必修第二册课时作业:4.2.1.2 等差数列的性质 Word版含解析
高中数学选择性必修二 4 2 1 1等差数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

4.2.1.1等差数列的概念和通项公式要点一 等差数列的概念(1)文字语言:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d_表示. (2)符号语言:a n +1-a n =d (d 为常数,n ∈N *). 【重点概要】(1)“从第2项起”是因为首项没有“前一项”.(2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中强调“同一个常数”,即该常数与n 无关.(3)求公差d 时,可以用d =a n -a n -1来求,也可以用d =a n +1-a n 来求.注意公差是每一项与其前一项的差,且用a n -a n -1求公差时,要求n ≥2,n ∈N *. 要点二 等差中项(1)条件:如果a ,A ,b 成等差数列. (2)结论:那么A 叫做a 与b 的等差中项. (3)满足的关系式是________. 【重点概要】在等差数列{a n }中,任取相邻的三项a n -1,a n ,a n +1(n ≥2,n ∈N *),则a n 是a n -1与a n +1的等差中项. 反之,若a n -1+a n +1=2a n 对任意的n ≥2,n ∈N *均成立,则数列{a n }是等差数列.因此,数列{a n }是等差数列⇔2a n =a n -1+a n +1(n ≥2,n ∈N *).用此结论可判断所给数列是不是等差数列,此方法称为等差中项法.要点三 等差数列的通项公式以a 1为首项,d 为公差的等差数列{a n }的通项公式a n =1(1)a n d +-【重点总结】从函数角度认识等差数列{a n }若数列{a n }是等差数列,首项为a 1,公差为d ,则a n =f(n)=a 1+(n -1)d =nd +(a 1-d). (1)点(n ,a n )落在直线y =dx +(a 1-d)上; (2)这些点的横坐标每增加1,函数值增加d. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( ) (2)等差数列{a n }的单调性与公差d 有关.( )(3)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列.( )(4)一个无穷等差数列{a n }中取出所有偶数项构成一个新数列,公差仍然与原数列相等.( ) 【答案】(1)×(2)√(3)√(4)×2.(多选题)下列数列是等差数列的有( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 【答案】ABC3.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A .2B .3C .-2D .-3 【答案】C【解析】由等差数列的定义,得d =a 2-a 1=-1-1=-2.故选C. 4.在△ABC 中,三内角A 、B 、C 成等差数列,则B 等于________. 【答案】60°【解析】因为三内角A 、B 、C 成等差数列, 所以2B =A +C ,又因为A +B +C =180°, 所以3B =180°,所以B =60°.题型一 等差数列的通项公式 探究1 基本量的计算【例1】(1)在等差数列{a n }中,已知a 6=12,a 18=36,则a n =________. (2)已知数列{a n }为等差数列,a 3=54,a 7=-74,则a 15=________.【答案】(1)2n (2)-314【解析】(1)由题意得⎩⎪⎨⎪⎧ a 1+5d =12a 1+17d =36,⎩⎪⎨⎪⎧解得d =2,a 1=2,∴a n =2+(n -1)×2=2n .(2)法一:(方程组法)由⎩⎨⎧a 3=54,a 7=-74,得⎩⎨⎧a 1+2d =54,a 1+6d =-74,解得⎩⎨⎧a 1=114,d =-34,∴a 15=a 1+(15-1)d =114+14×⎝⎛⎭⎫-34=-314. 法二:(利用a m =a n +(m -n )d 求解)由a 7=a 3+(7-3)d ,即-74=54+4d ,解得d =-34,∴a 15=a 3+(15-3)d =54+12×⎝⎛⎭⎫-34=-314. 探究2 判断数列中的项【例2】100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,说明理由. 【解析】∵a n =2+(n -1)×7=7n -5, 由7n -5=100,得n =15, ∴100是这个数列的第15项.探究3 等差数列中的数学文化 【例3】《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是( )A.116B.103C.56D.53【答案】D【解析】由题意可得中间的那份为20个面包, 设最小的一份为a 1,公差为d ,由题意可得[20+(a 1+3d )+(a 1+4d )]×17=a 1+(a 1+d ),解得a 1=53,故选D.【方法归纳】(1)已知a n ,a 1,n ,d 中的任意三个量,求出第四个量.(2)应用等差数列的通项公式求a 1和d ,运用了方程的思想.一般地,可由a m =a ,a n =b ,得⎩⎪⎨⎪⎧a 1+(m -1)d =aa 1+(n -1)d =b ,求出a 1和d ,从而确定通项公式.(3)若已知等差数列中的任意两项a m ,a n ,求通项公式或其它项时,则运用a m =a n +(m -n )d 较为简捷. 【跟踪训练】(1)等差数列{a n }中,a 1=13,a 2+a 5=4,a n =33,则n 等于( )A .50B .49C .48D .47 【答案】A【解析】由题得2a 1+5d =4,将a 1=13代入得,d =23,则a n =13+23(n -1)=33,故n =50.