河南省驻马店市汝南县2020年中考数学一模试卷(含解析)
河南省驻马店市2019-2020学年中考数学一模考试卷含解析

河南省驻马店市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.42.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是()A.17B.27C.37D.473.4的平方根是( )A.4 B.±4 C.±2 D.2 4.2-的相反数是A.2-B.2 C.12D.12-5.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚6.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm7.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于()A.60°B.35°C.25°D.20°8.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于()A.90°B.120°C.60°D.30°9.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )A.-5<t≤4B.3<t≤4C.-5<t<3 D.t>-510.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.4011.在平面直角坐标系中,点(-1,-2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.如图所示的几何体的俯视图是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关于对角线AC 对称,若DM=1,则tan ∠ADN= .14.如图,AB 是半圆O 的直径,E 是半圆上一点,且OE ⊥AB ,点C 为的中点,则∠A=__________°.15.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.16.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______. 17.如图,Rt △ABC 的直角边BC 在x 轴上,直线y=23x ﹣23经过直角顶点B ,且平分△ABC 的面积,BC=3,点A 在反比例函数y=kx图象上,则k=_______.18.如图,点A ,B 在反比例函数y =1x (x >0)的图象上,点C ,D 在反比例函数y =kx(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n (n 为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数. 拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?20.(6分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?21.(6分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?22.(8分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm 0 1 2 3 4 5y/cm 6.0 4.8 4.5 6.0 7.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.23.(8分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.24.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.25.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.26.(12分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.27.(12分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O 交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G(1)求证:直线AB是⊙O的切线;(2)求证:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.2.D【解析】【分析】由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可.【详解】因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形.在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是47.故选D.本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键.3.C【解析】【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±1)1=4,∴4的平方根是±1.故选D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.5.A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用6.B【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm.故选B.7.C【解析】先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C 的度数即可. 【详解】 ∵BC ∥DE , ∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE , ∴∠C=∠CBE ﹣∠C=60°﹣35°=25°, 故选C . 【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键. 8.C 【解析】解:∵A (0,1),B (0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt △AOC 中,cos ∠BAC=OA AC =12,∴∠BAC=60°.故选C .点睛:本题考查了垂径定理的应用,关键是求出AC 、OA 的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧. 9.B 【解析】 【分析】先利用抛物线的对称轴方程求出m 得到抛物线解析式为y=-x 2+4x ,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x <3的范围内有公共点可确定t 的范围. 【详解】∵ 抛物线y=-x 2+mx 的对称轴为直线x=2, ∴222(1)b m a -=-=⨯-, 解之:m=4, ∴y=-x 2+4x ,当x=2时,y=-4+8=4, ∴顶点坐标为(2,4),∵ 关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解, 当x=1时,y=-1+4=3, 当x=2时,y=-4+8=4,故选:B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.10.B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.11.C【解析】:∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C12.B【解析】【分析】根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线二、填空题:(本大题共6个小题,每小题4分,共24分.)13.43【解析】 【分析】M 、N 两点关于对角线AC 对称,所以CM=CN ,进而求出CN 的长度.再利用∠ADN=∠DNC 即可求得tan ∠ADN . 【详解】解:在正方形ABCD 中,BC=CD=1. ∵DM=1, ∴CM=2,∵M 、N 两点关于对角线AC 对称, ∴CN=CM=2. ∵AD ∥BC , ∴∠ADN=∠DNC ,4tan 3DC DNC NC ∠==Q 4tan 3ADN ∴∠=故答案为43【点睛】本题综合考查了正方形的性质,轴对称的性质以及锐角三角函数的定义. 14.22.5 【解析】 【分析】连接半径OC ,先根据点C 为»BE 的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=12×45°,可得结论. 【详解】 连接OC , ∵OE ⊥AB , ∴∠EOB=90°,∵点C 为»BE的中点, ∴∠BOC=45°, ∵OA=OC ,。
河南省驻马店市2019-2020学年中考一诊数学试题含解析

河南省驻马店市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,AB 为O e 的直径,,C D 为O e 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°2.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 逆时针旋转到△AB′C′的位置,使得CC′∥AB ,则∠CAC′为( )A .30°B .35°C .40°D .50°3.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是( )A .①②③④B .②①③④C .③②①④D .④②①③4.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1. 其中合理的是( )A .①B .②C .①②D .①③5.﹣0.2的相反数是( ) A .0.2B .±0.2C .﹣0.2D .26.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A .这10名同学体育成绩的中位数为38分B .这10名同学体育成绩的平均数为38分C .这10名同学体育成绩的众数为39分D .这10名同学体育成绩的方差为2 7.下列计算中,正确的是( )A .3322a a =()B .325a a a +=C .842a a a ÷=D .236a a =()8.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.对于一组统计数据1,1,6,5,1.下列说法错误的是( ) A .众数是1 B .平均数是4C .方差是1.6D .中位数是610.把1a-a 移到根号内得( ) A a B a C a -D a -11.下列函数中,当x >0时,y 值随x 值增大而减小的是( ) A .y =x 2B .y =x ﹣1C .34y x =D .1y x=12.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为.14.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.15.已知关于x 的方程x 2+kx ﹣3=0的一个根是x=﹣1,则另一根为_____.16.关于x 的不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,那么a 的取值范围( )A .4<a <6B .4≤a <6C .4<a≤6D .2<a≤417.如图,已知P 是线段AB 的黄金分割点,且PA >PB .若S 1表示以PA 为一边的正方形的面积,S 2表示长是AB 、宽是PB 的矩形的面积,则S 1_______S 2.(填“>”“="”“" <”)18.如图,从一个直径为1m 的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在菱形ABCD 中,作⊥BE AD 于E ,BF ⊥CD 于F ,求证:AE CF =.20.(6分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC 的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.21.(6分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.22.(8分)小明对A,B,C,D四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知A超市有女工20人.所有超市女工占比统计表超市A B C D女工人数占比62.5% 62.5% 50% 75%A超市共有员工多少人?B超市有女工多少人?若从这些女工中随机选出一个,求正好是C超市的概率;现在D超市又招进男、女员工各1人,D超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.23.(8分)如图,已知△ABC,以A 为圆心AB 为半径作圆交AC 于E,延长BA 交圆A 于D 连DE 并延长交BC 于F, 2CE CF CB =⋅(1)判断△ABC 的形状,并证明你的结论; (2)如图1,若BE=CE=23,求⊙A 的面积; (3)如图2,若tan ∠CEF=12,求cos ∠C 的值.24.(10分)已知:关于x 的方程x 2﹣(2m+1)x+2m=0 (1)求证:方程一定有两个实数根;(2)若方程的两根为x 1,x 2,且|x 1|=|x 2|,求m 的值.25.(10分)如图,一次函数y =kx+b 与反比例函数y =6x(x >0)的图象交于A (m ,6), B (3,n )两点.求一次函数关系式;根据图象直接写出kx+b ﹣6x>0的x 的取值范围;求△AOB 的面积.26.(12分)已知点O 是正方形ABCD 对角线BD 的中点.(1)如图1,若点E 是OD 的中点,点F 是AB 上一点,且使得∠CEF=90°,过点E 作ME ∥AD ,交AB 于点M ,交CD 于点N .①∠AEM=∠FEM ; ②点F 是AB 的中点;(2)如图2,若点E 是OD 上一点,点F 是AB 上一点,且使,请判断△EFC 的形状,并说明理由;(3)如图3,若E 是OD 上的动点(不与O ,D 重合),连接CE ,过E 点作EF ⊥CE ,交AB 于点F ,当时,请猜想的值(请直接写出结论).27.(12分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A 种钢笔3支,B种钢笔5支,共需145元.(1)求A、B两种钢笔每支各多少元?(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】的大小.根据题意连接AD,再根据同弧的圆周角相等,即可计算的ABD【详解】解:连接AD,∵AB 为O e 的直径, ∴90ADB ∠=︒. ∵40BCD ∠=︒, ∴40A BCD ∠=∠=︒, ∴904050ABD ∠=︒-︒=︒. 故选:B . 【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握. 2.A 【解析】 【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解 【详解】∵CC′∥AB ,∠CAB =75°, ∴∠C′CA =∠CAB =75°,又∵C 、C′为对应点,点A 为旋转中心, ∴AC =AC′,即△ACC′为等腰三角形, ∴∠CAC′=180°﹣2∠C′CA =30°. 故选A . 【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键 3.B 【解析】 【分析】根据常见几何体的展开图即可得. 【详解】由展开图可知第一个图形是②正方体的展开图, 第2个图形是①圆柱体的展开图, 第3个图形是③三棱柱的展开图, 第4个图形是④四棱锥的展开图, 故选B 【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.4.B【解析】①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.5.A【解析】【分析】根据相反数的定义进行解答即可.【详解】负数的相反数是它的绝对值,所以﹣0.2的相反数是0.2.故选A.【点睛】本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.6.C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.7.D【解析】【分析】根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.【详解】A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C 、a 8÷a 4=a 4,故本选项错误;D 、(a 2)3=a 6,故本选项正确; 故选D . 【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键. 8.D 【解析】 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论. 【详解】解:∵反比例函数与正比例函数的图象均关于原点对称, ∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1. 故选:D . 【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键. 9.D 【解析】 【分析】根据中位数、众数、方差等的概念计算即可得解. 