2.2.2 等差数列的性质ppt课件

合集下载

高中数学第二章数列2.2.2等差数列的性质课件2新人教A版必修 (2)

高中数学第二章数列2.2.2等差数列的性质课件2新人教A版必修 (2)




陷阱规避
陷阱一 陷阱二 陷阱三
【易错典例】
已知数列{an } 满足 a1 1, an 3n1 an1(n 2) ,求 a1 , a2 ;
等差数列
2
概念
性质
典题剖析
题型一:等差数列 的简单判定
例 1.(1)求等差数列 8、5、2… …的第 20 项
(2) 401是不是等差数列 5、 9、 13… …的项?如果是,是第几项?
题型二:等差中 项的应用
例2:在-1与7之间顺次插入三个数a,b,c使这五个数成等差数列,求此数列.
题型三:等差数列的推 理与证明
例 3.已知数列{an} 的通项公式 an pn q ,其中 p 、q 为常数,这个数列是等差数列吗?若是,首项和公 差分别是多少?
技巧传播
1.判断一个数列{an}是否是等差数列,关键是
2.三个数成等差数列可设为:a-d,a,a+d 或 a,a+d,a+2d;
第二章 数列
等差数列的性质
等 差 数 列
等差数列的 定义
定义
一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫 做等差数列的公差(常用字母“ d ”表示) 注意:
注意事项
等差数列的 通项
推导
累加法
等差中项
等差中项:如果 a ,G , b 成等差数列,那么G 叫做a ,b 的等差中项 性质:G a b

高中数学人教A版必修5第二章2.2等差数列2课时课件

高中数学人教A版必修5第二章2.2等差数列2课时课件

a2=a1+d,
实际由等差数列定义有
a3=a2+d =a1+2d, a4=a3+d =a1+3d, 由上式猜测: an=a1+(n-1)d.
a2-a1=d, a3-a2=d,
a4-a3=d, ……
an-an-1=d,
联想:形如递推公式a n
- an-1
=
f
(n),
求通项公式可运用累加法
各式两边分别相加得
问题1. 刚才写出的 4 个数列, 它们有什么共同的 规律? 请你给有这种规律的数列设计一个名称.
(1) 5, 10, 15, 20, 25, 30, 35, … (2) 18, 15.5, 13, 10.5, 8, 5.5, 3, 0.5. (3) 10072, 10144, 10216, 10288, 10360. (4) 60, 58, 56, 54, 52, 50, 48, 46, 44, 42.
问题1. 等差数列的应用较为广泛, 如: 能被 7 整 除的三位正整数有多少个? 一部梯子有 15 级, 最下 一级宽 61cm, 最上一级宽 40cm, 从下到上的第 10 级宽是多少? 你能用等差数列知识解决这类问题吗?
同样, 梯子的各级宽依次构成等差数列. 设这个数列为{bn}, 则 b1=61, b15=40. 由通项公式 b15=b1+(15-1)d 得
(2) 是等差数列, 它的首项是原数列首项a1, 公差是原 数列公差的 2 倍, 即2d.
(3) 也是等差数列, 它的首项是原数列首项a7, 公差是 原数列公差的 7 倍, 即7d.
5. 已知{an}是等差数列. (1) 2a5=a3+a7 是否成立? 2a5=a1+a9 呢? 为什么? (2) 2an=an-1+an+1 (n>1) 是否成立? 据此你能得出 什么结论?