(2)等差数列{a n }中,已知a 5=10,a 12=31. ①求a 20;②85是不是该数列中的项?若不是,说明原因;若是,是第几项? 【解析】(2)①设数列{a n }的公差为d . 因为a 5=10,a 12=31,由a n =a 1+(n -1)d 得,⎩⎪⎨⎪⎧ a 1+4d =10,a 1+11d =31,解得⎩⎪⎨⎪⎧a 1=-2,d =3. 即a n =-2+3(n -1)=3n -5,则a 20=3×20-5=55. ②令3n -5=85,得n =30,所以85是该数列{a n }的第30项. 题型二 等差数列的判定与证明【例4】已知数列{a n }满足a 1=4且a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.【解析】(1)证明:∵b n +1-b n =1a n +1-2-1a n -2=1⎝⎛⎭⎫4-4a n -2-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12又b 1=1a 1-2=12∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知,b n =12+(n -1)×12=12n ∵b n =1a n -2∴a n =1b n +2=2n+2.要证{b n }是等差数列,只需证b n +1-b n =常数或b n -b n -1=常数(n ≥2).【变式探究1】将本例中的条件“a 1=4,a n =4-4a n -1”改为“a 1=2,a n +1=2a na n +2”,求a n .【解析】∵a n +1=2a na n +2∴取倒数得:1a n +1=a n +22a n =12+1a n ∴1a n +1-1a n =12,又1a 1=12,∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公差为12的等差数列, ∴1a n =1a 1+(n -1)×12=12+n 2-12=n 2,∴a n =2n . 【方法归纳】定义法判断或证明数列{a n }是等差数列的步骤: (1)作差a n +1-a n ,将差变形;(2)当a n +1-a n 是一个与n 无关的常数时,数列{a n }是等差数列;当a n +1-a n 不是常数,是与n 有关的代数式时,数列{a n }不是等差数列.【跟踪训练】已知数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n2n -1,证明:数列{b n }是等差数列.(2)求数列{a n }的通项公式.【解析】(1)证明:因为a n +1=2a n +2n ,所以a n +12n =2a n +2n 2n =a n2n -1+1,所以a n +12n -a n2n -1=1,n ∈N *.又b n =a n2n -1,所以b n +1-b n =1.所以数列{b n }是等差数列,其首项b 1=a 1=1,公差为1. (2)由(1)知b n =1+(n -1)×1=n ,所以a n =2n -1b n =n ·2n -1,经检验,n =1时a 1=1也满足上式. 题型三 等差中项【例5】已知三个数成等差数列,其和为15,其平方和为83,则这三个数为________. 【答案】3,5,7或7,5,3【解析】设此三个数分别为x -d ,x ,x +d , 则⎩⎪⎨⎪⎧(x -d )+x +(x +d )=15(x -d )2+x 2+(x +d )2=83 解得x =5,d =±2.∴所求三个数分别为3,5,7或7,5,3.【总结】三个数成等差数列可设为x -d,x,x+d【变式探究2】已知四个数成等差数列,它们的和为26,中间两项的积为40,求这四个数. 【解析】法一:(设四个变量)设这四个数分别为a ,b ,c ,d ,根据题意,得⎩⎪⎨⎪⎧b -a =c -b =d -c ,a +b +c +d =26,bc =40,解得⎩⎪⎨⎪⎧ a =2,b =5,c =8,d =11或⎩⎪⎨⎪⎧a =11,b =8,c =5,d =2,∴这四个数分别为2,5,8,11或11,8,5,2.法二:(设首项与公差)设此等差数列的首项为a 1,公差为d ,根据题意,得 ⎩⎪⎨⎪⎧a 1+(a 1+d )+(a 1+2d )+(a 1+3d )=26,(a 1+d )(a 1+2d )=40,化简,得⎩⎪⎨⎪⎧4a 1+6d =26,a 21+3a 1d +2d 2=40, 解得⎩⎪⎨⎪⎧ a 1=2,d =3,或⎩⎪⎨⎪⎧a 1=11,d =-3,∴这四个数分别为2,5,8,11或11,8,5,2.法三:(灵活设元)设这四个数分别为a -3d ,a -d ,a +d ,a +3d ,根据题意,得⎩⎪⎨⎪⎧ (a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,化简,得⎩⎪⎨⎪⎧4a =26,a 2-d 2=40,解得⎩⎨⎧a =132,d =±32.∴这四个数分别为2,5,8,11或11,8,5,2.【小结】四个数成等差数列可设为a -3d ,a -d ,a +d ,a +3d【变式探究3】已知五个数成等差数列,它们的和为5,平方和为859,求这5个数.【解析】设第三个数为a ,公差为d ,则这5个数分别为a -2d ,a -d ,a ,a +d ,a +2d .由已知有 ⎩⎪⎨⎪⎧(a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 整理得⎩⎪⎨⎪⎧ 5a =5,5a 2+10d 2=859.解得⎩⎪⎨⎪⎧a =1,d =±23. 当d =23时,这5个分数分别是-13,13,1,53,73.当d =-23时,这5个数分别是73,53,1,13,-13.综上,这5个数分别是-13,13,1,53,73或73,53,1,13,-13.