【详解】A 、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B 、由平均数公式求得这组数据的平均数为4,故此选项正确;C 、S 2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确; D 、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误; 故选D .考点:1.众数;2.平均数;1.方差;4.中位数. 10.C 【解析】 【分析】根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a)【详解】解:∵﹣1a>0,∴a<0,∴原式=﹣(﹣a)=.故选C.【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.11.D【解析】A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x 的增大而减小,故此选项错误B、k>0,y随x增大而增大,故此选项错误C、B、k>0,y随x增大而增大,故此选项错误D、y=1x(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确12.C【解析】【分析】根据主视图的定义判断即可.【详解】解:从正面看一个正方形被分成三部分,两条分别是虚线,故C正确.故选:C.【点睛】此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.27 【解析】试题分析:根据一元二次方程根与系数的关系,可知1x +2x =5,1x ·2x =-1,因此可知2212x x +=212()x x +-212x x =25+2=27.故答案为27.点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:12bx x a+=-,12cx x a⋅=,确定系数a ,b ,c 的值代入求解,然后再通过完全平方式变形解答即可. 14.1:1 【解析】 【分析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可. 【详解】∵S △BDE :S △CDE =1:3, ∴BE :EC=1:3, ∵DE ∥AC , ∴△BED ∽△BCA , ∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1, 故答案为1:1. 【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键. 15.1 【解析】 【分析】设另一根为x 2,根据一元二次方程根与系数的关系得出-1•x 2=-1,即可求出答案. 【详解】设方程的另一个根为x 2, 则-1×x 2=-1, 解得:x 2=1, 故答案为1. 【点睛】本题考查了一元二次方程根与系数的关系:如果x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根,那么x 1+x 2=-b a ,x 1x 2=c a. 16.C 【解析】分析:先根据一元一次不等式组解出x 的取值,再根据不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,求出实数a 的取值范围.详解:2011,3x a x x ①②+>⎧⎪⎨--≤⎪⎩解不等式①,得 2a x ;>- 解不等式②,得1x ≤; 原不等式组的解集为12ax -<≤. ∵只有4个整数解,∴整数解为:2,101--,,,322a∴-≤-<-. 4 6.a ∴<≤故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a 的取值范围. 17.=. 【解析】 【分析】黄金分割点,二次根式化简. 【详解】设AB=1,由P 是线段AB 的黄金分割点,且PA >PB , 根据黄金分割点的,AP=12,BP=13122--=.∴211S S 1====⎝⎭S1=S1. 18m .【解析】 【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径. 【详解】解:易得扇形的圆心角所对的弦是直径,m ,∴扇形的弧长为:902180π⨯πm ,∴圆锥的底面半径为:4π÷2π=8m .【点睛】本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.见解析 【解析】 【分析】由菱形的性质可得BA BC =,A C ∠=∠,然后根据角角边判定≅V V ABE CBF ,进而得到AE=CF . 【详解】证明:∵菱形ABCD , ∴BA BC =,A C ∠=∠, ∵BE AD ⊥,BF CD ⊥, ∴90BEA BFC ∠=∠=o , 在ABE △与CBF V 中,BEA BFCA CBA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABE CBF AAS ≅V V (), ∴AE=CF . 【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.20.(1);(2)①证明见解析;②;(3).【解析】试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=,故答案为:;(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE==,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.21.(1)详见解析;(2)1.【解析】【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE =BC,根据勾股定理得到DE22=6,于是得到结论.BE BD【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE22BE BD=6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.22.(1)32(人),25(人);(2)13;(3)乙同学,见解析.【解析】【分析】(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;(2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.【详解】解:(1)A超市共有员工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四个超市女工人数的比为:80:100:120:60=4:5:6:3, ∴B 超市有女工:20×54=25(人);(2)C 超市有女工:20×64=30(人).四个超市共有女工:20×45634+++=90(人).从这些女工中随机选出一个,正好是C 超市的概率为3090=13. (3)乙同学.理由:D 超市有女工20×34=15(人),共有员工15÷75%=20(人),再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为1622=811≠75%. 【点睛】本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23. (1) △ABC 为直角三角形,证明见解析;(2)12π;(3)45. 【解析】 【分析】(1)由2CE CF CB =⋅,得△CEF ∽△CBE,∴∠CBE=∠CEF ,由BD 为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC 为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则∠ABE=60°故AB=BE=A 的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan ∠CBE=12,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得,DE=2BE=4a,过F作FK ∥BD 交CE 于K,利用平行线分线段成比例得14FK EF AD DE ==,求得 13CF BF =,CF = 即可求出tan ∠C =34FK CF = 再求出cos ∠C 即可. 【详解】解:∵2CE CF CB =⋅, ∴CE CBCF CE=, ∴△CEF ∽△CBE, ∴∠CBE=∠CEF , ∵AE=AD,∴∠ADE=∠AED=∠FEC=∠CBE, ∵BD 为直径,∴∠ADE+∠ABE=90°, ∴∠CBE+∠ABE=90°,∴∠DBC=90°△ABC 为直角三角形. (2)∵BE=CE∴设∠EBC=∠ECB=x, ∴∠BDE=∠EBC=x, ∵AE=AD∴∠AED=∠ADE=x, ∴∠CEF=∠AED=x ∴∠BFE=2x在△BDF 中由△内角和可知: 3x=90° ∴x=30° ∴∠ABE=60°∴AB=BE=∴12AS eπ=(3)由(1)知:∠D=∠CFE=∠CBE, ∴tan ∠CBE=12, 设EF=a,BE=2a,∴,BD=2BF=,∴,∴,DE=2BE=4a,过F 作FK ∥BD 交CE 于K, ∴14FK EF AD DE ==,∵4FK =, ∴14CF FK BC AB ==∴13CF BF =,3CF a =∴tan∠C=34 FKCF∴cos∠C=4 5 .【点睛】此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.24.(1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=12;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣12.【解析】试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;(2)先讨论x1,x2的正负,再根据根与系数的关系求解.试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,故方程一定有两个实数根;(2)①当x1≥0,x2≥0时,即x1=x2,∴△=(2m﹣1)2=0,解得m=12;②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,∴x1+x2=2m+1=0,解得:m=﹣12;③当x1≤0,x2≤0时,即﹣x1=﹣x2,∴△=(2m﹣1)2=0,解得m=12;综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=12;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣12.25.(1)y=-2x+1 ;(2)1<x<2 ;(2)△AOB的面积为1 . 【解析】试题分析:(1)首先根据A(m,6),B(2,n)两点在反比例函数y=6x(x>0)的图象上,求出m,n的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x的取值范围即可.(2)由-2x+1-6x<0,求出x的取值范围即可.(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出△AOB的面积是多少即可.试题解析:(1)∵A(m,6),B(2,n)两点在反比例函数y=6x(x>0)的图象上,∴6=6m,63n=,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函数y=kx+b的图象上,∴6{32 k bk b++==,解得2 {8kb-==,∴y=-2x+1.(2)由-2x+1-6x<0,解得0<x<1或x>2.(2)当x=0时,y=-2×0+1=1,∴C点的坐标是(0,1);当y=0时,0=-2x+1,解得x=4,∴D点的坐标是(4,0);∴S△AOB=12×4×1-12×1×1-12×4×2=16-4-4=1.26.(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD 中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.27.(1)A种钢笔每只15元B种钢笔每只20元;(2)方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3)定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得2390 35145x yx y+=⎧⎨+=⎩,解得:1520xy=⎧⎨=⎩,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:() 152090158890z zz z⎧+-≤⎨<-⎩,∴42.4≤z<45,∵z是整数z=43,44,∴90-z=47,或46;∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-72)²+729,∵-4<0,∴W有最大值,∵a为正整数,∴当a=3,或a=4时,W最大,∴W最大==-4×(3-72)²+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.。
河南省2020年九年级一摸数学试卷参考答案及评分标准

河南省2020年中考数学一摸数学试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. 0 12. ︒145 13. 0 , 1 , 2 14. 233-π 15. 3或326-部分选择题、填空题答案解析7.已知关于x 的一元二次方程()01212=-++x x k 有实数根,则k 的取值范围是【 】(A )k ≥2- (B )k ≥2-且1-≠k (C )k ≥2 (D )k ≤2- 解析:本题为易错题,易忽视二次项系数不等于0这个限制条件.∵该方程是有实数根的一元二次方程∴()⎩⎨⎧≥++=∆≠+0142012k k 解之得:k ≥2-且1-≠k . ∴选择答案【 B 】.9. 如图所示,在平面直角坐标系xOy 中,点B 的坐标为()2,1,过点B 作y BA ⊥轴于点A ,连结OB ,将△AOB 绕点O 按顺时针方向旋转︒45,得到△''OB A ,则点'B 的坐标为 【 】(A )⎪⎪⎭⎫⎝⎛22,2 (B )⎪⎪⎭⎫ ⎝⎛22,223 (C )⎪⎪⎭⎫⎝⎛22,3 (D )⎪⎪⎭⎫ ⎝⎛1,223 第 9 题图解析:本题考查图形的变换与点的坐标,是河南中考的必考内容.如图所示,作出旋转后的△''OB A ,过点','B A 分别作x C A ⊥'轴,x D B ⊥'轴,作C A E B ''⊥,由题意可知,△OC A '和△E B A ''均为等腰直角三角形.∵()y AB B ⊥,2,1轴∴1'',2'====B A AB OA OA ∴2222''====OA C A OC 22212''''=====B A CD E B E A ∴223222=+=+=CD OC OD 22222'''=-=-==E A C A D B CE ∴⎪⎪⎭⎫⎝⎛22,223'B . 重要结论 等腰直角三角形的斜边长是直角边长的2倍.10. 如图1所示,在矩形ABCD 中,点E 在AD上,△BEF 为等边三角形,点M 从点B 出发,沿B →E →F 匀速运动到点F 时停止,过点M 作AD MP ⊥于点P ,设点M 运动的路径长为x ,MP 的长为y ,y 与x 的函数图象如图2所示,当3310=x cm 时,则MP 的长为【 】 图 1PMFEDC BA图 2/ cm(A )233cm (B )32cm (C )3cm (D )2 cm解析:本题考查几何图形与函数图象的关系,是河南中考的必考内容,难度较高,解题时要注意几何图形的变化与函数图象的变化之间的对应关系,尤其要注意几何图形上特殊点与函数图象上的特殊点所代表的意义. 由题意可知,等边△BEF 的边长为32cm ∵3310=x cm 32>cm ∴此时点M 在EF 边上,如下图所示.P MFEDC BA在Rt △PEM 中334323310=-=EM cm,︒=∠60PEM ∵EM MPPEM =∠sin∴22333460sin =⨯=︒⋅=EM MP cm ∴选择答案【 D 】.14. 如图所示,四边形OABC 为菱形,2=OA ,以点O 为圆心,OA 长为半径画弧AE ,弧AE 恰好经过点B ,连结OE ,BC OE ⊥,则图中阴影部分的面积为_________.解析:本题考查与圆有关的阴影面积的计算,是河南中考的必考内容.阴影部分面积的计算都要涉及到扇形面积的计算,所以要熟记扇形面积的计算公式:3602r n S π=扇形.注意添加半径的辅助线,来构造出扇形.第 14 题图连结OB ,设OE 与BC 交于点F ,则有:OABF AOE S S S 梯形扇形阴影-=由题意和作图可知,△AOB 和△BOC 均为等边三角形,︒=∠90AOE .∴312,12122=-===OF BC BF ∴()23213602902⨯+-⨯⨯=π阴影S 233-=π.15.如图,在等边△ABC 中,232+=AB , 点D 在边AB 上,且2=AD ,点E 是BC 边上一动点,将B ∠沿DE 折叠,当点B 的对应点'B 落在△ABC 的边上时,BE 的长为_________.解析:本题考查与动点有关的几何图形的折叠,是河南中考必考内容,难度大,考虑到答题的时限性和此类题目的难度,不建议学生在此类题目上花费太多的时间.此类题目的结果不唯一,需要根据不同的折叠情况分类讨论.本题折叠的结果分为两种情况:点'B 落在BC 边上和点'B 落在AC 边上.①当点'B 落在BC 边上时,如图1所示.图 1CE DB'BA由折叠可知,D B BD '= ∵︒=∠60B∴△'BDB 是等边三角形 ∴322232=-+==BD BE ;②当点'B 落在AC 边上时,如图2所示.F 图 2CE DB'BA先说明此时AB D B ⊥'. 