美军机载预警雷达发展历程浅述(1)
美国海军舰载双波段系列雷达的发展_吴永亮

(CJR)项目,包括设计、研制以及采购一艘功能
2.CJR 系统的能力
替代舰和一套任务设备,以替代目前的“朱迪眼 镜蛇”雷达和“观察岛”号[7]。
1.CJR 项目进展
·CJR系统与现役CJ系统相比任务未发生变 化,采用了先进技术的新型双波段雷达具有显 著增强的任务能力[8]。CJR任务设备的数据采集
CJR概念于2002年提出,经过一年多的立项 系统主要包含3种设备:X波段前端 (XFE)、S波
二、装备下一代航母的双波段雷达
装备“福特”级航母的双波段雷达系统由美国海军于20世纪90年代末开始规划。除 计划用于航母外,这种雷达曾被选定作为美国海军新型隐身驱逐舰“朱姆沃尔特”级
作者简介: 吴永亮,男,工程师,中国电子科技集团第 38 研究所,230088
·14·
美 国 海 军 舰 载 双 波 段 系 列 雷 达 的 发 展 装备研究
能为半主动寻的舰空导弹提供多个目标的间断
连续波照射,同时还能完成飞机进场控制雷达
的功能。该雷达最显著的设计特点是在沿海经
常出现的不利环境条件下,提供对低空威胁导
弹的自动探测、跟踪与照射。
SPY- 3采用3个固定面阵列 (参见图1),每
个阵列包含约5000个发射/接收(T/R)单元。这
些单元与T/R组件连结,构成了基本的阵列模
AN/SPY- 3和AN/SPY- 4均采用矩形天线,单 个天线阵列的视角只有120°,为了保证全向探 测各用3部天线,共计6部天线组成一套完整的 雷达。这种双波段雷达采用IBM的商用现货超 级计算机来提供控制与信号处理,是首部采用 商用现货系统执行信号处理的雷达系统。这大
·16·
美 国 海 军 舰 载 双 波 段 系 列 雷 达 的 发 展 装备研究
雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势一、发展历程雷达(Radar)是一种利用电磁波进行探测和测量的技术。
它最早起源于20世纪初的无线电通信领域,随着科学技术的不断进步,逐渐发展成为一种重要的军事和民用应用技术。
1. 早期发展:雷达的概念最早由英国科学家罗伯特·沃森-瓦特(Robert Watson-Watt)于20世纪20年代初提出。
他的研究目标是利用无线电波来探测飞机,以应对潜在的空袭威胁。
在第二次世界大战期间,雷达技术得到了快速发展和广泛应用,成为军事领域的重要装备。
2. 技术突破:随着电子技术的进步,雷达技术也得到了快速发展。
20世纪50年代,脉冲雷达和连续波雷达成为主流技术,应用于航空、航海、气象等领域。
20世纪60年代,相控阵雷达和多普勒雷达的出现进一步提高了雷达的性能和应用范围。
3. 进一步应用:20世纪70年代以后,雷达技术开始在民用领域得到广泛应用。
例如,气象雷达可以用于天气预报和气象研究;交通雷达可以用于车辆探测和交通管理;地质雷达可以用于地下勘探和资源探测等。
雷达技术的应用领域不断扩展,为人类社会的发展做出了重要贡献。
二、未来发展趋势随着科学技术的不断进步和社会需求的不断增长,雷达技术将继续发展并迎来新的机遇和挑战。
1. 高精度和高分辨率:未来雷达技术的发展趋势之一是提高测量精度和分辨率。
随着微波和毫米波技术的突破,雷达系统可以实现对目标的更精确探测和跟踪,为军事、航空、航天和地质勘探等领域提供更可靠的数据支持。
2. 多功能集成:未来雷达系统将趋向于多功能集成。
传统的雷达系统主要用于目标探测和跟踪,而未来的雷达系统将具备更多的功能,如通信、导航、遥感等。
这将使得雷达系统在军事和民用领域的应用更加广泛,同时也提高了雷达系统的综合效能。
3. 主动探测和隐身技术:未来雷达技术将更加注重主动探测和隐身技术的发展。
主动探测技术可以通过主动发射信号主动探测目标,提高雷达系统的探测能力。
雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势概述:雷达(Radar)是一种利用电磁波进行探测和测量的技术。