【方法归纳】当等差数列{a n }的项数n 为奇数时,可设中间的一项为a ,再以d 为公差向两边分别设项,即设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;当等差数列的项数n 为偶数时,可设中间两项分别为a -d ,a +d ,再以2d 为公差向两边分别设项,即设为…,a -3d ,a -d ,a +d ,a +3d ,….【易错辨析】忽视等差数列中的隐含条件致误【例6】已知{a n }为等差数列,首项为125,它从第10项开始比1大,那么公差d 的取值范围是( )A .d >875B .d <325C.875<d <325D.875<d ≤325 【答案】D【解析】由题意可得a 1=125,且⎩⎪⎨⎪⎧a 10>1a 9≤1即⎩⎨⎧125+9d >1125+8d ≤1解得875<d ≤325,故选D.【易错警示】1. 出错原因(1)错选A ,只看到了a 10>1而忽视了a 9≤1,是审题不仔细而致误; (2)错选C ,误认为a 9<1,是由不会读题,马虎造成错误. 2. 纠错心得认真审题,充分挖掘题目中的隐含条件.一、单选题1.等差数列{}n a 的公差为3,若2a ,4a ,8a 成等比数列,则{}n a 的前2n 项2n S =( ). A .3(21)n n - B .3(21)n n + C .3(1)2n n + D .3(1)2n n - 【答案】B 【分析】根据等差数列与等比数列的性质可得数列的通项公式,进而可得2n S . 【解析】等差数列{}n a 的公差为3,且2a ,4a ,8a 成等比数列,2428a a a ∴=,()()2222618a a a ∴+=+,解得26a =,1233a a ∴=-=,{}∴n a 的前2n 项, 22(21)2332n n n S n -=⋅+⨯ 3(21)n n =+.故选:B .2.已知数列{}n a 满足()()11220n n n n a a a a ++--+=,下列结论正确的是( ) A .当11a =时,10a 的最大值258 B .当11a =时,9a 的最小值384- C .当101a =时,1a 的最小值17- D .当91a =时,1a 的最大值132【答案】C【分析】根据题干中的条件可得:12n n a a +-=或120n n a a ++=,即{}n a 是等差数列或等比数列,A 选项分别把两种情况下的10a 算出来,比较大小,求出10a 的最大值,同样的道理,其他选项也可以判断出来,进而选出正确的选项 【解析】()()11220n n n n a a a a ++--+=则120n n aa +--=或120n n a a ++=A 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,101911819a a d =+=+= 当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()9102512a =-=-,10a 的最大值为19,故A 选项错误;B 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,91811617a a d =+=+=当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()892256a =-=,9a 的最小值为17,故B 选项错误;C 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当101a =时,即1192a +⨯=,解得:117a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当101a =时,即()9112a -=,解得:11512a =-,117512<--,故1a 的最小值为17-,故选项C 正确 D 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当91a =时,1161a += ,解得:115a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当91a =时,即()8112a -=,解得:11256a =,此时1a 的最大值为1256,D 选项错误 故选:C3.记n S 为等差数列{}n a 的前n 项和,若235a a +=,728S =,则数列{}n a 的公差为( ) A .1- B .2-C .1D .2【答案】C 【分析】由等差数列性质,747S a =求得44a =,根据项与项之间的关系代入条件求得公差. 【解析】由题知,74728S a ==,则44a =,设数列公差为d ,则234424435a a a d a d d +=-+-=+-=, 解得1d =, 故选:C4.在等差数列{}n a 中,前9项和918S =,266a a +=,则3n a =( ) A .33-n B .35n + C .73n - D .213n -【答案】C 【分析】根据918S =,266a a +=,可求得公差,再利用等差数列的通项公式即可得解. 【解析】 解:()199599182a a S a ===+,52a ∴=,又26426a a a +==,43a ∴=,∴公差541d a a =-=-,()447n a a n d n =+-⋅=-,373n a n ∴=-.故选:C.5.在ABC ∆中,“π3B =”是“角A ,B ,C 成等差数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C 【分析】若π3B =,则2π23AC B +==,若A ,B ,C 成等差数列,则π3B =,得到答案. 【解析】在ABC ∆中,若π3B =,则2ππ23A CB B +=-==,所以A ,B ,C 成等差数列,充分性成立. 反之,若A ,B ,C 成等差数列,则2B A C =+,因为3πA B C B ++==,所以π3B =,必要性成立.