作AB DF ⊥,在Rt △ADF 中3260tan =︒⋅=AD DF由折叠可知:32'==D B BD ∴DF D B =',显然,点'B 与点F 重合. ∴AB D B ⊥',从而AC E B ⊥' ∴42'==AD AB∴2324232'-=-+=C B 在Rt △CE B '中()326323260tan ''-=⨯-=︒⋅=C B E B ∴326'-==E B BE .综上所述,BE 的长为3或326-. 三、解答题(共75分) 16.(8分)先化简,再求值:x y x x y xy x 2222-÷⎪⎭⎫ ⎝⎛--, 其中32,32-=+=y x .解:x y x x y xy x 2222-÷⎪⎭⎫ ⎝⎛-- ()()()y x y x xxy x -+⋅-=2yx yx +-=…………………………………5分 当32,32-=+=y x 时原式2332323232=-+++-+=. ……………………………………………8分 17.(9分)解:整理数据 4 , 3; ……………………2分 分析数据 76; …………………………4分 得出结论(1)估计全校九年级成绩达到90分及以上的人数为1602541000=⨯(人);……………………………………………6分 (2)从平均数评价:九年级和八年级成绩相同;从中位数评价:八年级的中位数较大,成绩优秀的人数较多;从方差评价:九年级方差大,成绩不稳定,八年级方差小,成绩稳定,故八年级的成绩比较好.……………………………………………9分 18.(9分)如图所示,已知反比例函数()0≠=k xky 与一次函数b ax y +=的图象相交于点()1,-n A ,()3,1B ,过点A 作y AD ⊥轴于点D ,过点B 作x BC ⊥轴于点C ,连结CD .(1)求反比例函数的解析式;(2)求四边形ABCD 的面积.解:(1)把()3,1B 代入x ky =得:331=⨯=k ∴反比例函数的解析式为xy 3=;……………………………………………3分 (2)把()1,-n A 代入xy 3=得:3-=n ∴()1,3--A延长AD ,交BC 的延长线于点E ,则有()431=--=-=-=A B A E x x x x AE ()413=--=-=-=A B E B y y y y BE1==DE CE……………………………………………7分∴CDE ABE ABCD S S S ∆∆-=四边形21511214421=⨯⨯-⨯⨯=.……………9分 19.(9分)如图所示,在△ABC 中,︒=∠90C ,点D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点E ,与边BC 交于点F ,过点E 作AB EH ⊥于点H ,连结BE . (1)求证:BH BC =;(2)若4,5==AC AB ,求CE 的长.321OHFEDC A(1)证明:连结OE . ……………………1分 ∵OB OE = ∴21∠=∠ ∵AC 与⊙O 相切 ∴OE AC ⊥ ∵AC BC ⊥ ∴BC OE // ∴132∠=∠=∠ ∴BE 平分ABC ∠ 在△BCE 和△BHE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BE BE BHE BCE 13 ∴△BCE ≌△BHE (AAS ) ∴BH BC =;……………………………………………5分(2)解:设x CE =,则x EH =,x AE -=4. 在Rt △ABC 中,由勾股定理得:3452222=-=-=AC AB BC……………………………………………6分 由(1)可知:3==BC BH ∴235=-=-=BH AB AH .……………………………………………7分 在Rt △AEH 中,由勾股定理得:222AE AH EH =+∴()22242x x -=+,解之得:23=x . ∴23=CE .………………………………9分 20.(9分)如图所示,为了测量某矿山CH的高度,科考组在距离矿山一段距离的B 点乘坐直升机垂直上升2000米至A 点,在A 点,在A 点观察H 点的俯角为︒35,然后乘坐直升机从A 水平向前飞行500米到E 点,此时观察H 点的俯角为︒45,所有的点都在同一平面内,科考队至此完成了数据监测,请你依据数据计算科考队测得的矿山高度.(结果保留整数,参考数据:)41.12,70.035tan ,82.035cos ,57.035sin ≈≈︒≈︒≈︒解:作AB HP ⊥,延长CH 交AE 的延长线于点D ,则四边形APHD 为矩形. 设x CH =米,则x PB =米∴()x DH AP -==2000米 在Rt △DEH 中,∵︒=∠45DEH ∴()x DH DE -==2000米 ∴5002000+-=+=x AE DE AD ()x -=2500米.……………………………………………3分 在Rt △ADH 中 ∵ADDH=︒35tan ∴70.025002000≈--xx………………………6分解之得:833≈x .…………………………8分 ∴833≈CH 米.答:科考队测得的矿山高度约为833米. ……………………………………………9分 21.(10分)随着第27届信阳茶文化节发布会、固始西九华山第三届郁金香风情文化节等系列活动的成功举办,越来越多的游客想要到信阳游玩.小明所在的公司想在五一黄金周期间组织员工去信阳游玩,咨询了甲、乙两家旅行社,两家旅行社分别推出优惠方案(未推出优惠方案前两家旅行社的收费标准相同).甲:购买一张团体票,然后个人票打六折优惠;乙:不购买团体票,当团体人数超过一定数量后超过部分的个人票打折优惠,优惠期间,公司的员工人数为x (人),在甲旅行社所需总费用为y 甲(元),在乙旅行社所需总费用为y 乙(元),y 甲、y 乙与x 之间的函数关系如图所示.(1)甲旅行社团体票是_________元,乙旅行社团体人数超过一定数量后,个人票打_________折;(2)求y 甲、y 乙关于x 的函数表达式; (3)请说明小明所在的公司选择哪个旅行社出游更划算.解:(1)600 , 四;……………………………………………2分 提示:当人数x 小于或等于10时,乙旅行社的个人票为300103000=(元),当人数超过10人时,个人票为=--102530004800120(元),4.0300120=,所以乙旅行社团体人数超过10人时,个人票打四折.(2)6001806003006.0+=+⨯=x x y 甲. ……………………………………………4分 当0≤x ≤10时,设乙y 的解析式为x k y 1=乙. 把()3000,10代入x k y 1=乙得:3001=k . ∴x y 300=乙;当10>x 时,设乙y 的解析式为b x k y +=2乙. 把()3000,10,()4800,25分别代入得:⎩⎨⎧=+=+48002530001022b k b k ,解之得:⎩⎨⎧==18001202b k .∴1800120+=x y 乙.∴()()⎩⎨⎧>+≤≤=101800120100300x x x x y 乙;……………………………………………7分 (3)当0≤x ≤10时,令x x 300600180=+,解之得:5=x ;当10>x 时,令1800120600180+=+x x ,解之得:20=x .∴当公司的员工人数为5或20时,甲、乙两家旅行社的总费用相同;当公司的员工人数大于5小于20时,选择甲旅行社出游更划算;当公司的员工人数小于5人或大于20时,选择乙旅行社出游更划算.…………………………………………10分 22.(10分)如图所示,在△ABC 中,BC AB =,D 、E 分别是边AB 、BC 上的动点,且BE BD =,连结AD 、AE ,点M 、N 、P 分别是CD 、AE 、AC 的中点,设α=∠B . (1)观察猜想①在求CEMN的值时,小明运用从特殊到一般的方法,先令︒=60α,解题思路如下: 如图1,先由BE BD BC AB ==,,得到AD CE =,再由中位线的性质得到PN PM =,︒=∠60NPM ,进而得出△PMN 为等边三角形,∴21==CE NP CE MN . ②如图2,当︒=90α时,仿照小明的思路求CEMN的值; (2)探究证明如图3,试猜想CEMN的值是否与()︒<<︒1800αα的度数有关,若有关,请用含α的式子表示出CEMN,若无关,请说明理由; (3)拓展应用如图4,︒=∠=36,2B AC ,点D 、E 分别是射线AB 、CB 上的动点,且CE AD =,点M 、N 、P 分别是线段CD 、AE 、AC 的中点,当1=BD 时,请直接写出MN 的长.图 2P NMD BA图 1PN M E D C BA图 4图 3PN MEDC BAPNMEDCBA解:(1)②∵BE BD BC AB ==, ∴CE AD =.∵BC AB =,︒=∠90B ∴△ABC 为等腰直角三角形∵点M 、N 、P 分别是CD 、AE 、AC 的中点 ∴CE PN CE PN 21,//=AD PM AD PM 21,//=∴︒=∠=∠=45,ACB APN PN PM︒=∠=∠45CAB CPM∴︒=︒-︒-︒=∠904545180NPM∴△PMN 为等腰直角三角形 ∴PN MN 2=∴222=⋅=CE PN CE MN ; ……………………………………………3分H图 5PNMED CBA(2)∵BE BD BC AB ==, ∴CE AD =.∵点M 、N 、P 分别是CD 、AE 、AC 的中点∴CE PN CE PN 21,//=AD PM AD PM 21,//=∴ACB APN PN PM ∠=∠=,CAB CPM ∠=∠∴CAB ACB NPM ∠-∠-︒=∠180α=∠=B作MN PH ⊥,如图5所示,则NH MN 2=,221α=∠=NPM NPH . 在Rt △NPH 中,∵PNNHNPH =∠sin ∴2sinα⋅=PN NH∴2sin2sin22αα===CEPNCENHCE MN ;……………………………………………8分 (3)455-=MN 或435+=MN . …………………………………………10分提示:注意条件“点D 、E 分别是射线AB 、CB 上的动点,且CE AD =”,考虑到点D 、E 不是边AB 、CB 上的动点,要进行分类讨论. ①当点D 、E 分别是边AB 、CB 上的动点时,作ACB ∠的平分线交AB 边于点F ,并连结BP ,如图6所示.图 6由题意容易得到2===BF CF AC ,且AC BP ⊥.设x BC =,则2-=x AF ,1-=x CE . 可证:△ACF ∽△ABC . ∴xx AB AC AC AF 222,=-=. 整理得:0422=--x x解之得:51+=x (51-=x 舍去). ∴51+=BC ,5151=-+=CE . 由(2)可知:︒=18sin CEMN. ∴︒=︒⋅=18sin 518sin CE MN . 在Rt △BCP 中41551118sin sin -=+==︒=∠BC CP CBP ∴()4554155-=-=MN ; ②当点D 、E 分别是边AB 、CB 的延长线上的动点时,如图7所示.52511+=++=CE图 7AB C DEM NP∴()43541552+=-⨯+=MN . 综上所述,MN 的长为455-或435+.重要结论 我们把顶角为︒36的等腰三角形称为特殊等腰三角形.已知特殊等腰三角形的底边长,作出其中一个底角的平分线,可以利用三角形相似的知识可以求出腰长.特殊等腰三角形23.(11分)如图所示,抛物线c x ax y +-=22与x 轴交于A 、B 两点,与y轴交于点C ,直线3+=x y 经过A 、C 两点. (1)求抛物线的解析式;(2)点N 是x 轴上的动点,过点N 作x 轴的垂线,交抛物线与点M ,交直线AC 于点H . ①点D 在线段OC 上,连结AD 、BD ,当BD AH =时,求AH AD +的最小值;②当OD OC 3=时,将直线AD 绕点A 旋转︒45,使直线AD 与y 轴交于点P ,请直接写出点P 的坐标.第 23 题图备用图解:(1)对于3+=x y ,令03=+x ,解之得:3-=x ,令0=x ,则3=y . ∴()0,3-A ,()3,0C .把()0,3-A ,()3,0C 代入c x ax y +-=22可得:⎩⎨⎧==++3069c c a ,解之得:⎩⎨⎧=-=31c a ∴抛物线的解析式为322+--=x x y ; ……………………………………………3分(2)①令0322=+--x x 解之得:31-=x ,12=x ∴()()0,1,0,3B A -……………………………………………5分 ∵BD AH =∴BD AD AH AD +=+ ∵BD AD +≥AB∴()()431min =--==+AB BD AD 即AH AD +的最小值为4;……………………………………………9分②点P 的坐标为⎪⎭⎫ ⎝⎛-23,0或()6,0.…………………………………………11分 提示:题目为指明直线AD 旋转的方向,这里要分为两种情况进行讨论.当直线AD 绕点A 顺时针旋转︒45时,如图1所示.图 1∵()()3,0,0,3C A -∴3==OC OA ,△AOC 为等腰直角三角形. ∴︒=∠=∠45ACO CAO .∵︒=∠+∠=∠+∠45OAD OAP OAD CAD ∴OAP CAD ∠=∠.作AC DE ⊥,则△DCE 为等腰直角三角形. ∵OD OC 3= ∴2,1==CD OD ∴2222===CD DE在Rt △AOD 中,由勾股定理得:10132222=+=+=OD OA AD∴55102sin sin ===∠=∠AD DE EAD CAD ∴55sin =∠OAP . 设m OP =,则5593222=+=+m m m m . 两边分别平方得:51922=+m m解之得:23=m (23-=m )舍去.∴23=OP∴⎪⎭⎫ ⎝⎛-23,0P ;当直线AD 绕点A 逆时针旋转︒45时,如图2.∵︒=∠=∠+∠45ACO CAP OPA第11页︒=∠=∠+∠45DAP CAD CAP∴CAD OPA ∠=∠作AC DE ⊥,则△DCE 为等腰直角三角形. 设m OP =∵55sin sin =∠=∠EAD CAD ∴5593sin 2=+==∠m PAOAOPA . 两边分别平方得:51992=+m . 解之得:6=m (6-=m )舍去. ∴6=OP ∴()6,0P .综上所述,点P 的坐标为⎪⎭⎫ ⎝⎛-23,0或()6,0.学生整理用图321OHFEDC BAF 图 6PNMEDCBA图 7ABCDEM NPxy第 23 题图OMH NDC BAxy备用图CBA O。
2020年河南省中考数学一模试卷(解析版)

2020年河南省中考数学一模试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.(3分)下列各数中,最大的数是()A.﹣B.C.0D.﹣22.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106 3.(3分)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.4.(3分)下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.5.(3分)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差6.(3分)若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k<﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0 7.(3分)系统找不到该试题8.(3分)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.B.C.D.9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°10.(3分)在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A 出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)若,则x2+2x+1=.12.(3分)已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是.13.(3分)不等式组有2个整数解,则实数a的取值范围是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B 为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是.15.(3分)如图,在菱形ABCD中,∠A=60°,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.17.(9分)如图,△ABC内接于圆O,且AB=AC,延长BC到点D,使CD=CA,连接AD交圆O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形.②若AE=,AB=2,则DE的长为.18.(9分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?19.(9分)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)20.(9分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x<0)的图象经过AO的中点C,交AB于点D.若点D 的坐标为(﹣4,n),且AD=3.(1)求反比例函数y=的表达式;(2)求经过C、D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.21.(10分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.22.(10分)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为.23.(11分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y 轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.2020年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.