等差数列课件ppt课件

等差数列课件ppt课件
等差数列课件 ppt
contents
目录
• 等差数列的定义 • 等差数列的性质 • 等差数列的通项公式 • 等差数列的求和公式 • 等差数列的应用 • 等差数列的习题与解析
01
CATALOGUE
等差数列的定义
等差数列的文字定义
总结词
等差数列是一种特殊的数列,其中任意两个相邻项的差是一 个常数。
详细描述
等差数列是一种有序的数字排列,其中任意两个相邻项之间 的差是一个固定的值,这个值被称为公差。在等差数列中, 首项和末项是固定的,而其他项则可以通过首项、末项和公 差进行计算。
等差数列的数学公式定义
总结词
等差数列的数学公式可以用来表 示任意一项的值。
详细描述
等差数列的数学公式是 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公差 ,n 是项数。这个公式可以帮助 我们快速计算出等差数列中的任 意一项。
04
CATALOGUE
等差数列的求和公式
公式推导
公式推导方法一
利用等差数列的性质,通过累加法推 导得出求和公式。
公式推导方法二
利用等差数列的通项公式,通过代数 运算推导得出求和公式。
公式应用
应用场景一
计算等差数列的和,例如计算 1+2+3+...+n的和。
应用场景二
解决与等差数列相关的实际问题,例 如计算存款的本金和利息之和。
,公差是多少?
进阶习题
进阶习题1
进阶习题2
题目:已知一个等差数列的前三项依次为 a-d, a, a+d,如果该数列的第2008项为 2008,那么它的第10项是什么?

§2.2.2等差数列(二)

§2.2.2等差数列(二)


cn 11 (n 1) 12 12n 1
又∵ a100 302 ,
b100 399 ∴ cn 12n 1 302
∴ n 25.25 ,知数列有25个共同项
2013-1-19 重庆市万州高级中学 曾国荣 wzzxzgr@ 17
§2.2.2等差数列(二)
解:取数列 {an } 中的任意相邻两项 an与an1 (n 1) 求差得
an an1 ( pn q) [ p(n 1) q] pn q ( pn p q) p
重庆市万州高级中学 曾国荣 wzzxzgr@ 21
它是一个与n无关的数,所以{an }是等差数列

4 n k 1, 而 n N , k N 3
∴ k 必须为3的倍数,设 k 3r (r N ), 得n 4r 1 由条件知 又∵ r N
1 3r 100 1 101 , 解得 r 2 4 1 4r 1 100

,∴
1 用递推关系an 1 (an an 2 )给出的数列 2 也是等差数列。
不难发现,在一个等差数列中,从第2项起, 每一项(有穷数列的末项除外)都是它的前一项 与后一项的等差中项
2013-1-19 重庆市万州高级中学 曾国荣 wzzxzgr@ 7
§2.2.2等差数列(二)
3.有几种方法可以计算公差d
(1)d an an1
2013-1-19
an a1 (3)d an am (2) d nm n 1
2
重庆市万州高级中学 曾国荣 wzzxzgr@
§2.2.2等差数列(二)
4.等差数列对称项设法: (1)当等差数列{an}的项数为奇数时,可设 中间一项为a,再以公差为d向两边分别设项为: …,a-2d,a-d,a,a+d,a+2d,… (2)当等差数列{an}的项数为偶数时,可设中间两项分别 为a-d,a+d,再以公差为2d向两边分别设项为, …,a-3d,a-d,a+d,a+3d,… 对称项设法的优点:若有n个数构成等差数列.利用 对称项设出这个数列,则其各项和为na.

2.2.2《等差数列的性质》课件(人教A版必修5)

2.2.2《等差数列的性质》课件(人教A版必修5)

(D)-
3
第28页,共46页。
【解析】选D.∵{an}为等差数列,a1+a7+a13=4π, ∴3a7=4π,∴a7= π.4
又∵a2+a12=2a7, 3 ∴a2+a12= 8 π,
∴tan(a2+a312)=- . 3
第29页,共46页。
2.设{an}为公差为-2的等差数列,若a1+a4+a7+…+a97=50,则
m的值为( )
(A)8
(B)4
(C)6
(D)12
【解析】选A.在等差数列{an}中,d>0. ∴数列{an}为递增数列.
又a3+a6+a10+a13=4a8=32,∴a8=8,∴m=8.
第31页,共46页。
二、填空题(每题5分,共10分)
4.(2010·济宁高二检测)在等差数列{an}中,已知公差
第44页,共46页。
【解析】(1)由等方差数列的定义可知:a2n-a2n-1=p(n≥2). (2)∵{an}是等差数列,设公差为d,则an-an-1=an+1-an=d(n≥2).又 {an}是等方差数列,∴a2n-a2n-1=a2n+1-a2n (n≥2),∴(an+ an-1)(an-an-1)=(an+1+an)(an+1-an),即d(an+an-1-an+1-an)=
-2d2=0,∴d=0,故{an}是常数列.
第45页,共46页。
第46页,共46页。
∴lgalg=a-lglbgb,∴ab=1.
答案:1
第42页,共46页。
第43页,共46页。
4.(15分)如果一个数列的各项都是实数,且从第2项开始,每一项与它的 前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫做 这个数列的公方差.