它在军事、航空、气象、导航等领域发挥着重要作用。
本文将介绍雷达技术的发展历程,并探讨未来雷达技术的发展趋势。
一、雷达技术发展历程:1. 早期雷达技术:雷达技术起源于20世纪初期,最早用于军事领域。
早期雷达系统主要采用机械扫描方式,通过发送脉冲信号并接收回波来实现目标探测。
这些早期雷达系统在第二次世界大战期间发挥了重要作用,匡助军队进行目标侦测和导航。
2. 脉冲雷达技术:随着科技的进步,雷达技术逐渐发展为脉冲雷达技术。
脉冲雷达系统通过发送短脉冲信号并测量回波的时间来确定目标的距离。
这种技术具有高分辨率和较长探测距离的优势,被广泛应用于航空、气象和导航领域。
3. 连续波雷达技术:连续波雷达技术是雷达技术的又一重要发展阶段。
连续波雷达系统通过发送连续的电磁波信号,并测量回波的频率变化来确定目标的速度。
这种技术在航空领域中被广泛使用,用于飞行器的导航和着陆。
4. 相控阵雷达技术:相控阵雷达技术是近年来的重要突破。
相控阵雷达系统通过利用多个发射和接收单元的组合,实现对目标进行快速扫描和定位。
相控阵雷达技术具有高分辨率、快速探测和抗干扰能力强的特点,广泛应用于军事和航空领域。
二、雷达技术的未来发展趋势:1. 多波束雷达:多波束雷达技术是未来雷达技术的重要发展方向。
通过利用多个波束同时进行探测和测量,可以提高雷达系统的探测效率和准确性。
多波束雷达技术可以应用于军事侦察、航空导航和天气预测等领域。
2. 超高频雷达:超高频雷达技术是未来雷达技术的另一个重要方向。
超高频雷达系统可以利用较高频率的电磁波进行探测,具有更高的分辨率和探测距离。
这种技术可以应用于目标识别、隐身飞行器探测和地质勘探等领域。
3. 弹性波雷达:弹性波雷达技术是未来雷达技术的新兴方向。
弹性波雷达系统可以利用地球表面的弹性波传播进行探测,具有对地壳结构进行高精度探测的能力。
雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势一、发展历程雷达技术是一种利用电磁波进行探测和测量的技术,它具有广泛的应用领域,包括军事、航空、航天、气象等。
以下是雷达技术的发展历程:1. 早期雷达技术(20世纪初至1945年)早期的雷达技术主要用于军事目的,用于探测敌方飞机和舰船。
最早的雷达系统是通过发射无线电波并接收其反射信号来实现目标探测。
这些系统的性能有限,探测距离和分辨率较低。
2. 雷达技术的发展(1945年至20世纪末)二战后,雷达技术得到了迅速发展。
在这一时期,雷达系统的探测距离和分辨率得到了显著提高。
采用了脉冲雷达技术,能够在较长距离上探测到目标,并且能够区分不同目标之间的距离和速度。
3. 雷达技术的数字化和高性能化(20世纪末至今)随着计算机技术的发展,雷达系统逐渐实现了数字化和高性能化。
数字化雷达系统能够更准确地处理和分析雷达信号,提高探测和跟踪目标的能力。
高性能雷达系统具有更高的探测距离、分辨率和抗干扰能力。
二、未来发展趋势雷达技术在未来将继续发展,并在各个领域发挥更重要的作用。
以下是雷达技术未来的发展趋势:1. 多功能雷达系统未来的雷达系统将具备多种功能,能够同时实现目标探测、跟踪、成像和通信等多种任务。
这些系统将能够在复杂的环境中进行目标探测,并实现高精度的目标跟踪和成像。
2. 雷达网络化未来的雷达系统将实现网络化,多个雷达系统之间能够进行数据共享和协同工作。
通过网络化,可以实现更广泛的目标探测和跟踪,提高雷达系统的整体性能。
3. 超高频雷达超高频雷达是一种新型雷达技术,能够实现更高的分辨率和探测精度。
未来的雷达系统将采用超高频技术,能够更准确地探测和识别目标,适合于更多的应用场景。
4. 雷达与人工智能的结合人工智能技术在近年来得到了快速发展,未来的雷达系统将与人工智能技术结合,实现更智能化的目标识别和跟踪。
通过机器学习和深度学习算法,雷达系统能够更准确地判断目标的特征和行为。
5. 小型化和便携化随着科技的进步,未来的雷达系统将越来越小型化和便携化。
雷达的历史回顾