(3分)下列各数中,最大的数是()A.﹣B.C.0D.﹣2【分析】比较确定出最大的数即可.【解答】解:﹣2<﹣<0<,则最大的数是,故选:B.【点评】此题考查了有理数大小比较,熟练掌握运算法则是解本题的关键.2.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26.8万用科学记数法表示为:2.68×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选:C.【点评】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.4.(3分)下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.【分析】直接利用合并同类项法则以及完全平方公式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a3+a3=2a3,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、a3•a3=a6,正确;D、+无法计算,故此选项错误.故选:C.【点评】此题主要考查了合并同类项以及完全平方公式和同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.(3分)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.(3分)若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k<﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0【分析】根据△的意义得到k≠0且△=4﹣4k×(﹣1)>0,然后求出两不等式的公共部分即可.【解答】解:∵x的方程kx2+2x﹣1=0有两个不相等的实数根,∴k≠0且△=4﹣4k×(﹣1)>0,解得k>﹣1,∴k的取值范围为k>﹣1且k≠0.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.(3分)系统找不到该试题8.(3分)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.B.C.D.【分析】根据阿信、小怡各有5节车厢可选择,共有25种,两人在不同车厢的情况数是20种,得出在同一节车厢上车的情况数是5种,根据概率公式即可得出答案.【解答】解:二人上5节车厢的情况数是:5×5=25,两人在不同车厢的情况数是5×4=20,则两人从同一节车厢上车的概率是=;故选:B.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°【分析】由题意可知直线MN是线段BC的垂直平分线,故BN=CN,∠B=∠C,故可得出∠CDA的度数,根据CD=AD可知∠DCA=∠CAD,故可得出∠CAD的度数,进而可得出结论.【解答】解:∵由题意可知直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD,∵∠B=20°,∴∠B=∠BCD=20°,∴∠CDA=20°+20°=40°.∵CD=AD,∴∠ACD=∠CAD==70°,∴A错误,B正确;∵CD=AD,BD=CD,∴CD=AD=BD,∴点D为△ABC的外心,故C正确;∵∠ACD=70°,∠BCD=20°,∴∠ACB=70°+20°=90°,故D正确.故选:A.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.10.(3分)在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A 出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.【分析】根据题意找到临界点,E、F分别同时到达D、C,画出一般图形利用锐角三角函数表示y即可.【解答】解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.【点评】本题为动点问题可函数图象探究题,考查了二次函数图象和锐角三角函数函数的应用,解答关键是分析动点到达临界点前后图形的变化.二、填空题(每小题3分,共15分)11.(3分)若,则x2+2x+1=2.【分析】首先把所求的式子化成=(x+1)2的形式,然后代入求值.【解答】解:原式=(x+1)2,当x=﹣1时,原式=()2=2.【点评】本题考查了二次根式的化简求值,正确对所求式子进行变形是关键.12.(3分)已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是m>2.【分析】根据反比例函数y=,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.【解答】解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为:m>2.【点评】本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.13.(3分)不等式组有2个整数解,则实数a的取值范围是8≤a<13.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式3x﹣5>1,得:x>2,解不等式5x﹣a≤12,得:x≤,∵不等式组有2个整数解,∴其整数解为3和4,则4≤<5,解得:8≤a<13,故答案为:8≤a<13.【点评】本题考查解不等式组及不等组的整数解,正确解出不等式组的解集,确定a的范围是解决本题的关键.14.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是﹣.【分析】根据题意和图形可知阴影部分的面积是扇形BCE 与扇形ACD 的面积之和与Rt △ABC 的面积之差.【解答】解:∵在Rt △ABC ,∠C =90°,∠A =30°,AC =, ∴∠B =60°,BC =tan30°×AC =1,阴影部分的面积S =S 扇形BCE +S 扇形ACD ﹣S △ACB =+﹣=﹣,故答案为:﹣. 【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.15.(3分)如图,在菱形ABCD 中,∠A =60°,AB =3,点M 为AB 边上一点,AM =2,点N 为AD 边上的一动点,沿MN 将△AMN 翻折,点A 落在点P 处,当点P 在菱形的对角线上时,AN 的长度为 2或5﹣ .【分析】分两种情况:①当点P 在菱形对角线AC 上时,由折叠的性质得:AN =PN ,AM =PM ,证出∠AMN =∠ANM =60°,得出AN =AM =2;②当点P 在菱形对角线BD 上时,设AN =x ,由折叠的性质得:PM =AM =2,PN =AN=x ,∠MPN =∠A =60°,求出BM =AB ﹣AM =1,证明△PDN ∽△MBP ,得出==,求出PD =x ,由比例式=,求出x 的值即可.【解答】解:分两种情况:①当点P 在菱形对角线AC 上时,如图1所示::由折叠的性质得:AN =PN ,AM =PM ,∵四边形ABCD是菱形,∠BAD=60°,∴∠PAM=∠PAN=30°,∴∠AMN=∠ANM=90°﹣30°=60°,∴AN=AM=2;②当点P在菱形对角线BD上时,如图2所示:设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60°,∵AB=3,∴BM=AB﹣AM=1,∵四边形ABCD是菱形,∴∠ADC=180°﹣60°=120°,∠PDN=∠MBP=∠ADC=60°,∵∠BPN=∠BPM+60°=∠DNP+60°,∴∠BPM=∠DNP,∴△PDN∽△MBP,∴==,即==,∴PD=x,∴=x解得:x=5﹣或x=5+(不合题意舍去),∴AN=5﹣,综上所述,AN的长为2或5﹣;故答案为:2或5﹣.【点评】本题考查了翻折变换的性质、菱形的性质、相似三角形的判定与性质、等腰三角形的判定以及分类讨论等知识;熟练掌握翻折变换的性质,证明三角形相似是关键.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.【分析】根据分式的运算法则以及实数的运算法则即可求出答案.【解答】解:当x=sin30°+2﹣1+时,∴x=++2=3原式=÷==﹣5【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)如图,△ABC内接于圆O,且AB=AC,延长BC到点D,使CD=CA,连接AD交圆O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为60°时,四边形AOCE是菱形.②若AE=,AB=2,则DE的长为.【分析】(1)根据AAS证明两三角形全等;(2)①先证明∠AOC=∠AEC=120°,∠OAE=∠OCE=60°,可得▱AOCE,由OA =OC可得结论;②由△ABE≌△CDE知AE=CE=,AB=CD=2,证△DCE∽△DAB得=,据此求解即可.【解答】解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=,AB=CD=2,∵∠DCE=∠DAB,∠D=∠D,∴△DCE∽△DAB,∴=,即=,解得DE=,故答案为:.【点评】本题是圆的综合题,考查了等腰三角形的性质、等边三角形的性质和判定、三角形相似和全等的性质和判定、四点共圆的性质、菱形的判定等知识,难度适中,正确判断圆中角的关系是关键.18.(9分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有10名留守学生,B类型留守学生所在扇形的圆心角的度数为144;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B 类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【解答】解:(1)2÷20%=10(人),×100%×360°=144°,故答案为:10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400××20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(9分)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【分析】作AE⊥CD于E.则四边形ABCE是矩形.解直角三角形分别求出CD,DE即可解决问题.【解答】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC•tan60°=50×≈87(米),在Rt△ADE中,∵DE=AE•tan37°=50×0.75≈38(米),∴AB=CE=CD﹣DE=87﹣38=49(米).答:甲、乙两楼的高度分别为87米,49米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(9分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x<0)的图象经过AO的中点C,交AB于点D.若点D 的坐标为(﹣4,n),且AD=3.(1)求反比例函数y=的表达式;(2)求经过C、D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.【分析】(1)先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;(2)由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(3)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【解答】解:(1)∵AD=3,D(﹣4,n),∴A(﹣4,n+3),∵点C是OA的中点,∴C(﹣2,),∵点C,D(﹣4,n)在双曲线y=上,∴,∴,∴反比例函数解析式为y=﹣;②由①知,n=1,∴C(﹣2,2),D(﹣4,1),设直线CD的解析式为y=ax+b,∴,∴,∴直线CD的解析式为y=x+3;(3)如图,由(2)知,直线CD的解析式为y=x+3,设点E(m,m+3),由(2)知,C(﹣2,2),D(﹣4,1),∴﹣4<m<﹣2,∵EF∥y轴交双曲线y=﹣于F,∴F(m,﹣),∴EF=m+3+,=(m+3+)×(﹣m)=﹣(m2+3m+4)=﹣(m+3)2+,∴S△OEF∵﹣4<m<﹣2,最大,最大值为.∴m=﹣3时,S△OEF【点评】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解与m的函数关系式.本题的关键是建立S△OEF21.(10分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w =(x ﹣20﹣a )(﹣10x +500)=﹣10x 2+(10a +700)x ﹣500a ﹣10000(30≤x ≤38)求得对称轴为x =35+a ,若0<a<6,则30a ,则当x =35+a 时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a =2.【解答】解:(1)根据题意得,y =250﹣10(x ﹣25)=﹣10x +500(30≤x ≤38); (2)设每天扣除捐赠后可获得利润为w 元.w =(x ﹣20﹣a )(﹣10x +500)=﹣10x 2+(10a +700)x ﹣500a ﹣10000(30≤x ≤38)对称轴为x =35+a ,且0<a ≤6,则30a ≤38,则当x =35+a 时,w 取得最大值,∴(35+a ﹣20﹣a )[﹣10(35+a )+500]=1960∴a 1=2,a 2=58(不合题意舍去),∴a =2.【点评】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.22.(10分)【问题提出】在△ABC 中,AB =AC ≠BC ,点D 和点A 在直线BC 的同侧,BD =BC ,∠BAC =α,∠DBC =β,且α+β=120°,连接AD ,求∠ADB 的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB 为对称轴构造△ABD 的轴对称图形△ABD ′,连接CD ′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D ′BC 的形状是 等边 三角形;∠ADB 的度数为 30° .【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为7+或7﹣.【分析】【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.【问题解决】当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).【拓展应用】第①种情况:当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【解答】解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.故答案为:等边,30°;【问题解决】解:∵∠DBC<∠ABC,∴60°<α≤120°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3﹣1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC =(180°﹣α)=90°﹣α,∴∠ABD =∠DBC ﹣∠ABC =β﹣(90°﹣α),同(1)①可证△ABD ≌△ABD ′,∴∠ABD =∠ABD ′=β﹣(90°﹣α),BD =BD ′,∠ADB =∠AD ′B ,∴∠D ′BC =∠ABC ﹣∠ABD ′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β), ∴D ′B =D ′C ,∠BD ′C =60°.同(1)②可证△AD ′B ≌△AD ′C ,∴∠AD ′B =∠AD ′C ,∵∠AD ′B +∠AD ′C +∠BD ′C =360°,∴∠ADB =∠AD ′B =150°,在Rt △ADE 中,∠ADE =30°,AD =2,∴DE =,∴BE =BD +DE =7+,故答案为:7+或7﹣. 【点评】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.(11分)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),点B (3,0),与y 轴交于点C ,且过点D (2,﹣3).点P 、Q 是抛物线y =ax 2+bx +c 上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当△OBE 与△ABC 相似时,求点Q 的坐标.【分析】(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式,即可求解;(2)S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,即可求解;△POD(3)分∠ACB=∠BOQ、∠BAC=∠BOQ,两种情况分别求解,通过角的关系,确定直线OQ倾斜角,进而求解.【解答】解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,△POD∵﹣1<0,故S△POD有最大值,当m=时,其最大值为;(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S△ABC=×AH×BC=AB×OC,解得:AH=2,则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=,故点Q1(,﹣2),Q2(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,﹣3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q3(,),Q4(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(,)或(﹣,2)或(,).【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