2019-2020学年数学人教A版必修5课件:2.2 第2课时等差数列的性质

2019-2020学年数学人教A版必修5课件:2.2 第2课时等差数列的性质

4.在等差数列{an}中,已知a2+2a8+a14=120,则2a9- a10的值为________.
【答案】30
【解析】∵a2 +a14=2a8,∴a2 +2a8+a14=4a8=120, ∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.
利用等差数列的通项公式或性质解题
【例1】 在等差数列{an}中,若a2=4,a4=2,则a6= ()
在等差数列{an}中,若a1+a2+a3=32,a11+a12+
a13=118,则a4+a10=( )
A.45
B.50
C.75
D.60
【答案】B
【解析】∵a1+a2+a3=3a2=32,a11+a12+a13=3a12= 118,∴3(a2+a12)=150,即a2+a12=50.∴a4+a10=a2+a12= 50.故选B.
(2019 年陕西西安模拟)《莱因德纸草书》是世
界上最古老的数学著作之一,书中有一道这样的题目:把 100
个面包分给五个人,使每人所得面包数成等差数列,且使较大
的三份之和的17等于较小的两份之和,问最小的 1 份为多少?这
个问题的答案为( )
A.53
B.130
C.56 【答案】A
D.161
【解析】设五个人分得的面包为 a-2d,a-d,a,a+d, a+2d(d>0),则(a-2d)+(a-d)+a+a+d+a+2d=5a=100, ∴a=20.由17(a+a+d+a+2d)=a-2d+a-d,得 3a+3d=7(2a -3d),∴24d=11a.∴d=565.∴最小的一份为 a-2d=20-2×565 =53.故选 A.
【方法规律】常见设元技巧: (1)某两个数是等差数列中的连续两个数且知其和,可设这 两个数为a-d,a+d,公差为2d; (2)三个数成等差数列且知其和,常设此三数为a-d,a,a +d,公差为d; (3)四个数成等差数列且知其和,常设成a-3d,a-d,a+ d,a+3d,公差为2d.

等差数列的前n项和PPT优秀课件1

等差数列的前n项和PPT优秀课件1

(2)100元“零存整取”的月利息为 100×1.725‰=0.1725(元), 存3年的利息是
0.1725×(1+2+3+……+36)=114.885(元), 因此李先生多收益
179.82-114.885×(1-20%)=87.912元.
答:李先生办理“教育储蓄”比“零存整 取”多收益87.912元
解:(1)100元“教育储蓄”存款的月利息是 100×2.7‰=0.27(元), 第1个100元存36个月,得利息0.27×36(元); 第2个100元存35个月,得利息0.27×35(元); ………… 第36个100元存1个月,得利息0.27×1(元),
此时李先生获得利息
0.27×(1+2+3+……+36)=179.82(元), 本息和为3600+179.82=3779.82元;
解 得 30AB2
S 3 0 9 0 0 A 3 0 B 3 0 ( 3 0 A B ) 6 0
解法三: 设a1+a2+……+a10=A, a11+a12+……+a20=B,
a21+a22+……+a30=C, 则A,B,C成等差数列, 且A=10,A+B=30, 解得B=20,
2.2.2等差数列的前n项和
如图堆放一堆钢管,最上一层放了4根, 下面每一层比上一层多放一根,共8层,这 堆钢管共有多少根?
这堆钢管从上到下的数 量组成一个等差数列。
其中a1=4,公差d=1. 最下一层中a8=11。
即求4+5+6+……+11=?
我们设想,在这堆钢管旁,如图所示堆放同 样数量的钢管,这时每层都有钢管(4+11)根.