雷达的历史回顾都世民雷达是英文名词“Radar”的音译,它的原意是:无线电探测和定位。
早先概念是:由雷达发射机产生具有给定参数的电磁波,经天线辐射到空间,通过天线波束在空间扫描,一旦目标出现,就会对辐照的电磁波产生反射和散射,此反射波和散射波再被雷达天线接收,送至接收机,经检波、放大和信息处理后,即可获得空中目标的位置和目标的其它属性。
这里所说的发射机就是雷达的辐射源。
因此这种雷达称作有源雷达。
后来,随着电子技术、雷达技术和各种武器技术的发展,如今雷达的概念有所扩展,除上述有源雷达外,又派生出无源雷达,也就是说这种雷达没有辐射源,这种雷达是借用空间已有的电波,照射到目标所形成的囬波来探测目标。
如今学术界称这种雷达为外辐射源雷达。
从雷达本身看,它是无辐射源,实际上是有源,这源是外部辐射源。
雷达的诞生1864年,伟大的电磁之父麥克斯韦(JamesC1erkMaxwe11)发表了巨著“电磁学通论”,从数学和物理学,论证了电磁波的存在,并指出光就是电磁波!1886年,赫兹(HeinerichHertz)巧夺天工,他发明了天线,将谐振回路形成的电磁波,辐射到空间,证实了电磁波的存在。
1897年,波波夫利用无线电波探测物体。
1897J J Thompson)展开对真空管内阴极射线的研究。
1903年-1904年,德国侯斯美尔(Christian Hulsmeyer)发明了船用防撞雷达,获得了专利权。
这种雷达只能测量目标的距离。
同年,世界上出现了第一架飞机。
1906年,德弗瑞斯特(De Forest Lee)发明真空三极管,是世界上第一种可放大信号的主动电子元件.1914-1918年,第一次世界大战。
飞机在战场上的作用越来越大。
当时飞机飞行速度不高,人们是通过声波探测来提前预警飞机信息。
因此有的科普作家认为雷达的诞生从声波探测开始,也有人认为雷达的诞生是起始于多普勒效应的发现。
1916年,马可尼(Marconi Franklin)开始研究短波信号反射。
雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势一、发展历程雷达技术是一种利用电磁波进行探测和测量的技术,广泛应用于军事、航空、气象、导航、地质勘探等领域。
雷达技术的发展可以追溯到二战期间,随着科学技术的不断进步,雷达技术也在不断发展演变。
1. 早期雷达技术(20世纪30年代至50年代)早期的雷达技术主要以机械扫描雷达为主,使用脉冲信号进行目标的探测和测量。
这种雷达技术虽然在二战期间发挥了重要作用,但由于技术限制,其性能和精度相对较低。
2. 进阶雷达技术(20世纪50年代至80年代)进入20世纪50年代后,随着电子技术的快速发展,雷达技术得到了长足的进步。
首先是引入了连续波雷达技术,通过连续的电磁波进行目标的探测和测量,提高了雷达的探测距离和精度。
同时,雷达的工作频率也得到了提高,从毫米波段逐渐发展到毫米波段和光波段,进一步提高了雷达的性能。
3. 现代雷达技术(20世纪80年代至今)进入20世纪80年代后,雷达技术进一步迈入了现代化阶段。
随着计算机技术的快速发展,雷达的信号处理能力得到了大幅提升,实现了更高的目标探测和跟踪精度。
此外,雷达技术还引入了多普勒效应,可以对目标的运动状态进行测量和分析,提高了雷达的目标识别能力。
二、未来发展趋势随着科学技术的不断进步,雷达技术在未来仍将继续发展演进,以下是未来雷达技术的一些发展趋势:1. 高频高分辨率雷达未来的雷达技术将继续提高工作频率,从而实现更高的分辨率。
高频高分辨率雷达可以更准确地识别和跟踪目标,对于军事、航空等领域具有重要意义。
2. 多模态雷达多模态雷达是指同时使用多种不同工作频率或者波束模式的雷达系统。
通过多模态雷达可以综合利用不同频率的优势,提高雷达的性能和可靠性,适应不同的应用场景。
3. 主动相控阵雷达主动相控阵雷达是指通过控制阵列中的每一个发射/接收单元的相位和幅度来实现波束的电子扫描。
相比传统的机械扫描雷达,主动相控阵雷达具有更快的扫描速度和更高的灵便性,可以实现更高的目标探测和跟踪能力。
美军雷达武器现状及发展趋势