河南省驻马店地区2020版数学中考一模试卷(I)卷

河南省驻马店地区2020版数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在 0,2,﹣2,这四个数中,最大的数是A . 2B . 0C . ﹣2D .2. (2分)(2019·盐城) 正在建设中的北京大兴国际机场划建设面积约1 400 000平方米的航站极,数据1 400 000用科学记数法应表示为()A .B .C .D .3. (2分)(2019·怀集模拟) 如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是()A .B .C .D .4. (2分)(2018·官渡模拟) 不等式组的解集是()A . x≥2B . ﹣1<x≤2C . x≤2D . ﹣1<x≤15. (2分)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .6. (2分)如图,AB∥CD,∠A=50°,则∠1的大小是()A . 50°B . 120°C . 130°D . 150°7. (2分)下列说法不正确的是()A . 有两组对边分别平行的四边形是平行四边形B . 平行四边形的对角线互相平分C . 平行四边形的对角互补,邻角相等D . 平行四边形的对边平行且相等8. (2分) (2019八下·温州月考) 下列关于x的一元二次方程中一定有实数根的是()A . x2﹣2x+4=0B . x2+2x+4=0C . x2﹣2x﹣4=0D . x2+4=09. (2分)如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()A .B .C .D .10. (2分) (2020七下·新乡期中) 如图,长方形 ABCD 中,AB=6,第一次平移长方形 ABCD 沿 AB 的方向向右平移 5 个单位长度,得到长方形,第 2次平移长方形沿的方向向右平移5个单位长度,得到长方形,…,第n 次平移长方形沿的方向向右平移 5 个单位长度,得到长方形(n>2),若的长度为 2026,则 n 的值为()A . 407B . 406C . 405D . 404二、填空题 (共5题;共5分)11. (1分) (2019九上·浙江期末) 计算:sin30°tan60°=________.12. (1分) (2017八下·鄂托克旗期末) 如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是________.13. (1分)将一个边长为1的正六边形补成如图所示的矩形,则矩形的周长等于________.(结果保留根号)14. (1分)(2016·江西) 如图,直线l⊥x轴于点P,且与反比例函数y1 (x>0)及y2= (x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=________.15. (1分) (2020七下·无锡月考) ∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC外,若∠2=20º,则∠1的度数为 ________.三、解答题 (共8题;共73分)16. (5分)(2017·苏州模拟) 先化简,再求值:÷(1﹣),其中x= .17. (12分) (2019八下·长沙开学考) 我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D 不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了________名学生;(2)扇形统计图中D所在扇形的圆心角为________;(3)将上面的条形统计图补充完整;(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.18. (10分)(2018·利州模拟) 如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.19. (5分)(2017·泰州模拟) 高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)20. (5分)如图是函数y=与函数y=在第一象限内的图象,点P是y=的图象上一动点,PA⊥x轴于点A,交y=的图象于点C,PB⊥y轴于点B,交y=的图象于点D.(1)求证:D是BP的中点.(2)求四边形ODPC的面积.21. (10分) (2018七下·越秀期中) 如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.22. (11分) (2016九上·东城期末) 已知:在等边△ABC中, AB= ,D,E分别是AB,BC的中点(如图1).若将△BDE绕点B逆时针旋转,得到△BD1E1 ,设旋转角为α(0°<α<180°),记射线CE1与AD1的交点为P.(1)判断△BDE的形状;(2)在图2中补全图形,①猜想在旋转过程中,线段CE1与AD1的数量关系并证明;②求∠APC的度数;(3)点P到BC所在直线的距离的最大值为________.(直接填写结果)23. (15分) (2017九上·萧山月考) 已知抛物线L1:y1=x2+6x+5k和抛物线L2:y2=kx2+6kx+5k,其中k≠0.(1)下列说法你认为正确的是(填写序号)________;①抛物线L1和L2与y轴交于同一点(0,5k);②抛物线L1和L2开口都向上;③抛物线L1和L2的对称轴是同一条直线;④当k<-1时,抛物线L1和L2都与x轴有两个交点.(2)抛物线L1和L2相交于点E、F,当k的值发生变化时,请判断线段EF的长度是否发生变化,并说明理由;(3)在(2)中,若抛物线L1的顶点为M,抛物线L2的顶点为N,问是否存在实数k,使MN=2EF?如存在,求出实数k;如不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共73分)16-1、17-1、17-2、17-3、17-4、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
2024年河南省驻马店市汝南县中考数学一模试卷+答案解析

2024年河南省驻马店市汝南县中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.2024年的一场暴雪让人们开始关注天气预报,下列天气图案中是中心对称图形的是()A. B. C. D.2.如果,那么下列比例式中正确的是()A. B. C. D.3.中国古代数学名著《九章算术注》中记载:“邪解立方,得两堑堵.”意即把一长方体沿对角面一分为二,这相同的两块叫做“堑堵”.如图是“堑堵”的立体图形,它的左视图为()A. B. C. D.4.如图,双曲线与直线相交于A、B两点,B点坐标为,则A点坐标为()A.B.C.D.5.关于一元二次方程为常数的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定根的情况6.如图,点A、C、B在上,已知则的值为()A.B.C.D.7.甲、乙、丙、丁四名同学围坐在一起商讨问题.如图是丙的座位,另外三人随机坐到①、②、③的任一个座位上.则甲和丁相邻的概率是()A.B.C.D.8.如图,某地修建的一座建筑物的截面图的高,坡面AB的坡度为1:,则AB的长度为()A.10mB.C.5mD.9.如图,AB是的直径,点C是上一点,点D在BA的延长线上,CD与交于另一点E,,,则的长度为()A.B.C.D.10.如图所示,已知中,,BC边上的高,D为BC上一点,,交AB于点E,交AC于点F,设点E到边BC的距离为则的面积y关于x的函数图象大致为()A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。
11.请你写出一个一元二次方程______,使它的解是12.已知点与在函数的图象上,则、的大小关系为______.13.如图,在▱ABCD中,以点B为圆心,以BA的长为半径作弧交边BC于点E,连接分别以点A,E为圆心,以大于的长为半径作弧,两弧交于点P,作射线BP交AE于点O,交边AD于点F,则的值为______.14.如图,已知扇形ACB中,,以BC为直径作半圆O,过点O作AC的平行线,分别交半圆O,弧AB于点D、E,若扇形ACB的半径为4,则图中阴影部分的面积是______.15.如图,等腰三角形ABC中,,该三角形的两条高BD与AE交于点F,连接CF,点P为射线AE上一个动点,连接BP,若,当与相似时,AP的长为______.三、解答题:本题共8小题,共75分。
河南省2020年中考数学一模试卷(解析版)

2020年河南省中考数学一模试卷一、选择题(共10小题)1.﹣的相反数是()A.﹣B.C.﹣2 D.22.截止北京时间2020年4月11日21时许,全球累计新冠确诊病例数已超171万例.将1710000用科学记数法表示()A.1.71×105B.0.171×107C.1.71×106D.17100003.某个几何体的三视图如图所示,该几何体是()A.B.C.D.4.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是()A.中位数为170 B.众数为168C.极差为35 D.平均数为1705.下列运算正确的是()A.(﹣2a)2=﹣4a2B.(a+b)2=a2+b2C.(a5)2=a7D.(﹣a+2)(﹣a﹣2)=a2﹣46.若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.08.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.9.将一个含30°角的直角三角板ABC与一个直尺如图放置,∠ACB=90°,点A在直尺边MN上,点B在直尺边PQ上,BC交MN于点D,若∠ABP=15°,AC=8,则AD的长为()A.B.8 C.8D.810.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是()A.()n B.()n﹣1C.()n D.()n﹣1二、填空题(共5小题)11.计算:2cos45°﹣(+1)0=.12.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)13.端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的好朋友小悦,小悦拿到的两个粽子都是肉馅的概率是.14.如图,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB 于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是(结果保留π).15.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE的交点,若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,则PB的长为.三、解答题(共8小题)16.先化简,再求值:(﹣)÷(﹣)•(++2),其中+(n﹣3)2=0.17.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.18.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D,E两点,求△CDE的面积.19.“武汉告急”,新型冠状病毒的肆虐,使武汉医疗设备严重缺乏,某校号召全校师生捐款购买医用口罩支援疫区,由于学生不能到校捐款,校方采用网上捐款的办法,设置了四个捐款按钮,A:5元;B:10元;C:20元;D:50元,最终全校2000名学生全部参与捐款,活动结束后校团委随机抽查了20名学生捐款数额,根据各捐款数额对应的人数绘制了扇形统计图(如图1)和尚未完成的条形统计图(如图2),请解答下列问题:(1)在图1中,捐款20元所对应的圆心角度数为,将条形统计图补充完整.(2)这20名学生捐款的众数为,中位数为.(3)在求这20名学生捐款的平均数时,小亮是这样分析的:第一步:求平均数的公式是=;第二步:此问题中n=4,x1=5,x2=10,x3=20,x4=50;第三步:==21.25(元).①小亮的分析是不正确的,他错在第几步?②请你帮他计算出正确的平均数,并估计这2000名学生共捐款多少元?20.在小水池旁有一盏路灯,已知支架AB的长是0.8 m,A端到地面的距离AC是4 m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水(结池的内沿E测得支架A端的仰角是50°(点C,E,D在同一直线上),求小水池的宽DE.果精确到0.1 m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)21.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165 m3;4台A型和7台B型挖掘机同时施工1 h挖土225 m3.每台A型挖掘机1 h的施工费用为300元,每台B型挖掘机1 h的施工费用为180元.(1)分别求每台A型,B型挖掘机1 h挖土多少m3?(2)若不同数量的A型和B型挖掘机共12台同时施工4 h,至少完成1080 m3的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?22.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD 绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC 为等邻角四边形时,求出它的面积.23.如图,二次函数y=ax2+x+c的图象交x轴于A,B(4,0)两点,交y轴于点C(0,2).(1)求二次函数的解析式;(2)点P为第一象限抛物线上一个动点,PM⊥x轴于点M.交直线BC于点Q,过点C 作CN⊥PM于点N.连接PC;①若△PCQ为以CQ为腰的等腰三角形,求点P的横坐标;②点G为点N关于PC的对称点,当点G落在坐标轴上时,直接写出点P的坐标.参考答案与试题解析一、选择题(共10小题)1.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:B.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据1710000用科学记数法表示为:1.71×106.故选:C.3.【分析】由三视图可知:该几何体为上下两部分组成,上面是一个圆柱,下面是一个长方体.【解答】解:由三视图可知:该几何体为上下两部分组成,上面是一个圆柱,下面是一个长方体且圆柱的高度和长方体的高度相当.故选:A.4.【分析】根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;极差就是这组数中最大值与最小值的差以及平均数的计算公式,对每一项进行分析即可.【解答】解:把数据按从小到大的顺序排列后150,164,168,168,172,176,183,185,所以这组数据的中位数是(168+172)÷2=170,168出现的次数最多,所以众数是168,极差为:185﹣150=35;平均数为:(150+164+168+168+172+176+183+185)÷7=170.8,故选:D.5.【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【解答】解:(﹣2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(﹣a+2)(﹣a﹣2)=a2﹣4,故选项D符合题意.故选:D.6.【分析】利用一次函数的性质得到k>0,b≤0,再判断△=k2﹣4b>0,从而得到方程根的情况.【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.7.【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解答】解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.8.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A,B,C,D,E,F,G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D,E,F,G,∴能构成这个正方体的表面展开图的概率是,故选:A.9.【分析】先由平行线的性质可得∠DAB=∠ABP=15°,根据三角形内角和定理得到∠CAB=60°,∠CAD=∠CAB﹣∠DAB=45°,那么△ACD是等腰直角三角形,从而求出AD=AC=8.【解答】解:由题意可得,MN∥PQ,∴∠DAB=∠ABP=15°,∵∠CAB=180°﹣∠C﹣∠ABC=180°﹣90°﹣30°=60°,∴∠CAD=∠CAB﹣∠DAB=60°﹣15°=45°,∵∠ACD=90°,∴∠ADC=45°,∴△ACD是等腰直角三角形,∴AD=AC=8.故选:C.10.【分析】根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【解答】解:∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形A n B n∁n D n的面积=()n﹣1,故选:B.二、填空题(共5小题)11.