7.的平方根是,的算术平方根是 .【答案】3【解析】;,所以的算术平方根是3.8.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.9.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项根式运算.10.若有意义,则________.【答案】1.【解析】由题意,得:,解得,则=1.故答案是:1.【考点】二次根式有意义的条件.11.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.12. 16的算术平方根是()A.4B.-4C.D.256【答案】A【解析】16的算术平方根是=4,选A.一个非负数a有两个平方根±,它们互为相反数, 称为a的算术平方根,由题,16的算术平方根是=4,选A.【考点】算术平方根.13.已知,那么= .【答案】4【解析】由题意分析可知,在满足本题的条件下,,代入得y=1,所以=4【考点】二次根号的意义点评:本题属于对二次根号的基本性质和代数式有意义的条件的基本考查和运算14.函数y=中自变量x的取值范围是________.【答案】x≥-1【解析】易知根号下为非负数。
八年级初二数学数学二次根式试题附解析

一、选择题1.,a ==b a 、b 可以表示为 ( ) A .10a b+ B .10-b aC .10ab D .b a2.a 的值可能是( ) A .2-B .2C .32D .83.(2的结果正确的是( )A B .3 C .6D .34.已知5x =-,则2101x x -+的值为( )A .-B .C .2-D .05.已知:x ,y 1,求x 2﹣y 2的值( )A .1B .2C D .6.下列各式计算正确的是( )A =B 6=C .3+=D 2=-7.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D8.已知12x =⋅,n 是大于1的自然数,那么(n x 的值是( ). A .12007B .12007-C .()112007n- D .()112007n--9.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,a +b |+|a -c |-( )A .2c -bB .2c -2aC .-bD .b10.下列运算中正确的是( )A .27?3767=B .()442323333=== C .3313939===D .155315151÷⨯=÷=二、填空题11.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 12.把31a a-根号外的因式移入根号内,得________ 13.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.14.把1a-15.如果332y x x --,那么y x =_______________________. 16.3a ,小数部分是b 3a b -=______. 17.化简(32)(322)+-的结果为_________. 18.1+x有意义,则x 的取值范围是____. 19.2121=-+3232=+4343=+20202324320202019+++++……=___________.20.4x -x 的取值范围是_____. 三、解答题21.计算:(18322(2))((25225382+-+. 【答案】(1)52 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。
八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)一、单选题1.下列式子不是二次根式的是( )A B C D2有意义,则x的取值范围为( )A.x≥3B.x≠3C.x>3 D.x≤33.下列二次根式中,属于最简二次根式的是()A B C D4.已知a为实数,)A.a B.﹣a C.﹣1 D.05.若代数式1x-有意义,则x的取值范围是( )A.x>﹣1且x≠1B.x≥﹣1 C.x≠1D.x≥﹣1且x≠1 6.如果√(2a−1)2=1−2a,则a的取值范围是()A.a<12 B.a≤12C.a>12D.a≥127x﹣5,则x的取值范围是()A.x<5 B.x≤5C.x≥5D.x>58.式子√2−a+√a−2在实数范围内有意义,则x的取值范围是()A.x<2 B.x≥2C.x=2 D.x<﹣29.若1≤a≤2,则化简√a2−2a+1+|a−2|的结果是()A.2a−3B.−a C.3−2a D.1二、填空题10,则x的取值范围是___.11=_________.12.如图,数轴上点A表示的数为a,化简:a=_____.-=______.13.已知,x y为实数,且4y=,则x y14===n≥1时,第n个表达式为_____.三、解答题15.x为何值时,下列各式有意义?16.化简:(1(2(3;(417.已知a,b为等腰三角形的两边长,且满足b=4+求此三角形的周长.18.在一节数学课上,李老师出了这样一道题目:先化简,再求值:1x-+其中x=9.小明同学是这样计算的:解:1x-+x-1+x-10=2x-11.当x=9时,原式=2×9-11=7.小荣同学是这样计算的:解:1x-+x-1+10-x=9.聪明的同学,谁的计算结果是正确的呢?错误的计算错在哪里?19.已知二次根式√3−1a.2(1)求x的取值范围;(2)求当x=-2时,二次根式√3−1a的值;2(3)若二次根式√3−1a的值为零,求x的值.220.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化===|1|=1=_________________=________________=_________________②根据上述思路,试将下列各式化简:参考答案1.B【解析】0)a ≥的式子叫做二次根式”分析可知,A 、C 、D 中的式子都是二次根式,只有B 中的式子,由于30π-<,所以选项B 中的式子不是二次根式.故选B.2.A【解析】有意义,得到x-3≥0,解得:x≥3,故选:A .3.C【解析】A 、故A 不是;B 故B 不是;C 是;D 故D 不是.故选C4.D【解析】根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时意义,所以.