所以“π3B =”是“角A ,B ,C 成等差数列”的充要条件. 故选:C.6.已知数列{}n a 的前n 项和n S ,且{}n a 满足122n n n a a a ++=+,532a a -=,若424S S =,则9a =( ) A .9 B .172C .10D .192【答案】B 【分析】根据122n n n a a a ++=+判断出{}n a 是等差数列,然后将条件化为基本量,进而解出答案. 【解析】由122n n n a a a ++=+可知,{}n a 是等差数列,设公差为d ,所以53221a a d d -==⇒=, 由()1421114642241S S a a a ⇒+=⨯+⇒==,所以9117822a =+=. 故选:B.7.等差数列{}n a 的前n 项和为n S ,若3724a a +=,840S =,则29a a +等于( ) A .44- B .14C .24D .38【答案】D 【分析】根据条件,列出方程组,求出首项和公差即可求解. 【解析】设等差数列{}n a 的公差为d ,由3724a a +=,840S =得112824,82840,a d a d +=⎧⎨+=⎩ 解得144,14,a d =-⎧⎨=⎩则2912938a a a d +=+= 故选:D8.已知等差数列{}n a 的前n 项和为n S ,43a =,1224S =,若i 0j a a +=(i ,j N *∈,且1i j ≤<),则i 的取值集合是( )A .{}1,2,3B .{}1,2,3,4,5C .{}6,7,8D .{}6,7,8,9,10【答案】B 【分析】设公差为d ,结合等差数列的通项公式和求和公式即可求出首项和公差,即可写出数列中的项,从而可选出正确答案. 【解析】设公差为d ,由4133a a d =+=-及121121112242S a d ⨯=+=,解得19a =-,2d =, 所以数列为9-,7-,5-,3-,1-,1,3,5,7,9,11,…,故i 取值的集合为{}1,2,3,4,5. 故选:B .二、多选题9.将2n 个数排成n 行n 列的一个数阵,如下图: 1112131n a a a a ⋯⋯ 2122232n a a a a ⋯⋯ 3132333n a a a a ⋯⋯ ……123n n n nn a a a a ⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知1113612,1a a a ==+,记这2n 个数的和为S .下列结论正确的有( ) A .3m =B .767173a =⨯C .1()313j ij a i -=⨯-D . (13)131(4)n S n n =-+ 【答案】ACD 【分析】根据题意,利用等差数列和等比数列的通项公式以及求和公式,对各选项进行判断,即可得到结果. 【解析】由11136121a a a ==+,,可得22131161112525a a m m a a m m ===+=+,,所以22251m m =++,解得3m =或12m =- (舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111[()][2]11333()(3)1j j j j ij i a a m a i m m i i ----==+-⋅⋅=+-⨯⨯=-⨯,所以选项C 是正确的;又由这2n 个数的和为S ,则111212122212()()()n n n n nn S a a a a a a a a a =++⋯++++⋯++⋯+++⋯+()()()11211131313...131313n n n n a a a ---=+++--- ()()()()23111 313131224n n n n n n +-=-⨯=+-,所以选项D 是正确的; 故选:ACD.10.设等差数列{a n }的前n 项和为S n .若S 3=0,a 4=8,则( )A .S n =2n 2-6nB .S n =n 2-3nC .a n =4n -8D .a n =2n【答案】AC【分析】根据已知条件求得1,a d ,由此求得,n n a S ,从而确定正确选项,【解析】 依题意3408S a =⎧⎨=⎩, 1113304,438a d a d a d +=⎧⇒=-=⎨+=⎩, 所以2148,262n n n a a a n S n n n +=-=⋅=-. 故选:AC11.已知等差数列{a n }中,a 1=3,公差为d (d ∈N *),若2021是该数列的一项,则公差d 不可能是( ) A .2B .3C .4D .5【答案】BCD【分析】由已知得2021=3+(n -1)d ,即有n =2018d +1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.由此可得选项.【解析】解:由2021是该数列的一项,即2021=3+(n -1)d ,所以n =2018d+1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.故选:BCD.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.设n S 为正项数列{n a }的前n 14n a +,则通项公式n a =___________ 【答案】21()4n n N +-∈ 【分析】当1n =时,求得114a =;当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减得到112n n a a --=,结合等差数列的定义,即可求解其通项公式. 【解析】由n S 为正项数列{n a }的前n 14n a =+,当1n =114a =+,可得2111()4a a =+,解得114a =, 当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减,可得1-11()()02n n n n a a a a -+--=, 因为0n a >,所以112n n a a --=, 所以数列{n a }是以12为公差,以14为首项的等差数列, 所以1121(1)424n n a n -=+-=. 