美军雷达武器现状及发展趋势美军雷达武器的现状和发展趋势是一个非常重要的话题。
雷达武器在现代战争中扮演着至关重要的角色,它们能够探测和追踪敌人的飞机、导弹和舰船,提供给指挥官关键的情报和作战能力。
以下是美军雷达武器的现状和发展趋势。
美军目前拥有世界上最先进的雷达技术。
美国在雷达技术方面投入了大量资金,并取得了领先地位。
美军的雷达系统具有较高的探测范围和较高的目标追踪精度。
美军的AN/SPY-1脉冲多普勒雷达是一种用于舰船的先进雷达系统,具有卓越的目标跟踪和导弹追踪能力。
美军的雷达武器系统越来越多地应用于多领域的作战环境。
传统上,雷达主要用于海军领域,用于舰船的目标探测和导弹防御。
随着技术的进步,雷达武器系统正在被引入陆军和空军,用于地面目标探测和空中目标拦截。
这种趋势有助于增强美军在全领域作战中的优势地位。
美军雷达武器系统的发展趋势是小型化和智能化。
由于现代战争的复杂性和高度机动性,雷达系统需要更小、更轻、更易于部署和携带。
美军正在努力将雷达系统的体积和重量减小到最小,并通过使用先进的微纳技术和材料来实现这一目标。
智能化也是雷达武器系统的发展趋势之一。
智能雷达可以自主判断和识别目标,提高目标识别准确性和作战效率。
美军雷达武器系统的发展趋势是网络化和集成化。
网络化使得雷达系统能够与其他传感器和武器系统进行实时通信和协同作战,提高整体作战能力。
集成化使得雷达系统能够与其他武器系统(如导弹、无人机)或平台(如飞机、舰船)无缝集成,形成综合作战能力。
这些趋势将进一步提升美军雷达武器系统的综合战斗力。
美军雷达武器的现状和发展趋势显示出其在现代战争中的重要性和发展潜力。
高精度、多领域应用、小型化和智能化、网络化和集成化是美军雷达武器系统的主要发展方向。
通过不断的研发和创新,美军将能够保持其在雷达技术上的领先地位,并在未来战争中取得更大优势。
美军雷达武器现状及发展趋势

美军雷达武器现状及发展趋势美军的雷达武器在过去几十年里经历了快速发展和创新。
雷达技术的进步不仅使美军在战争中具有优势,还为美国提供了更好的情报收集和监视能力。
本文将讨论美军雷达武器的现状以及未来的发展趋势。
雷达是一种通过探测和测量物体反射的无线电波来确定其方位和距离的系统。
在军事领域,雷达通常用于侦察、追踪和击落敌方飞机、导弹和其他威胁。
雷达技术在战争中起着至关重要的作用,可以帮助美军提前发现和防御来袭的敌方武器系统。
美军的雷达武器种类繁多,其中包括地面、海上和空中雷达系统。
以下是几个重要的美军雷达系统:1. AN/TPY-2雷达:这是一种早期警报雷达,用于监视来袭的敌方导弹。
它能够及早发现导弹并提供足够的警报时间,以便采取防御措施。
这种雷达系统在美国和其他一些国家的陆军中广泛使用。
2. F-22和F-35雷达:这两种战斗机所配备的雷达都是非常先进的。
F-22使用的雷达是AN/APG-77,具有高分辨率和远程探测能力,能够快速捕捉到敌方战机。
F-35的雷达是AN/APG-81,具有类似的性能,并且还具有更强大的电子战能力。
3. AEGIS舰载雷达系统:这是一种在美国海军军舰上使用的雷达系统,能够追踪和击落敌方导弹。
AEGIS系统由多个雷达组成,可以同时追踪多个目标,并与其他战斗力量进行协同作战。
美军雷达武器的发展正朝着更高的性能和多样化的方向发展。
以下是一些未来发展的趋势:1. 多波束雷达系统:多波束雷达能够同时检测和追踪多个目标,以及提供更准确的目标定位。
这种技术将对未来的作战能力产生积极影响,使美军更有效地监视和打击敌方目标。
2. 低悬浮雷达系统:低悬浮雷达将能够在地面或海面上探测隐藏的目标,例如敌方侦查和攻击无人机。
这种雷达系统将成为未来战争中的重要战术和情报工具。
3. 网络化雷达系统:网络化雷达系统将能够实现多个雷达之间的实时通信和协同作战。
这将使美军具备更高的综合战斗能力,并能更好地应对复杂的战场环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
美军机载预警雷达发展历程浅述