故选D.5.D【解析】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.6.B【解析】根据二次根式的性质1可知:√(2a−1)2=|2a−1|=1−2a,即2a−1≤0故答案为B.a≤1.27.C【解析】∴5-x≤0∴x≥5.故选C.8.C【解析】解:由题意可得2-x=0,x-2=0,则x=2.故选择C.9.D【解析】解:∵1≤a≤2,∴a-1≥0,a-2≤0,=a-1+2-a=1,∴原式=√(a−1)2+|a−2|故答案为:D.10.x2≥【解析】,即x﹣2≥0,解得x≥2.试题分析:根据题意,故答案是x≥2.11.3【解析】=-=,|3|3故答案为:3.12.2.【解析】由数轴可得:0<a<2,则(2﹣a)=2.故答案为2.13.1-或7-.【解析】∵290x -且290x -≥,∴3x =±,∴4y =,∴1x y -=-或7-.故答案为:1-或7-.14(n =+【解析】(n ==+(n =+ 15.(1) x≥0;(2) x≤0;(3) x 为任意实数;(4) x≥1.【解析】解:(1)2x≥0,解得x≥0,(2)-x≥0,解得x≤0,(3)x 2≥0,解得x 为任意实数,(4)x -1≥0,解得x≥1.16.(1)8;(2)8||3||b a ;(3)8||y ;(4)13||y 【解析】解:(1==(28||3||ba==.(3==.(413||y==. 17.三角形的周长10.【解析】由题意,得24020aa--≥⎧⎨≥⎩,解得a=2,∴b=4 ,当a为腰时,三边为2,2,4,由三角形三边关系定理可知,不能构成三角形,舍去, 当b为腰时,三边为4,4,2,符合三角形三边关系定理,故三角形的三边长分别为4,4,2,∴三角形的周长=4+4+2=10.故答案为10.18.【解析】小荣同学的计算结果是正确的;,19.(1)x≤6 (2)2 (3)x=6【解析】(1)根据二次根式有意义的条件可得 3−12a ≥0,解得x ≤6 ,∴x 的取值范围是:x ≤6;(2)当x= -2时,二次根式√3−12a =√3−12×(−2)=√3+1=2; (3)由题意可得3−12a =0,解得x=6 .故答案为(1)x≤6 (2)2 (3)x=6 .203(2) 12. 【解析】==3+3=5-=12=122+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级二次根式测试题及
答案
Prepared on 22 November 2020
一、选择题
1. 下列式子一定是二次根式的是( )
A .
2--x B .x C .22+x D .22-x 2.若b b -=-3)3(2,则( )
A .b>3
B .b<3
C .b ≥3
D .b ≤3
3.若13-m 有意义,则m 能取的最小整数值是( )
A .m=0
B .m=1
C .m=2
D .m=3
4.若x<0,则x x x 2
-的结果是( )
A .0
B .—2
C .0或—2
D .2
5.下列二次根式中属于最简二次根式的是( )
A .14
B .48
C .b a
D .44+a
6.如果)6(6-=-•x x x x ,那么( )
A .x ≥0
B .x ≥6
C .0≤x ≤6
D .x 为一切实数
7.小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a a
a a a =•=112;④a a a =-23。
做错的题是( )
A .①
B .②
C .③
D .④
8.化简6151+的结果为( )
A .3011
B .33030
C .30330
D .1130
9.若最简二次根式
a a 241-+与的被开方数相同,则a 的值为( ) A .4
3-=a B .34=a C .a=1 D .a= —1 10.化简
)22(28+-得( ) A .—2 B .
22- C .2 D . 224-
二、填空题
11.①=-2)3.0( ;②=-2)52( 。
12.二次根式
31
-x 有意义的条件是 。
13.若m<0,则332||m m m ++
= 。
14.1112-=-•+x x x 成立的条件是 。
15.比较大小:
16.=•y xy 82 ,=•2712 。
17.计算3393a a a a
-+= 。
18.23231+-与的关系是 。
19.若35-=x ,则562++x x 的值为 。
20.化简⎪⎪⎭
⎫ ⎝⎛--+1083114515的结果是 。
三、解答题
21.求使下列各式有意义的字母的取值范围:
(1)43-x (2)a 83
1- (3)42+m (4)x 1- 22.化简:(1)
)169()144(-⨯- (2)22531- (3)5102421⨯- (4)n m 218 23.计算: (1)21437⎪⎪⎭⎫ ⎝⎛- (2)225241⎪⎪⎭⎫ ⎝⎛-- (3))459(4
3332-⨯ (4)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-1263
12817 (5)2484554+-+ (6)2332326-- 四、综合题
24.若代数式|
|112x x -+有意义,则x 的取值范围是什么
25.若x ,y 是实数,且2
111+-+-<x x y ,求1|1|--y y 的值。
第二十一章二次根式(A )
一、选择题
1.C 2.D 3.B 4.D 5.A 6.B 7.D 8.C 9.C 10.A
二、填空题
11.① ②
25- 12.x ≥0且x ≠9 13.—m 14.x ≥1 15.< 16.x y 4 18 17.a 3 18.相等 19.1 20.33
165315++ 三、解答题
21.(1)34≥x (2)24
1<a (3)全体实数 (4)0<x 22.解:(1)原式=
1561312169144169144=⨯=⨯=⨯; (2)原式=5153
1-=⨯-; (3)原式=5165322
1532212-=⨯-=⨯-; (4)原式=n m n m 232322=⨯⨯。
23.解:(1)原式=49×
21143=;(2)原式=25125241=-; (3)原式=3455273
15)527(41532-=⨯-=-⨯; (4)原式=22
74271447912628492=⨯=⨯=⨯; (5)原式=225824225354
+=+-+; (6)原式=265626366-=--。
24.解:由题意可知:
解得,121≠-≥x x 且。
25.解:∵x —1≥0, 1—x ≥0,∴x=1,∴y<2
1.∴1|1|--y y =111-=--y y . 2x+1≥。