故答案为:21()4n n N +-∈. 13.在等差数列{a n }中,a 3=0.如果a k 是a 6与a k +6的等比中项,那么k =________.【答案】9【分析】根据等比数列的性质以及等差数列的通项公式求解即可.【解析】设等差数列{a n }的公差为d ,由题意得a 3=a 1+2d =0,∈a 1=-2d .又∈a k 是a 6与a k +6的等比中项,266k k a a a +∴=,即[a 1+(k -1)d ]2=(a 1+5d )·[a 1+(k +5)d ],[(k -3)d ]2=3d ·(k +3)d ,解得k =9或k =0(舍去). 故答案为:914.在等差数列{a n }中,a 1+a 5=2,a 3+a 7=8,则a 11+a 15=________.【答案】32【分析】由a 1+a 5=2,a 3+a 7=8,两式相减求得公差即可.【解析】因为a 1+a 5=2,a 3+a 7=8,所以(a 3+a 7)-(a 1+a 5)=4d =6,解得d =32, 所以a 11+a 15=(a 1+a 5)+20d =2+20×32=32. 故答案为:32四、解答题15.已知等差数列{}n a 的前n 项和为n S ,且28S =,9411S a =. (1)求n a ;(2)若3n n S a =+2 ,求n .【答案】(1)21n a n =+(2)4n =【分析】(1)设公差为d ,根据28S =,9411S a =,列出方程组,求得首项跟公差,即可得出答案; (2)利用等差数列前n 项和的公式求得n S ,再根据3n n S a =+2 ,即可的解. (1)解:设公差为d ,由已知294811S S a =⎧⎨=⎩, 得:()11128936113a d a d a d +=⎧⎨+=+⎩,解得:132a d =⎧⎨=⎩, 所以21n a n =+;(2)解:()232122n n n S n n ++==+, 因为3n n S a =+2 ,即()223212n n n +=++,得2450n n --=,解得4n =,或1n =-(舍去), 所以4n =.16.已知等差数列{}n a 的前n 项和为n S ,1646,2a a a +==. (1)求数列{}n a 的通项公式; (2)求n S 的最大值及相应的n 的值.【答案】(1)102n a n =-(2)当4n =或5n =时,n S 有最大值是20【分析】(1)用等差数列的通项公式即可. (2)用等差数列的求和公式即可. (1)在等差数列{}n a 中,∈1646,2a a a +==, ∈1125632a d a d +=⎧⎨+=⎩, 解得182a d =⎧⎨=-⎩, ∈1(1)102n a n d a n ==--+;(2)∈18,2a d ==-,1(1)2n n n S na d -=+ ∈1(1)(1)8(2)22n n n n n S na d n --=+=+-29n n =-+ , ∈当4n =或5n =时,n S 有最大值是20。
4.2.1等差数列(第二课时)等差数列的证明与性质PPT课件(人教版)

1
2
1
2
=
,
2( −2)
= ,为常数( ∈ ∗ ).
1
,
2
1
2
( > 1, ∈
∗ ),记
∴数列{ }是首项为 ,公差为 的等差数列.
=
1
.求证:数
−2
新知探究
证明:(法二:等差中项法)∵ =
∴+2 =
+1
2(+1 −2)
4
=
4−
4
2(4− −2)
(m,n,p,q∈N*)
特别地,设{an}为等差数列,若m+n=2p,则有am+an=2ap. (m,n,p∈N*)
注意:必须是两项相加等于两项相加,否则不一定成立.
例如,15 ≠ 7 + 8 , 但6 + 9 = 7 + 8 ;1 + 21 ≠ 22 ,但1 + 21 = 211 .
[方法二]由等差数列的性质知30 = 37 ,则7 = 10.
故3 − 25 = 3 − (3 + 7 ) = −7 = −10.
新知探究
例3.(1)数列{an}为等差数列,已知a2+a5+a8=9,a3a5a7=-21,求数列{an}的通项公式;
(2)在等差数列{an}中,a15=8,a60=20,求a75的值.
∴ = 1 + ( − 1) × (−20) = 220 − 20.
故从第12年起,该公司经销此产品将亏损.
04
课堂小结
课堂小结
推广:an=am+(n-m)d (n,m∈N*)
首末项两项之间的关系
任意两项之间的关系
an -a1
人教版高中数学选择性必修第二册4.2.1等差数列的性质及应用 第2课时【课件】

分析:
(1){ }是一个确定的数列,只要把 , 表示为{ }中的项,就可以
利用等差数列的定义得出{ }的通项公式;
(2)设{ }中的第n项是{ }中的第 项,根据条件可以求出n与 的
关系式,由此即可判断 是否为 { }的项.
合作探究
解: (1)设数列{ }的公差为′ .
这些下标构成一个首项为1,公差为4的等差数列{ },
则 = − .
令 − = , 解得 =
所以, 是数列 { }的第8项.
合作探究
思考:
如果插入的是 ( ∈ ∗ )个数,那么 的公差是多少?
提示:
设数列 { } 的公差为 ′ .
由题意可知, = ,+ = ,
① 特别地,当 + = (, , ∈ ∗ ) 时, + =
② 对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,
即 + = + − = ⋯ = + −+ = ⋯ .
(3)若{ }是公差为d的等差数列,则
① { + } (c为任意常数) 是公差为d的等差数列
因为购进设备的价值为220万元,所以 = − ,
于是
= + − − = − .
根据题意,得
≥
ቊ
<
解这个不等式组,得
即
< ≤ .
所以,d 的取值范围为 < ≤ .
− ≥
分析: 只要根据等差数列的定义写出 , , , ,再利用已知条件即可得证.