摘要:本文以美军典型机载预警雷达为例,简述了美国机载预警雷达及其搭载预警机型的发展历程,分析了雷达工作机理及主要战技指标,对下一代机载预警雷达发展方向作了简要评述。
关键词:预警雷达;机载雷达;预警机;发展历程;述评
I、引言
预警机是现代C4ISR电子作战系统网络的重要组成部分,不仅能够对空中的敌机、地面部队和海面舰艇进行监控,还能对己方战机进行导航和空中管制。
机载预警雷达是预警机的核心,一般采用12兆瓦以上的超高发射功率,工作频率在超高频(UHF)和甚高频(VHF)波段,作用距离可达几千公里,能在搜索的同时跟踪100~200个目标,主要用来发现远、中、近程弹道导弹,测定其瞬间位置、速度、发射点和弹着点等关键参数,为最高军事机关提供导弹预警情报。
最初的机载预警雷达没有下视能力,性能较差,一般只能搜索、监视中高空和海上目标,对陆地低空飞行目标探测能力差,仅可预警,不具备指挥控制功能。
20世纪60年代,采用机载运动目标显示(AMTI)技术,雷达能在海杂波背景下检测低空运动目标,但尚不具备对陆地上空目标的下视能力。
20世纪70年代后,出现了抑制地面杂波干扰的脉冲多普勒雷达,可探测低空和超低空飞行目标。
同时雷达还采用具有极低副瓣的平板裂缝阵列天线,在俯仰方向上利用相控扫描测量目标高度。
此时的雷达具备了优越的下视性能,使得装载预警雷达的预警机成为进行预警探测和指挥空中作战的空中移动指挥所。
II、发展历程
1、初始及第一代
代表:AN/APS-20/82雷达
美军早期预警机装备应用的是通用电气(GE)公司研制的AN/APS-20雷达。
1943年,AN/APS-20雷达装备于格鲁曼(Grumman)公司的“复仇者”型TBM-3W。
1944年美海军在PB-1W型预警机上也采用了AN/APS-20雷达。
雷达工作在S波段,峰值功率约1兆瓦,天线2.4米口径,天线为抛物面型式,波束扫描方式采用机械扫描。
雷达天线安装在机腹下的天线罩中。
1949年,美海军在WV-1/Ⅱ型机上,安装了经改进的AN/APS-20雷达(AN/APS-70/70A)。
雷达上已装有早期的动目标显示电路,具有初步的杂波滤除功能。
1957年,美国海军采用了新的预警机SF-1。
雷达是AN/APS-20的改进型AN/APS-82。
雷达天线罩为固定的、扁平椭圆流线型线罩,长径和高度分别为9.5米与1.5米。
此时的天线罩已不再挂在机腹,而是架在机背上。
天线口径4.3×1.2米。
雷达对小型飞机的探测距离达150千米左右,并且采用单脉冲技术,可测出目标的飞行高度。
2、第二代
代表:AN/APS-125/138/145雷达
预警机系统第一个飞跃是60年代初的E-2系列。
最初与之搭配的是1971年通用电气公司推出的AN/APS-120雷达。
雷达采用动目标检测(MTD)技术,对每一距离单元上的信号进行多普勒频率滤波,以区别杂波和飞行目标。
美海军E-2C Hawkeye AEW系统采用AN/APS-125雷达。
雷达选用UHF波段,低PRF。
采用Rand公司生产的APA-171天线,安装在机背的旋转天线罩内。
天线为双层背靠背八木端射阵列,由7800个组件构成。
主天线一侧的前方装有Hazeltine公司制造的RT-988IFF天线(小型八木阵列)。
主天线为水平极化,IFF 天线为垂直极化。
雷达天线(主天线)具有较低副瓣。
采用偏置相位中心天线(DPCA)技术补偿平台运动,改善杂波影响。
天线罩由玻璃钢材料制成,直径7.32米,厚0.76米,呈圆盘形。
天线罩支撑在机背上,支撑架可伸缩。
总重2吨。
液压马达驱动转速6转/分。
发射机为主振放大式,发射低PRF线性调频宽脉冲信号,有四个备选频率,末级为束射四极管7648。
中心处理系统能自动保持对600个独立目标的跟踪。
处理系统可提供40多个突袭任务和不同形式的截击。
1990年后的E-2C换装AN-APS-145,对飞机目标的探测和确认距离为556公里以上。
雷达的扫描包线为6百万立方英里。
该雷达具有全发射孔径控制天线,可减少旁瓣引起的偏差干扰。