高中数学《2.2等差数列》第2课时课件新人教A版必修

高中数学《2.2等差数列》第2课时课件新人教A版必修

请您根据提供的信息说明,求 (1)第2年养鸡场的个数及全县出产鸡的总只数; (2)到第6年这个县的养鸡业比第1年是扩大了还是缩小 了?请说明理由. (3)哪一年的规模最大?请说明理由. 审题指导 本题为图表信息题,综合考查了等差数列的知 识和等差数列的函数特征. [规范解答] 由题干图可知,从第1年到第6年平均每个鸡场 出产的鸡数成等差数列,记为{an},公差为d1,且a1=1, a6=2;从第1年到第6年的养鸡场个数也成等差数列,记 为{bn},公差为d2,且b1=30,b6=10; 从第1年到第6年全县出产鸡的总只数记为数列{cn}, 则cn=anbn. (2分)
fx2-fx1 (2) k= (x1≠x2). x2-x1 当k=0时,对于常数函数f(x)=b,上式仍然成立. (2)等差数列{an}的公差本质上是相应直线的斜率. 如am,an是等差数列{an}的任意两项,由an=am+(n-m)d, an-am 类比直线方程的斜率公式得 d= . n-m
即a=1,a2-9d2=-8, ∴d2=1,∴d=1或d=-1. 又四个数成递增等差数列,所以d>0, ∴d=1,故所求的四个数为-2,0,2,4. 法二 若设这四个数为a,a+d,a+2d,a+3d(公差为d), 依题意,2a+3d=2,且a(a+3d)=-8, 3 把 a=1- d 代入 a(a+3d)=-8, 2
解 由等差数列{an}的性质知:a3+a7=a4+a6,从而a3a7 =-12,a3+a7=-4,故a3,a7是方程x2+4x-12=0的两 根,又d>0,解之,得a3=-6,a7=2. a1+2d=-6, a1=-10, 再解方程组 解得 a1+6d=2, d=2, 则an=a1+(n-1)d=-10+(n-1)×2=2n-12, 即an=2n-12.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