【分析】直接利用特殊角的三角函数值、零指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1=﹣1.故答案为:﹣1.12.【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.13.【分析】根据题意可以用树状图表示出所有的可能结果,再由树状图可以得到小悦拿到的两个粽子都是肉馅的概率.【解答】解:肉粽记为A、红枣粽子记为B、豆沙粽子记为C,由题意可得,由树状图可知共有12种可能的结果,其中小悦拿到的两个粽子都是肉馅的情况数为2,∴小悦拿到的两个粽子都是肉馅的概率==,故答案为:.14.【分析】由于BC切⊙A于D,那么连接AD,可得出AD⊥BC,即△ABC的高AD=2;已知了底边BC的长,可求出△ABC的面积.根据圆周角定理,易求得∠EAF=2∠P=80°,已知了圆的半径,可求出扇形AEF的面积.图中阴影部分的面积=△ABC的面积﹣扇形AEF的面积.由此可求阴影部分的面积.【解答】解:连接AD,则AD⊥BC;△ABC中,BC=4,AD=2;∴S△ABC=BC•AD=4.∵∠EAF=2∠EPF=80°,AE=AF=2;∴S扇形EAF==;∴S阴影=S△ABC﹣S扇形EAF=4﹣.15.【分析】分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB∽△AEC,最后依据相似三角形的性质进行证明即可.【解答】解:∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,∴△ADB≌△AEC(SAS),①当点E在AB上时,BE=AB﹣AE=1,∵∠EAC=90°,∴CE==,∵△ADB≌△AEC,∴∠DBA=∠ECA,∵∠PEB=∠AEC,∴△PEB∽△AEC,∴,∴=,∴PB=;②当点E在BA延长线上时,BE=3,∵∠EAC=90°,∴CE==,∵△ADB≌△AEC,∴∠DBA=∠ECA,∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=,综上所述,PB的长为或.故答案为:或.三、解答题(共8小题)16.【分析】先通分,再利用因式分解,把可以分解的分解,然后统一化成乘法运算,约分化简,再将所给等式化简,得出m和n的值,最后代回化简后的分式即可.【解答】解:(﹣)÷(﹣)•(++2)=÷•=••=﹣.∵+(n﹣3)2=0.∴m+1=0,n﹣3=0,∴m=﹣1,n=3.∴﹣=﹣=.∴原式的值为.17.【分析】(1)直接利用圆周角定理得出∠CDE的度数;(2)直接利用直角三角形的性质结合等腰三角形的性质得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,进而得出答案;(3)利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值.【解答】(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:方法一:设DE=1,则AC=2,由AC2=AD×AE∴20=AD(AD+1)∴AD=4或﹣5(舍去)∵DC2=AC2﹣AD2∴DC=2,∴tan∠ABD=tan∠ACD==2;方法二:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴=,∴DC2=AD•DE∵AC=2DE,∴设DE=x,则AC=2x,则AC2﹣AD2=AD•DE,即(2x)2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣5x(负数舍去),则DC==2x,故tan∠ABD=tan∠ACD===2.18.【分析】(1)令﹣2x+4=,则2x2﹣4x+k=0,依据直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,即可得到k的值,进而得出点C的坐标;(2)依据直线l与直线y=﹣2x+4关于x轴对称,即可得到直线l为y=2x﹣4,再根据=2x﹣4,即可得到E(﹣1,﹣6),D(3,2),可得CD=2,进而得出△CDE的面积=×2×(6+2)=8.【解答】解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),D(3,2),又∵C(1,2),∴CD=3﹣1=2,∴△CDE的面积=×2×(6+2)=8.19.【分析】(1)捐款为20元的圆心角占360°的20%,D组占10%,可求出D组人数,补全统计图;(2)根据中位数、众数的意义进行计算即可;(3)根据平均数的意义和计算方法进行判断和修改即可.【解答】解:(1)360°×20%=72°,20×10%=2(人),故答案为:72°,补全条形统计图如图所示:(2)这20名学生捐款金额出现次数最多的是10元,因此众数是10元,将这20名学生捐款从小到大排列后,处在第10,11位的两个数都是10元,因此中位数是10元;故答案为:10元,10元;(3)①错在第二步,②==16(元),16×2000=32000(元),答:正确的平均数是16元,这2000名学生共捐款32000元.20.【分析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠BAF=0.8×0.9=0.72,AF=AB•cos∠BAF=0.8×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=,∴DE=CD﹣CE=5.04﹣3.33=1.71≈1.7,答:小水池的宽DE为1.7 m.21.【分析】(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.【解答】解:(1)设每台A型,B型挖掘机一小时分别挖土x m3和y m3,根据题意得解得:∴每台A型挖掘机1 h挖土30 m3,每台B型挖掘机1 h挖土15 m3(2)设A型挖掘机有m台,总费用为W元,则B型挖掘机有(12﹣m)台.根据题意得W=4×300m+4×180(12﹣m)=480m+8640∵∴解得∵m≠12﹣m,解得m≠6∴7≤m≤9∴共有三种调配方案,方案一:当m=7时,12﹣m=5,即A型挖掘机7台,B型挖掘机5台;方案二:当m=8时,12﹣m=4,即A型挖掘机8台,B型挖掘机4台;方案三:当m=9时,12﹣m=3,即A型挖掘机9台,B型挖掘机3台.…∵480>0,由一次函数的性质可知,W随m的减小而减小,∴当m=7时,W小=480×7+8640=12000此时A型挖掘机7台,B型挖掘机5台的施工费用最低,最低费用为12000元.22.【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)AC=BD,理由为:连接PD,PC,如图1所示,根据PE,PF分别为AD,BC的垂直平分线,得到两对角相等,利用等角对等角得到两对角相等,进而确定出∠APC=∠DPB,利用SAS得到三角形ACB与三角形DPB全等,利用全等三角形对应边相等即可得证;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,由S四边形ACBD′=S△ACE﹣S△BED′,求出四边形ACBD′面积;(ii)当∠D′BC=∠ACB =90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,由S四边形ACBD′=S△AED′+S矩形ECBD′,求出四边形ACBD′面积即可.【解答】解:(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴P A=PD,PC=PB,∴∠P AD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠P AD,∠APC=2∠PBC,即∠P AD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE==,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.23.【分析】(1)先由直线y=﹣x+2求出B,C的坐标,再将其代入抛物线y=ax2+x+c 中,即可求出抛物线解析式;(2)①将等腰三角形分两种情况进行讨论,即可分别求出m的值;②当点N'落在坐标轴上时,存在两种情形,一种是点N'落在y轴上,一种是点N′落在x轴上,分情况即可求出点P的坐标.【解答】解:(1)∵直线y=﹣x+2经过B,C,∴B(4,0),C(0,2),∵抛物线y=ax2+x+c交x轴于点A,交y轴于点C,∴,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)∵点P在抛物线在第一象限内的图象上,点P的横坐标为m,∴0<m<4,P(m,﹣m2+m+2),①∵PM⊥x轴,交直线y=﹣x+2于点Q,∴Q(m,﹣m+2),∴PQ=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,∵PD∥CO,∴,∴CQ==m,当PQ=CQ时,﹣m2+2m=m,解得m1=4﹣,m2=0(舍去);当PC=CQ时,PM+QM=2CO,即(﹣m2+m+2)+(﹣m+2)=2×2,∴﹣m2+m=0,解得m1=2,m2=0(舍去);综上,当△PCQ是等腰三角形时,m的值为m=4﹣,2;②存在,理由如下:当点N'落在坐标轴上时,存在两种情形:如图1,当点N'落在y轴上时,点P(m,﹣m2+m+2)在直线y=x+2上,∴﹣m2+m+2=m+2,解得m1=1,m2=0(舍去),∴P(1,3);如图2,当点N'落在x轴上时,△CON'∽△N'DP,∴,∴,∵PN=2﹣(﹣m2+m+2)=m(m﹣3),∴N'M==m﹣3,∴ON'=OM﹣MN=m﹣(m﹣3)=3,在△CON'中,CN'==,∴m=,则P(,),综上所述,当点N′落在坐标轴上时,点P的坐标为(1,3)或(,).。
2020年驻马店市中考数学一模试卷 (含答案解析)

2020年驻马店市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.在√5,π,3,−4这四个实数中,最大的数是()A. √5B. πC. 3D. −42.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×1063.下列汽车标志中既是轴对称图形又是中心对称图形的是()A. B.C. D.4.下列运算结果是x6的是()A. x2+x3B. x2⋅x3C. (−x2)3D. x7÷x5.下列说法中错误的是()A. 一组数据的平均数、中位数可能相同B. 一组数据的中位数可能不唯一确定C. 一组数据中平均数、中位数、众数是从不同角度描述了一组数据的集中趋势D. 一组数据中众数可能有多个6.已知关于x的方程mx2+2x−1=0有实数根,则m的取值范围是().A. m≥−1B. m≤1C. m≥−1且m≠0D. m≤1且m≠07.如图,直线EF分别与直线AB、CD相交于点G、H,已知∠1=∠2=70°,GM平分∠HGB交直线CD于点M,则∠3=()A. 50°B. 55°C. 60°D. 65°8.如果方程x−8x−7−k7−x=8有增根,那么k的值是()A. 1B. −1C. ±1D. 79.按照如下排列规律,第103个图形是()□△○△□△○△□△○△□….A. □B. △C. ○D. 不能确定10.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t秒(0≤t≤4),则能大致反映S与t的函数关系的图象是()A. B.C. D.二、填空题(本大题共5小题,共15.0分)11.计算:√4−(12)−2=______.12.现有三张完全相同的卡片,上面分别标有数字−1,−2,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率为______ .13.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF于点G,若∠CEF=70°,则∠GFD′=度.14.如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是________.15.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的CD边上的点G处,连接CE,则CE=__________.三、解答题(本大题共8小题,共75.0分)16.先化简(5x−5−x5−x)÷2xx2−25,然后从不等式{−x−2⩽3 2x<12 的解集中,选取一个你认为符合题意的x的值代入求值.17.某校为了解学生的课外阅读情况,就“我最喜爱的课外读物”对文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),并根据调查结果绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次被调查的学生共有多少名?(2)请将条形统计图补充完整;(3)在扇形统计图中,计算出“其他类”所对应的圆心角的度数;(4)若该校有2000名学生,请你估计该校喜爱“科普类”的学生有多少名.18.如图是小红在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小红身高1.5米.(1)当风筝的水平距离AC=18米时,求此时风筝线AD的长度;(2)当她从点A跑动9√2米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10√3米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.19.下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/ℎ超时费/(元/min)A30250.05B50500.05C120不限时设上网时间为t小时.(I)根据题意,填写下表:月费/元上网时间/ℎ超时费/(元)总费用/(元)方式A3040方式B50100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?20.如图,AB是半圆O的直径,点C是半圆O上不与A,B重合的一个动点,连接CA、CB,点D是过点C的切线上的一点,连接AD交半圆O于点E,且∠ADC=90∘,CF⊥AB于点F.(1)求证:DE=BF.(2)填空:①当∠CAB=________°,四边形OBCE为菱形;②当CD=4,AD=6时,半圆O的半径为________.(n≠0) 21.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=nx 的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,−1),AD⊥x轴,.且AD=3,tan∠AOD=32(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.22.如图1,在△ABC中,AC=n⋅AB,∠CAB=α,点E,F分别在AB,AC上且EF//BC,把△AEF绕点A顺时针旋转到如图2的位置.连接CF,BE.(1)求证:∠ACF=∠ABE;(2)若点M,N分别是EF,BC的中点,当α=90°时,求证:BE2+CF2=4MN2;(3)如图3,点M,N分别在EF,BC上且FMME =CNNB=12,若n=√2,α=135°,BE=√2,直接写出MN的长.23.已知:抛物线y=ax2+bx−3经过点A(7,−3),与x轴正半轴交于点B(m,0)、C(6m、0)两点,与y轴交于点D.(1)求m的值;(2)求这条抛物线的表达式;(3)点P在抛物线上,点Q在x轴上,当∠PQD=90°且PQ=2DQ时,求点P、Q的坐标.【答案与解析】1.答案:B解析:解:∵π>3>√5>−4,∴在√5,π,3,−4这四个实数中,最大的数是π.故选:B.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.答案:C解析:解:3710000=3.71×106,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:C解析:本题考查了中心对称图形以及轴对称图形,解题的关键是牢记中心对称图形及轴对称图形的特点.本题属于基础题,难度不大,解决该题型题目时,对折(或旋转)图形验证其是否为轴对称(或中心对称)图形是关键.逐一分析四个选项中的图形,可那个图形既是轴对称图形又是中心对称图形,由此即可得出结论.解:A.是轴对称图形不是中心对称图形;B.既不是轴对称图形又不是中心对称图形;C.既是轴对称图形又是中心对称图形;D.是轴对称图形不是中心对称图形.故选C.4.答案:D解析:【试题解析】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.利用同底数幂的乘法、除法以及积的乘方公式即可求解、进行判断.解:A.x2和x3不是同类项,不能合并,选项错误;B.x2⋅x3=x5,选项错误;C.(−x2)3=−x6,选项错误;D.x7÷x=x7−1=x6,选项正确.故选D.5.答案:B解析:解:A.一组数据的平均数、中位数可能相同,该说法正确,故本选项错误;B.一组数据的中位数只能有一个,该说法错误,故本选项正确;C.一组数据中平均数、中位数、众数是从不同角度描述了一组数据的集中趋势,该说法正确,故本选项错误;D.一组数据中众数可能有多个,该说法正确,故本选项错误.故选B.根据众数、平均数、中位数的概念求解.本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.6.答案:A解析:本题考查了根的判别式及一元二次方程的定义有关知识,根据一元二次方程的定义及判别式的意义可得m≠0且△=(−2)2−4m×1≥0,解不等式组即可.解:∵关于x的方程mx2+2x−1=0有实数根,当m=0时,该方程有根,当m≠0时,∴△=22+4m×1≥0,解得m≥−1且m≠0,综上m≥−1.故选A.7.答案:B解析:解:∵∠1=70°,∴∠BGH=180°−70°=110°,∵GM平分∠HGB,∴∠BGM=55°,∵∠1=∠2,∴AB//CD(同位角相等,两直线平行),∴∠3=∠BGM=55°(两直线平行,内错角相等).