证明: 设数列{ }的公差为d ,则
所以
= + ( − ),
2024-2025学年高中数学选择性必修二课时作业4:等差数列的性质

2024-2025学年高中数学选择性必修二课时作业(四)等差数列的性质练基础1.等差数列{a n}中,a4+a6=6,a8=4,则a2=()A.1B.2C.3D.42.由公差d≠0的等差数列a1,a2,…,a n组成一个新的数列a1+a3,a2+a4,a3+a5,…,下列说法正确的是()A.新数列不是等差数列B.新数列是公差为d的等差数列C.新数列是公差为2d的等差数列D.新数列是公差为3d的等差数列3.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为0.4%,设张华第n个月的还款金额为a n元,则a n=()A.2192B.3912-8nC.3920-8n D.3928-8n4.一个等差数列由三个数组成,三个数的和为9,三个数的平方和为35,求这三个数.提能力5.在等差数列{a n}中,a2+a3=4,a5+a6=8,则a4=()A.4B.72C.3D.26.《周髀算经》是中国最古老的天文学和数学著作,书中提到:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为()A.6.5尺B.13.5尺C.14.5尺D.15.5尺7.在通常情况下,从地面到10km高空,高度每增加1km,气温就下降某一个固定数值.如果1km高度的气温是8.5℃,5km高度的气温是-17.5℃,则2km,4km,8km 高度的气温分别为________、________、________.8.已知等差数列{a n},满足a2+a3+a4=18,a2a3a4=66.求数列{a n}的通项公式.9.诺沃尔(Knowall)在1740年发现了一颗彗星,并推算出在1823年、1906年、1989年……人类都可以看到这颗彗星,即彗星每隔83年出现一次.(1)从发现那次算起,彗星第8次出现是在哪一年?(2)你认为这颗彗星会在2500年出现吗?为什么?10.已知四个数依次成等差数列且是递增数列,四个数的平方和为94,首尾两数之积比中间两数之积少18,求此等差数列.培优生11.南宋数学家杨辉在《详解九章算法》中讨论过高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.例如“百层球堆垛”:第一层有1个球(a1=1),第二层有3个球(a2=3),第三层有6个球(a3=6),第四层有10个球(a4=10),第五层有15个球(a5=15),…,各层球数之差{a n+1-a n}:a2-a1,a3-a2,a4-a3,a5-a4,…即2,3,4,5,…是等差数列.现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,则该数列的第8项为()A.51B.68C.106D.15712.已知等差数列{a n}的公差为正数,a2与a8的等差中项为8,且a3a7=28.(1)求{a n}的通项公式;(2)从{a n}中依次取出第3项,第6项,第9项,…,第3n项,按照原来的顺序组成一个新数列{b n},判断938是不是数列{b n}中的项?并说明理由.答案解析1.解析:等差数列{a n}中,因a4+a6=6,a8=4,而a2+a8=a4+a6,于是得a2+4=6,解得a2=2.故选B.答案:B2.解析:因为(a n+1+a n+3)-(a n+a n+2)=(a n+1-a n)+(a n+3-a n+2)=2d,所以数列a1+a3,a2+a4,a3+a5,…,是公差为2d的等差数列.故选C.答案:C3.解析:由题意可知:每月还本金为2000元,设张华第n个月的还款金额为a n元,则a n=2000+[480000-(n-1)×2000]×0.4%=3928-8n,故选D.答案:D4.解析:设这三个数分别为a-d,a,a+d -d+a+a+d=9,a-d)2+a2+(a+d)2=35,=3,=±2.所以所求三个数分别为1,3,5或5,3,1.5.解析:因为(a2+a3)+(a5+a6)=(a2+a6)+(a3+a5)=4a4=12,所以a4=3.故选C.答案:C6.解析:设冬至的日影子长为a1,则冬至、大寒、雨水的日影子长的和为a1+a3+a5=40.5,根据等差数列的性质可知3a3=40.5⇒a3=13.5,芒种的日影子长为a12=4.5,1+2d=13.51+11d=4.5,解得:a1=15.5,d=-1,所以冬至的日影子长为15.5尺.故选D.答案:D7.解析:用{a n}表示自下而上各高度气温组成的等差数列,则a1=8.5,a5=-17.5,由a5=a1+4d=8.5+4d=-17.5,解得d=-6.5,∴a n=15-6.5n.∴a2=2,a4=-11,a8=-37,即2km,4km,8km高度的气温分别为2℃,-11℃,-37℃.答案:2℃-11℃-37℃8.解析:∵{a n}是等差数列,且a2+a3+a4=18,∴3a3=18,a3=6.2+a3+a4=18,2a3a4=66,2+a4=12,2a4=11,2=11,4=12=1,4=11.2=11,4=1时,a1=16,d=-5.∴a n=a1+(n-1)d=16+(n-1)(-5)=-5n+21,2=1,4=11时,a1=-4,d=5.∴a n=a1+(n-1)d=-4+(n-1)5=5n-9.综上:a n=-5n+21或a n=5n-9.9.