栏 目 链 接
基础 梳理 5.(1)等差数列{an}的等间隔项组成的数列为 ____________ 等差数列 .
(2)已知{an}为等差数列,且其公差为d,则{a2n-1}是 2d 等差数列,其公差为:______. __________
栏 6.(1)若{an}为等差数列,{bn}为等差数列,且cn=an+bn,dn 目 链 接 {cn}与{dn}也为等差数列 =an-bn,则__________________________ .
2.(1)设{an}为等差数列,则与首末两项距离相等的两 首末两项的和 1+an=a2+an-1=a3+an-2=… 项和等于__________ ,即:a __________________________. (2)在等差数列{an}中,an=2n-1,则a3+a5= 14 ,a2+a6=______ 14 ,可知a3+a5______ = a2+a6. ______
(2)已知数列{an}与{bn}为等差数列,an=2n-1,bn=3n+2, 5n+1 ,为___________ 等差数列 ,an-bn=________ -n-3 ,为等差 则an+bn=________ 数列.
引导探究
探究1 利用等差数列的通项公式解题
例1 等差数列{an}中,如果a5=11,a8=5,求数列的通 项公式.
基础 梳理
3.(1)设{an}为等差数列,若m+n=p+q,则 am+an=ap+aq ______________________________________________________ . (2)设{an}为等差数列,若m+n=2p,则 am+an=2ap ________________________________________________________ . 4.(1)设{an}为等差数列,则对于任意常数b,有{ban}为 等差数列 ___________________ . (2)已知数列{an}为等差数列,且an=3n+2,则数列{3an}的第n 9n+6 项为:______________.
解析:解法一:设等差数列的等差中项为a,公 差为d,则这三个数分别为a-d,a,a+d. 依题意,3a=6且a(a-d)(a+d)=-24, 所以a=2,代入a(a-d)(a+d)=-24, 化简得d2=16,于是d=± 4, 故三个数为-2,2,6或6,2,-2.
栏 目 链 接
• 课堂小结
由学生来总结
探究2
利用等差数列的性质解题
例2 已知等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求此数
列的通项公式
解析:解法一:∵a1+a7=2a4,a1+a4+a7=3a4=15, 栏 ∴a4=5. 目 链 又∵a2a4a6=45,∴a2a6=9, 接 即(a4-2d)(a4+2d)=9,(5-2d)(5+2d)=9, 解得:d=± 2. 若d=2,an=a4+(n-4)d=2n-3; 若d=-2,an=a4+(n-4)d=13-2n.
分析:求等差数列的通项公式只要求a1、d 两个量即可. a5=a1+4d=11, 解析:解法一:由题意 a8=a1+7d=5
a1=19, ⇒ ⇒ d=-2
栏 目 链 接
an=19+(n-1)×(-2),
故数列的通项公式为an=21-2n. 解法二:a8-a5=5-11=3d⇒d=-2, a5=a1+4d⇒a1=19, 故an=21-2n. 栏 点评:等差数列{an}的通项公式an=a1+(n-1)d 目 链 中共含有四个变数,即a1,d,n,an.如果知道了其中 接 任意三个数,就可以求出第四个数,这种可行性与求 出未知数的过程可以称为“知三求一”.有时是用两 种方式(或条件)给出了两个同类变数的值,也可以求 出这个等差数列其它未知数的值.
解析: an中, 在等差数列 a 2 m 11, a 2l 3,
跟踪 训练
选做题
3.在等差数列{an}中,a5+a13=40,则 a8+a9+a10 的 值为( ) A.72 B.60 C.48 D.36
分析:在题目中的项很多,利用通项公式转化为两 栏 个基本量a1和d,但并不能直接求出a1和d,因此利用a1和 目 链 接 d来寻找所求和已知的等量关系. 解析:解法一:设此数列的首项为a1,公差为d,则 a5+a13=a1+4d+a1+12d=2a1+16d=40, 即a1+8d=20. a8+a9+a10=a1+7d+a1+8d+a1+9d=3a1+24d= 3(a1+8d)=60.
第二章
数列
2.2 等差数列
2.2.2 等差数列的性质
课题导入 回顾等差数列的定义及其通项公式

学习目标
1.掌握等差数列的定义和通项公式. 2. 探索发现等差数列的性质,并能应用性质灵活地解决一些 实际问题.
栏 目 链 接
基础 梳理
1.(1)设{an}为等差数列,若已知公差为d,则an-am (n-m)d 由此知,an=am+________. (n-m)d =__________. (2)已知{an}为等差数列,已知公差d=3,a2=6,则an 栏 目 链 =________________. 6+3(n-2)=3n 接
∴an=2n-3或an=13-2n.
点评:等差数列的运算常用两条思路:① 根据已知条件,寻找、列出两个方程,确定 a1、d,然后求其他;②利用性质巧解,其中m 栏 目 +n=k+l=2s(m、n、k、l、s∈N*)⇔am+an= 链 接 ak+al=2as.
跟踪 探究3 训练
等差数列的运算
探究 3.三个数成等差数列,和为 6,积为-24,求这 三个数.
当堂清学
基础题
1.在等差数列{an}中,a1+a9=10,则a5的值为( A.5 B.6 C.8 D.10 )
栏 目 链 接
解析:由角标性质得a1+a9=2a5,所以a5=5. 答案:A
能力提升题
an 2、在等差数列 中, a2m 11, a2l 3, 则aml 的值为
a 2 m a 2l 11 3 a ml 4. 2 2
解法二:可以应用等差数列的性质: * 若m+n=p+q(m,n,p,q∈N ),则am+ 栏 an=ap+aq,所以有a8+a10=a5+a13=2a9= 目 链 40,故a8+a9+a10=60.故选B. 接 答案:B
布置作业
解法二:∵a1+a7=2a4,a1+a4+a7=3a4 =15, ∴a4=5, ∴a2+a6=2a4=10. 又∵a2a4a6=45,∴a2a6=9,从而a2,a6可 2 看成方程x -10x+9=0的两根,
a2=1 a2=9, 解得: 或 a6=9 a6=1,
栏 目 链 接
相关文档
最新文档