故选B.根据邻补角的性质与∠1=70°,求得∠BGH=180°−70°=110°,由GM平分∠HGB交直线CD于点M,得出∠BGM的度数,根据同位角相等,两直线平行,得到AB//CD,从而利用平行线的性质求得∠3的度数.本题主要考查了平行线的性质,两直线平行,内错角相等;以及平行线的判定方法,同位角相等,两直线平行.8.答案:A解析:本题考查分式方程增根问题,属于基础题.有增根,最简公分母x−7=0,所以增根是x=7,把增根代入化为整式方程的方程即可求出未知字母的值.解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.解:方程两边都乘(x−7),得x−8+k=8(x−7),∵方程有增根,∴最简公分母x−7=0,即增根是x=7,把x=7代入整式方程,得k=1.故选A.9.答案:C解析:【试题解析】解:观察图形发现每4个一循环,故103÷4=25…3,故第103个图形是○,故选C.观察图形发现每4个一循环,利用此规律解题即可.此题主要考查了图形规律问题,考查学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.10.答案:C解析:解:过A作AD⊥x轴于D,∵OA=OC=4,∠AOC=60°,∴OD=2,由勾股定理得:AD=2√3,①当0≤t<2时,如图所示,ON=t,MN=√3ON=√3t,S=12ON⋅MN=√32t2;ON⋅2√3=√3t.②当2≤t≤4时,ON=t,MN=2√3,S=12故选:C.过A作AD⊥x轴于D,根据勾股定理和含30度角的直角三角形的性质求出AD,分类讨论当0≤t<2时,当2≤t≤4时,根据三角形的面积即可求出答案.本题主要考查对动点问题的函数图象,勾股定理,三角形的面积,二次函数的图象,正比例函数的图象,含30度角的直角三角形的性质,菱形的性质等知识点的理解和掌握,能根据这些性质进行计算是解此题的关键,用的数学思想是分类讨论思想.11.答案:−2解析:解:原式=2−4=−2.故答案为:−2.直接利用二次根式的性质、负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.答案:23解析:解:画树状图得:∵共有6种等可能的结果,这两张卡片上的数字之积为负数的有4种情况,∴这两张卡片上的数字之积为负数的概率为:46=23.故答案为:23.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两张卡片上的数字之积为负数的情况,再利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.13.答案:40解析:本题考查的是折叠与对称以及平行线的性质.根据两直线平行,内错角相等求出∠EFG,再根据平角的定义求出∠EFD,然后根据折叠的性质可得∠EFD′=∠EFD,即∠GFD′=∠EFD′−∠EFG,代入数据计算即可得解.解:矩形纸片ABCD中,AD//BC,∵∠CEF=70°,∴∠EFG=∠CEF=70°,∴∠EFD=180°−70°=110°,根据折叠的性质,∠EFD′=∠EFD=110°,∴∠GFD′=∠EFD′−∠EFG,=110°−70°,=40°,故答案为40.14.答案:6π−9√3 解析:解:连接BD ,∵四边形ABCD 是菱形,∠A =60°,∴∠ADC =120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB =6,∴△ABD 的高为3√3,∵扇形BEF 的半径为6,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,{∠A =∠2AB =BD ∠3=∠4,∴△ABG≌△DBH(ASA),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF −S △ABD =60π×62360−12×6×3√3=6π−9√3. 故答案为:6π−9√3.根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.此题主要考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD 的面积等于△ABD 的面积是解题关键.15.答案:3√105解析:本题考查的是旋转变换的性质,相似三角形的判定和性质,掌握勾股定理,矩形的性质,旋转变换的性质是解题的关键.连接AG ,根据旋转变换的性质得到,∠ABG =∠CBE ,BA =BG ,根据勾股定理求出CG ,AD ,根据相似三角形的性质列出比例式,计算即可.解:连接AG ,由旋转变换的性质可知,∠ABG =∠CBE ,BA =BG =5,BC =BE ,由勾股定理得,CG =2−BC 2=4,∴DG =DC −CG =1,则AG =√AD 2+DG 2=√10,∵BA BC =BG BE ,∠ABG =∠CBE ,∴△ABG∽△CBE ,∴CE AG =BC AB =35, 解得CE =3√105. 故答案为3√105.16.答案:解:原式=(5x−5+x x−5)⋅x 2−252x=5+x x −5⋅(x +5)(x −5)2x =(x+5)22x ,对不等式组{−x −2⩽3 ①2x <12 ②解不等式①,得x ≥−5,解不等式②,得x<6,∴不等式组的解集为−5≤x<6,且对于原分式,x≠±5,且x≠0,=18.取x=1时,原式=362解析:先将分式化简,再解不等式组,在不等式组的解集的范围内取值,注意所取值不能使分母,即除数为0,即x≠±5,x≠0.本题考查了分式的化简求值解一元一次不等式组.分式化简求值的关键是把分式化到最简,然后代值计算,解一元一次不等式组,就是先分别解每一个不等式,再求解集的公共部分.17.答案:解:(1)60÷30%=200(人).答:这次调查的学生共有200人.(2)艺术:200×20%=40(人),其它:200−(60+80+40)=20(人)补充条形统计图:(3)20÷200=10%,10%×360°=36°.答:“其它类”所对应的圆心角是36°.(4)80÷200=40%,2000×40%=800(人).答:该校喜爱“科普类”的学生有800人.解析:此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.(1)用喜欢文学的人数除以其所占的百分比即可求得调查的学生总数;(2)用总人数乘以每种情况所占的百分比后即可求得,从而补全统计图;(3)利用圆心角计算公式,即可得到“其他类”所对应的圆心角的度数;(4)先求得喜欢科普类的学生所占的百分比,然后确定喜爱科普类的学生数即可.18.答案:解:(1)∵在Rt△ACD中,cos∠CAD=ACAD,AC=18、∠CAD=30°,∴AD=ACcos∠CAD =18cos30∘=√32=12√3(米),答:此时风筝线AD的长度为12√3米;(2)设AF=x米,则BF=AB+AF=9√2+x(米),在Rt△BEF中,BE=BFcos∠EBF=√2+x√22=18+√2x(米),由题意知AD=BE=18+√2x(米),∵CF=10√3,∴AC=AF+CF=10√3+x,由cos∠CAD=ACAD 可得√32=√3+x18+√2x,解得:x=3√2+2√3,则AD=18+√2(3√2+2√3)=24+2√6,∴CD=ADsin∠CAD=(24+2√6)×12=12+√6,则C1D=CD+C1C=12+√6+32=272+√6;答:风筝原来的高度C1D为(272+√6)米.解析:本题主要考查解直角三角形的应用,解题的关键是掌握三角函数的定义及根据题意找到两直角三角形间的关联.(1)在Rt△ACD中,由AD=ACcos∠CAD可得答案;(2)设AF=x米,则BF=AB+AF=9√2+x,在Rt△BEF中求得AD=BE=BFcos∠EBF=18+√2x,由cos∠CAD=ACAD可建立关于x的方程,解之求得x的值,即可得出AD的长,继而根据CD= ADsin∠CAD求得CD从而得出答案.19.答案:解:(I)当t=40ℎ时,方式A超时费:0.05×60(40−25)=45,总费用:30+45=75,当t=100ℎ时,方式B超时费:0.05×60(100−50)=150,总费用:50+150=200.填表如下:月费/元 上网时间/ℎ 超时费/(元) 总费用/(元) 方式A30 40 45 75 方式B 50 100 150 200(II)当0≤t ≤25时,y 1=30,当t >25时,y 1=30+0.05×60(t −25)=3t −45,所以y 1={30(0≤t ≤25)3t −45(t >25); 当0≤t ≤50时,y 2=50,当t >50时,y 2=50+0.05×60(t −50)=3t −100,所以y 2={50(0≤t ≤50)3t −100(t >50);(III)当75<t <100时,选用C 种计费方式省钱.理由如下:当75<t <100时,y 1=3t −45,y 2=3t −100,y 3=120,当t =75时,y 1=180,y 2=125,y 3=120,所以当75<t <100时,选用C 种计费方式省钱.解析:(I)根据两种方式的收费标准分别计算,填表即可;(II)根据表中给出A ,B 两种上宽带网的收费方式,分别写出y 1、y 2与t 的数量关系式即可; (III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.20.答案:(1)解:如图,连接CE ,OC∵CD 是半圆O 的切线,∴OC ⊥CD ,∴∠ACO+∠DCA=90°.∵AD⊥CD,∴∠CAD+∠DCA=90°,∴∠ACO=∠CAD.∵OA=OC,∴∠OAC=∠ACO,∴∠CAD=∠OAC.∵CF⊥AB,AD⊥CD,∴DC=CF.∵四边形ABCE是圆的内接四边形,∴∠FBC+∠AEC=180°,∵∠DEC+∠AEC=180°,∴∠DEC=∠FBC.∵∠CDE=∠CFB=90°,∴△DCE≌△FCB(AAS),∴DE=BF.(2)①30.②13.3解析:此题主要考查了平行线的判定与性质,角平分线的性质,等腰三角形的性质,等边三角形的判定与性质,矩形的判定,正方形的判定,菱形的判定,圆周角定理及其推论,切线的性质.(1)连接OC,根据直线l是半圆O的切线,得到OC⊥CD,根据AD⊥CD,得到AD//OC,∠ACO=∠CAD,根据OA=OC,得到∠OAC=∠ACO,∠CAD=∠OAC,根据CF⊥AB,CD⊥AD,即可得到CD=CF;(2)连接EC,EO,当∠CAB=30°时,根据AB是半圆O的直径,得到∠ACB=90°,∠CBA=60°,证明△COB是等边三角形,得到OB=BC,证明△OEA是等边三角形,得到∠EOA=60°,∠EOC=60°,证明△OEC是等边三角形,得到OE=EC,即OB=BC=OE=EC,即可得到四边形OBCE为菱形.(1)见答案;(2)①连接EC,EO,当∠CAB =30°时,∴∠ACB =90°,∠CBA =60°,∴△COB 是等边三角形,∴OB =BC ,∴△OEA 是等边三角形,∴∠EOA =60°,∠EOC =60°,∴△OEC 是等边三角形,∴OE =EC ,即OB =BC =OE =EC ,即可得到四边形OBCE 为菱形.故答案为30;②133. 21.答案:解:(1)如图,在Rt △OAD 中,∠ADO =90°,∵tan∠AOD =32=AD OD ,AD =3,∴OD =2,∴A(−2,3),把A(−2,3)代入y =n x ,考点:n =3×(−2)=−6,所以反比例函数解析式为:y =−6x ,把B(m,−1)代入y =−6x ,得:m =6,把A(−2,3),B(6,−1)分别代入y =kx +b ,得:{−2k +b =36k +b =−1, 解得:{k =−12b =2, 所以一次函数解析式为:y =−12x +2;(2)当y =0时,−12x +2=0,解得:x =4,则C(4,0),所以S △AOB =12×4×4=8;(3)当OE 3=OE 2=AO =√22+32=√13,即E 2(−√13,0),E 3(√13,0);当OA =AE 1=√13时,得到OE 1=2OD =4,即E 1(−4,0);当AE 4=OE 4时,由A(−2,3),O(0,0),得到直线AO 解析式为y =−32x ,中点坐标为(−1,1.5), 则直线AO 的垂直平分线的解析式为y =23x +136, 令y =0,得到x =−134,即E 4(−134,0),综上,当点E(−4,0)或(√13,0)或(−√13,0)或(−134,0)时,△AOE 是等腰三角形.解析:(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC =4,即可得出△AOB 的面积;(3)分类讨论:当AO 为等腰三角形腰与底时,求出点E 坐标即可.此题考查了反比例函数与一次函数的综合,熟练掌握各自的性质是解本题的关键.22.答案:(1)证明:由如图1中可知,∵EF//BC ,∴AF AC =AE AB , ∴AF AE =AC AB ,如图2中,∵∠CAB =∠EAF ,∴∠CAF =∠BAE ,∵AF AE =AC AB ,∴△CAF∽△BAE ,∴∠ACF =∠ABE .(2)证明:延长BE 交CF 的延长线于H ,连接BF ,取BF 的中点J ,连接NJ ,JM ,设AC 交BH 于点O .∵∠OCH=∠OBA,∠COH=∠BOA,∴∠H=∠OAB=90°,∴CF⊥BE,∵CN=BN,FJ=JB,∴JN//CF,JN=12CF,∵FM=ME,FJ=JB,∴MJ//BE,MJ=12BE,∵CF⊥BE,∴NJ⊥JM,∴∠NJM=90°,∴JN2+JM2=MN2,∴(12CF)2+(12BE)2=MN2,∴BE2+CF2=4MN2.(3)解:如图3中,延长BE交CF的延长线于H,连接BF,在FB上取一点J,使得FJ:JB=1:2,连接NJ,JM.同法可证∠H=∠CAB=135°,∵CN:BN=FJ:JB=1:2,∴NJ//CF,NJ=23CF,∵FM:ME=FJ:JB=1:2,∴MJ//BE,MJ=13BE,∴△MJN 中∠MJN 的外角为135°,∴∠MJN =45°,由题意BE =√2,CF =2,∴NJ =43,MJ =√23, 如图4中,在△NJM 中,作MK ⊥NJ 于K .∵∠J =∠JMK =45°,MJ =√23, ∴MK =KJ =13, ∴NK =NJ −KJ =1,∴MN =√MK 2+NK 2=√(13)2+12=√103.解析:(1)证明△CAF∽△BAE 即可解决问题.(2)延长BE 交CF 的延长线于H ,连接BF ,取BF 的中点J ,连接NJ ,JM ,设AC 交BH 于点O.首先证明CF ⊥BE ,利用三角形的中位线定理证明△NJM 是直角三角形,利用勾股定理即可解决问题.(3)如图3中,延长BE 交CF 的延长线于H ,连接BF ,在FB 上取一点J ,使得FJ :JB =1:2,连接NJ ,JM.证明∠MJN =45°,NJ =43,MJ =√23,如图4中,在△NJM 中,作MK ⊥NJ 于K ,解直角三角形求出MN 即可.本题属于相似形综合题,考查了相似三角形的判定和性质,三角形的中位线定理,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.23.答案:解:(1)当x =0时,y =−3,∴D(0,−3).设抛物线的解析式为y =a(x −m)(x −6m).把点D 和点A 的坐标代入得:6am 2=−3①,a(7−m)(7−6m)=−3②,∴a(7−m)(7−6m)=6am 2.∵a ≠0,∴(7−m)(7−6m)=m2.解得:m=1.(2)∵6am2=−3,∴a=−36m2=−12.将a=−12,m=1代入得:y=−12x2+72x−3.∴抛物线的表达式为y=−12x2+72x−3.(3)如图所示:过点P作PE⊥x轴,垂足为E.设点Q的坐标为(a,0)则OQ=−a−∵∠DQP=90°,∴∠PQO+∠OQD=90°.又∵∠ODQ+∠DQO=90°,∴∠PQE=∠ODQ.又∵∠PEQ=∠DOQ=90°,∴△ODQ∽△EQP.∴QOPE =ODQE=QDQP=12,即−a3=PE6=12,∴QE=6,PE=−2a.∴P的坐标为(a+6,−2a)将点P的坐标代入抛物线的解析式得:−12(a+6)2+72(a+6)−3=−2a,整理得:a2+a=0,解得a=−1或a=0.当a=−1时,Q(−1,0),P(5,2);当a=0时,Q(0,0),P(6,0).综上所述,Q(−1,0),P(5,2)或者Q(0,0),P(6,0).解析:(1)先求得点D的坐标,然后设抛物线的解析式为y=a(x−m)(x−6m),把点D和点A的坐标代入可求得m的值;(2)由6am2=−3,m=1可求得a的值,然后代入抛物线的解析式即可;(3)过点P作PE⊥x轴,垂足为E.设点Q的坐标为(a,0)则OQ=−a,然后证明△ODQ∽△EQP,依据相似三角形的性质可求得QE=6,PE=−2a.,则P的坐标为(a+6,−2a),将点P的坐标代入抛物线的解析式可求得a的值.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、相似三角形的性质和判定,用含a的式子表示出点P的坐标是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年河南省驻马店市汝南县中考数学一模试卷一、选择题1.在实数﹣3,,0,﹣1中,最小的数是()A.﹣3B.0C.﹣1D.2.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2019年1月至8月,某市汽车产量为80万辆,其中80万用科学记数法表示为()A.8×104B.0.8×105C.8×106D.8×1054.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°5.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.6.一元二次方程(x+3)(x﹣3)=2x﹣5的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.如图,以点O为位似中心,把△ABC中放大到原来的2倍得到△A'B'C'.