解析:(1)1740,1823,1906,1989,…,构成等差数列首项a1=1740,公差d=83,通项公式为a n=a1+(n-1)d=1740+83(n-1)=83n+1657,故a8=83×8+1657=2321,即彗星第8次出现是在2321年.(2)由83n+1657=2500,解得n=84383∉N,故这颗彗星不会在2500年出现.10.解析:设四个数为a-3d,a-d,a+d,a+3d(d>0),则a-3d)2+(a+3d)2+(a-d)2+(a+d)2=94,a-3d)(a+3d)+18=(a-d)(a+d),=±72,=32,此等差数列为-1,2,5,8或-8,-5,-2,1.11.解析:现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,各项与前一项之差{a n+1-a n}:a2-a1,a3-a2,a4-a3,a5-a4,a6-a5,…即2,3,6,11,18,…,3-2,6-3,11-6,18-11,…即1,3,5,7,…是等差数列,所以a7=41+(18+9)=68,a8=68+(18+9+11)=106.故选C.答案:C12.解析:(1)设等差数列{a n}的公差为d,根据等差中项的性质可得a2与a8的等差中项为a5,所以a5=8,又因为a3a7=28,即(a5-2d)(a5+2d)=28.所以d2=9,d=±3,因为公差为正数,所以d=3.则a5=a1+4d=8,则a1=-4.∴{a n}的通项公式a n=a1+(n-1)d=-4+3(n-1)=3n-7(n∈N*).(2)结合(1)可知b1=a3=2,b2=a6=11,b3=a9=20,…,b n=a3n=9n-7(n∈N*).令938=9n-7,即n=105∈N*,符合题意,即b105=938.所以938是数列{b n}中的项.。
最新人教版高二数学选择性必修第二册第四章 4.2.1 第2课时等差数列的性质及应用

所以a51=0,a1+a101=a2+a100=2a51=0,故B,D正确,A错误.又因为a51=a1+ 50d=0,所以a1=-50d,所以a3+a100=(a1+2d)+(a1+99d)=2a1+101d=2×(- 50d)+101d=d>0,故C错误.
探究点二 等差数列的设法与求解 【典例2】已知四个数成等差数列,它们的和为26,中间两项的积为40,求这四 个数. 【思维导引】方法一:直接设首项和公差,将已知条件转化为方程组求解. 方法二:直接设出4个数,根据题中条件列方程组求解. 方法三:等差数列相邻四项和为26,这四项有对称性,用对称设法求解.
(1)3+6=4+5,a3+a6与a4+a5相等吗? 提示:相等. (2)若m+n=p+q(m,n,p,q∈N*),则am+an=ap+aq吗? 提示:相等.因为am=3m,an=3n,ap=3p,aq=3q, 所以am+an=3(m+n),ap+aq=3(p+q), 因为m+n=p+q,故am+an=ap+aq.
下面是关于公差是d(d>0)的等差数列{an}的四个说法:
p1:数列{an}是递增数列;p2:数列{nan}是递增数列;
p3:数列ann 是递增数列;p4:数列{an+3nd}是递增数列.其中正确的是(
)
A.p1,p2
B.p3,p4
C.p2,p3
D.p1,p4
【解析】选D.对于p1:an=a1+(n-1)d,d>0,
【补偿训练】 某市2016年底绿地面积为560平方千米,预计每年都比上一年新增绿地面积4平 方千米,问到2026年底该市绿地面积为多少平方千米? 【解析】将该市2016年起每年年底的绿地面积依次排成数列,记为{an},由题意 可知{an}为等差数列,其中a1=560,d=4,所以an=a1+(n-1)d=4n+556. 2026年底的绿地面积在数列{an}中是第11项, 所以a11=556+4×11=600(平方千米). 答:到2026年底该市绿地面积为600平方千米.
4.2.1.2 等差数列的性质及其应用课件 高中数学选择性必修二

质及其应用
一、复习回顾
1.等差数列的定义
an 1 an d (n N )或an an 1 d , n 2, n N (d 是常数)
2.等差中项的定义
如果在a与b中间插入一个数A,使a, A, b成等差数列,那么
A叫做a与b的等差中项. 2A=a+b
a5 a1 4d 10
a1 2
(法1)由
得
, an (2) 3(n 1) 3n 5.
a12 a1 11d 31 d 3
设基本量法(方程组法)
a12 a5
(法2)d
3, an a5 (n 5)d 10 3(n 5) 3n 5.
(n N ), 则an __ .
2 an 1 an an 2
解:
2
an 1
1
1
,
an an 2
1
{ }为等差数列.
an
1
1
1,
2, 公差d 2 1 1.
a1
a2
1
1
an .
1 (n 1) n,
n
an
二、合作探究
a3 , a7是方程x 2 4 x 12 0的两根,
求a3 求a7 求d an
解得x1 6, x2 2.
{an }是递增数列, a3 6, a7 2.
a7 a3 2 ( 6)
公差d
2,
73
4
an a3 (n 3)d 6 2(n 3) 2n 12 .
【课件】第4章 4.2 4.2.1 第2课时 等差数列的性质人教A版(2019)选择性必修第二册

疑
业
难
∴d<0.故 a1=11,d=-5.
返 首 页
·
22
·
情
课
境
堂
导
小
学
结
探
∴an=11+(n-1)×(-5)=-5n+16,
·
提
新
素
知
即等差数列{an}的通项公式为 an=-5n+16.
养
合 作
令 an=-34,即-5n+16=-34,得 n=10.
课
探
时
究
∴-34 是数列{an}的第 10 项.
释
作
疑
业
难
返 首 页
·
21
·
情 境 导 学
法二:依题意得aa11+ ·a2a·a2+3=a63=6,18,
课 堂 小 结
·
探
提
新 知
∴3aa1·1+a1+3dd=·1a81,+2d=66,
素 养
合
作
课
探 究
释
解得ad1==-115,, 或ad1==51., ∵数列{an}是递减等差数列,
时 分 层 作
释
疑
难
前三项可以设为 a-d,a,a+d,也可以直接用“通 课 时 分 层 作 业
·
返 首 页
19
·
情
课
境
[解] 法一:设该等差数列的前三项为 a-d,a,a+d,
堂
导
小
学
结
探
则(a-d)+a+(a+d)=3a=18.
·
提
新
素
知
解得 a=6.
养
合 作
又前三项的乘积为 66.
课
必修第二册课时作业:4.2.1.2 等差数列的性质 Word版含解析

ቤተ መጻሕፍቲ ባይዱ
[提能力]
7.(多选题)下列说法中不正确的是( ) A.若 a,b,c 成等差数列,则 a2,b2,c2 成等差数列 B.若 a,b,c 成等差数列,则 log2a,log2b,log2c 成等差数列 C.若 a,b,c 成等差数列,则 a+2,b+2,c+2 成等差数列
Ø 借助注释,理解词语。 ①大漠:广阔无边的大沙漠。
C.2 D. 4.已知等差数列{an}满足 a1+a2+a3+…+a101=0,则有( ) A.a1+a101>0 B.a2+a101<0 C.a3+a99=0 D.a51=51 5.在通常情况下,从地面到 10 km 高空,高度每增加 1 km,气温 就下降某一个固定数值.如果 1 km 高度的气温是 8.5 ℃,5 km 高度 的气温是-17.5 ℃,则 4 km 高度的气温是________ ℃ 6.若关于 x 的方程 x2-x+m=0 和 x2-x+n=0(m,n∈R 且 m≠n) 的四个根组成首项为 的等差数列,求 m+n 的值.
课时作业(四) 等差数列的性质
[练基础]
1.在等差数列{an}中,a1=2,a3+a5=10,则 a7=( ) A.5 B.8 C.10 D.14 2.已知等差数列{an}的公差为 d(d≠0),且 a3+a6+a10+a13=32, 若 am=8,则 m 等于( ) A.8 B.4 C.6 D.12 3.数列{an}满足 3+an=an+1 且 a2+a4+a6=9,则 log6(a5+a7+a9) 的值是( ) A.-2 B.-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(四) 等差数列的性质
[练基础]
1.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )
A .5
B .8
C .10
D .14
2.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 等于( )
A .8
B .4
C .6
D .12
3.数列{a n }满足3+a n =a n +1且a 2+a 4+a 6=9,则log 6(a 5+a 7+a 9)的值是( )
A .-2
B .-12
C .2 D.12
4.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( )
A .a 1+a 101>0
B .a 2+a 101<0
C .a 3+a 99=0
D .a 51=51
5.在通常情况下,从地面到10 km 高空,高度每增加1 km ,气温就下降某一个固定数值.如果1 km 高度的气温是8.5 ℃,5 km 高度的气温是-17.5 ℃,则4 km 高度的气温是________ ℃
6.若关于x 的方程x 2-x +m =0和x 2-x +n =0(m ,n ∈R 且m ≠n )
的四个根组成首项为14的等差数列,求m +n 的值.
[提能力]
7.(多选题)下列说法中不正确的是( )
A .若a ,b ,c 成等差数列,则a 2,b 2,c 2成等差数列
B .若a ,b ,c 成等差数列,则log 2a ,log 2b ,log 2c 成等差数列
C .若a ,b ,c 成等差数列,则a +2,b +2,c +2成等差数列
D .若a ,b ,c 成等差数列,则2a,2b,2c 成等差数列
8.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的
公差分别为d 1和d 2,则d 1d 2
的值为________. 9.一个等差数列的首项是8,公差是3;另一个等差数列的首项是12,公差是4,这两个数列有公共项吗?如果有,求出最小的公共项,并指出它分别是两个数列的第几项.
[战疑难]
10.如果有穷数列a 1,a 2,…,a m (m 为正整数)满足条件:a 1=a m ,a 2=a m -1,…,a m =a 1,那么称其为“对称”数列.例如数列1,2,5,2,1与数列8,4,2,4,8都是“对称”数列.已知在21项的“对称”数列{c n }中,c 11,c 12,…,c 21是以1为首项,2为公差的等差数列,则c 2=________.
课时作业(四) 等差数列的性质
1.解析:由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8.故选B.
答案:B
2.解析:因为a 3+a 6+a 10+a 13=4a 8=32,所以a 8=8,即m =8.故选A.
答案:A。