以下说法中错误的是()A.△ABC∽△A'B'C'B.点C,O,C'三点在同一条直线上C.AO:AA'=1:2D.AB∥A'B'8.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°9.已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y =的图象可能是()A.B.C.D.10.如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP 的长度y与运动时间x之间的函数关系大致是()A.B.C.D.二.填空题(每小题3分,共15分)11.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球号之和大于5的概率为.12.设A(x1,y1),B(x2,y2)是反比例函数y=﹣图象上的两点,若x1<x2<0,则y1与y2之间的关系是.13.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积是.14.如图,四边形OABC为菱形,OA=2,以点O为圆心,OA长为半径画,恰好经过点B,连接OE,OE⊥BC,则图中阴影部分的面积为.15.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为.三.解答题(共8小题,满分75分)16.先化简再求值,其中x=3tan30°﹣4cos60°.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB 长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=时,四边形BDEF为菱形;②当AB=时,△CDE为等腰三角形.18.如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A点处看甲楼楼底D点处的俯角为45°,走到乙楼B点处看甲楼楼顶E点处的俯角为60°,已知AB=6m,DE=10m.求乙楼的高度AC的长.(参考数据:≈1.41,≈1.73,精确到0.1m.)19.如图,点A(,4),B(3,m)是直线AB与反比例函数y=(x>0)图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2.求S2﹣S1.20.某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:第一次第二次A品牌运动服装数/件2030B品牌运动服装数/件3040累计采购款/元1020014400(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?21.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质.列表:x…﹣3﹣﹣2﹣﹣1﹣0123…y…121012…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.22.如图1,在Rt△ABC中,∠B=90°,AB=2,BC=1,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、B、E三点共线时,直接写出线段BD的长.23.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一.选择题(每小题3分,共30分)1.在实数﹣3,,0,﹣1中,最小的数是()A.﹣3B.0C.﹣1D.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:∵﹣3<﹣1<0<,∴在实数﹣3,,0,﹣1中,最小的数是﹣3.故选:A.2.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.2019年1月至8月,某市汽车产量为80万辆,其中80万用科学记数法表示为()A.8×104B.0.8×105C.8×106D.8×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:80万=800000=8×105,故选:D.4.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.5.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.解:该几何体的俯视图是:.故选:A.6.一元二次方程(x+3)(x﹣3)=2x﹣5的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化为一般形式,再求出b2﹣4ac的值,根据b2﹣4ac的正负即可得出答案.解:(x+3)(x﹣3)=2x﹣5,x2﹣2x﹣4=0,这里a=1,b=﹣2,c=﹣4,∵b2﹣4ac=(﹣2)2﹣4×1×(﹣4)=20>0,∴有两个不相等的实数根.故选:A.7.如图,以点O为位似中心,把△ABC中放大到原来的2倍得到△A'B'C'.以下说法中错误的是()A.△ABC∽△A'B'C'B.点C,O,C'三点在同一条直线上C.AO:AA'=1:2D.AB∥A'B'【分析】根据位似的性质对各选项进行判断.解:∵点O为位似中心,把△ABC中放大到原来的2倍得到△A'B'C',∴△ABC∽△A'B'C',OA:OA′=1:2,AB∥A′B′,CC′经过点O.故选:C.8.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°【分析】由圆周角定理得到∠AOC=2∠ADC=60°,然后由垂径定理和圆心角、弧、弦的关系求得∠BOC的度数.解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB是⊙O的弦,OC⊥AB交⊙O于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.9.已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y =的图象可能是()A.B.C.D.【分析】观察二次函数图象可得出m>0、n<0,再根据一次函数图象与系数的关系结合反比例函数的图象即可得出结论.解:观察二次函数图象可知:m>0,n<0,∴一次函数y=mx+n的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限.故选:C.10.如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP 的长度y与运动时间x之间的函数关系大致是()A.B.C.D.【分析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y不是x的一次函数,并且有最小值,故选项B符合题意,选项A不合题意.解:根据题意得,点P从点A运动到点B时以及从点C运动到点A时,y是x的一次函数,故选项C与选项D不合题意;当点P从B→C的过程中,根据勾股定理得AP=,则其函数图象不是一次函数,且当点P运动到BC的中点时有最小值,所以选项B符合题意,选项A不合题意.故选:B.二.填空题(每小题3分,共15分)11.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球号之和大于5的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于5的情况,再利用概率公式即可求得答案.解:根据题意画图如下:∵共有20种等可能的结果,两次摸出的小球的标号之和大于5的有12种结果,∴摸出的小球号之和大于5的概率为=.故答案为:.12.设A(x1,y1),B(x2,y2)是反比例函数y=﹣图象上的两点,若x1<x2<0,则y1与y2之间的关系是y2>y1>0.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0即可得出结论.解:∵反比例函数y=﹣中,k=﹣2<0,∴函数图象的两个分支位于二、四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0,∴y2>y1>0.故答案为:y2>y1>0.13.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积是3π.【分析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为的正三角形.可计算边长为2,据此即可得出表面积.解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为的正三角形.∴正三角形的边长==2.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为×2π×2=2π,∵底面积为πr2=π,∴这个物体的表面积是3π.故答案为:3π.14.如图,四边形OABC为菱形,OA=2,以点O为圆心,OA长为半径画,恰好经过点B,连接OE,OE⊥BC,则图中阴影部分的面积为π﹣.【分析】连接OB,根据菱形的性质得到OA=AB=BC=CO,根据题意得到△AOB、△OBC为等边三角形,求出∠AOE、OF,根据扇形面积公式、梯形面积公式计算,得到答案.解:连接OB,OE与BC的交点为F,∵四边形OABC为菱形,∴OA=AB=BC=CO,由题意得,OA=OB,∴OA=AB=OB=OC=BC,即△AOB、△OBC为等边三角形,∴∠AOB=60°,∠BOC=60°,∵OE⊥BC,∴BF=FC=BC=1,∠BOE=∠BOC=30°,∴∠AOE=90°,OF=OB•cos∠BOE=,则图中阴影部分的面积=﹣×(1+2)×=π﹣,故答案为:π﹣.15.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为或2.【分析】分两种情况①当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=CG=,BG=BC+CG=3,由折叠的性质得EN=BN,EM=BM =AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=120°,证出D、E、N三点共线,设BN=EN=xcm,则GN=3﹣x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(含CE=DE这种情况).解:分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,如图1所示:∵四边形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3﹣x,DN=x+2,在Rt△DGN中,由勾股定理得:(3﹣x)2+()2=(x+2)2,解得:x=,即BN=;②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(含CE=DE这种情况);综上所述,当△CDE为等腰三角形时,线段BN的长为或2;故答案为:或2.三.解答题(共8小题,满分75分)16.先化简再求值,其中x=3tan30°﹣4cos60°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解:原式=•=•=,∵x=3×﹣4×=﹣2,∴原式=.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB 长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=30°时,四边形BDEF为菱形;②当AB=+1时,△CDE为等腰三角形.【分析】(1)作DM⊥AC于M,由角平分线的性质可得DM=DB,由切线的判定可证AC是⊙D的切线;(2)①由菱形的性质可得BD=BF,且BD=DF,可证△BDF是等边三角形,可得∠ADB =60°,即可求解;②由切线的性质可得DE⊥AC,由等腰直角三角形的性质可得CD=DE=,∠C=45°,可证AB=BC=+1.【解答】证明:(1)如图1,作DM⊥AC于M,∵∠B=90°,AD平分∠BAC,DM⊥AC,∴DM=DB,∵DB是⊙D的半径,∴AC是⊙D的切线;(2)①如图2,∵四边形BDEF是菱形,∴BD=DE=EF=BF,∵BD=DF=DE,∴BD=DF=DE=EF=BF,∴△BDF,△DEF是等边三角形,∴∠ADB=∠ADE=60°,∵∠ABC=90°,∴∠BAD=30°,∴当∠BAD=30°时,四边形BDEF是菱形,故答案为:30°;②∵AC与⊙D切于点E,∴DE⊥AC,∵△DEC是等腰三角形,且DE⊥AC,∴DE=EC,∠C=∠EDC=45°,∴DC=DE,∵∠ABC=90°,∠C=45°,∴∠BAC=∠C=45°,∴AB=BC,∵BD=DE=EC=1,∴DC=x,∴AB=BC=+1,∴当AB=+1时,△CDE为等腰三角形,故答案为:+1.18.如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A点处看甲楼楼底D点处的俯角为45°,走到乙楼B点处看甲楼楼顶E点处的俯角为60°,已知AB=6m,DE=10m.求乙楼的高度AC的长.(参考数据:≈1.41,≈1.73,精确到0.1m.)【分析】过点E作EF⊥AC于F,得出EF=CD,CF=DE=10,设AC=xm,得出CD =EF=xm,BF=(x﹣16)m,在Rt△BEF中,根据tan∠EBF=,代值计算即可求出x的值.解:如图,过点E作EF⊥AC于F,则四边形CDEF为矩形,∴EF=CD,CF=DE=10,设AC=xm,则CD=EF=xm,BF=(x﹣16)m,在Rt△BEF中,∠EBF=60°,tan∠EBF=,∴=,∴x=24+8≈37.8m答:乙楼的高度AC的长约为37.8m.19.如图,点A(,4),B(3,m)是直线AB与反比例函数y=(x>0)图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2.求S2﹣S1.【分析】(1)先将点A(,4)代入反比例函数解析式中求出n的值,进而得到点B 的坐标,已知点A、点B坐标,利用待定系数法即可求出直线AB的表达式;(2)利用三角形的面积公式以及割补法分别求出S1,S2的值,即可求出S2﹣S1.解:(1)由点A(,4),B(3,m)在反比例函数y=(x>0)图象上∴4=∴n=6∴反比例函数的解析式为y=(x>0)将点B(3,m)代入y=(x>0)得m=2∴B(3,2)设直线AB的表达式为y=kx+b∴解得∴直线AB的表达式为y=﹣;(2)由点A,B坐标得AC=4,点B到AC的距离为3﹣=∴S1=×4×=3设AB与y轴的交点为E,可得E(0,6),如图:∴DE=6﹣1=5由点A(,4),B(3,2)知点A,B到DE的距离分别为,3∴S2=S△BDE﹣S△AED=×5×3﹣×5×=∴S2﹣S1=﹣3=.20.某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:第一次第二次A品牌运动服装数/件2030B品牌运动服装数/件3040累计采购款/元1020014400(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:,答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(m+5)件,则240m+180(m+5)≤21300,解得:m≤40,经检验,不等式的解符合题意,∴m+5≤×40+5=65,答:最多能购进65件B品牌运动服.21.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质.列表:x…﹣3﹣﹣2﹣﹣1﹣0123…y…121012…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1<y2,x1<x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.【分析】(1)描点连线即可;(2)①A与B在y=﹣上,y随x的增大而增大,所以y1<y2;C与D在y=|x﹣1|上,观察图象可得x1<x2;②当y=2时,2=|x﹣1|,则有x=3或x=﹣1;③由图可知﹣1≤x≤3时,点关于x=1对称,当y3=y4时x3+x4=2;④由图象可知,0<a<2;解:(1)如图所示:(2)①A(﹣5,y1),B(﹣,y2),A与B在y=﹣上,y随x的增大而增大,∴y1<y2;C(x1,),D(x2,6),C与D在y=|x﹣1|上,观察图象可得x1<x2;故答案为<,<;②当y=2时,x≤﹣1时,有2=﹣,∴x=﹣1;当y=2时,x>﹣1时,有2=|x﹣1|,∴x=3或x=﹣1(舍去),故x=﹣1或x=3;③∵P(x3,y3),Q(x4,y4)在x=﹣1的右侧,∴﹣1≤x≤3时,点P,Q关于x=1对称,则有y3=y4,∴x3+x4=2;④由图象可知,0<a<2;22.如图1,在Rt△ABC中,∠B=90°,AB=2,BC=1,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、B、E三点共线时,直接写出线段BD的长.【分析】(1)①先根据勾股定理求出AC,再利用中点求出BD,AE,即可得出结论;②先判断出点E在AC的延长线上,点D在BC的延长线上,由题意知,CD=BC,CE=AC,即可得出结论;(2)先判断出,进而判断出△ACE∽△BCD,即可得出结论;(3)先由(2)得出BD=AE,再分点E在线段AB和AB的延长线上求出AE即可得出结论.解:(1)①当α=0°时,在Rt△ABC中,AB=2,BC=1,根据勾股定理得,AC==,∵点D,E是BC,AC的中点,∴BD=BC=,AE=AC=,∴=,故答案为:;②当α=180°时,如图2,∴点E在AC的延长线上,点D在BC的延长线上,由题意知,CD=BC,CE=AC,∴BD=BC+CD=BC=,AE=AC+CE=AC=,∴,故答案为:;(2)无变化;在图1中,点D,E是BC,AC的中点,∴DE∥BA,∴,如图2,∵△EDC在旋转过程中形状大小不变,∴仍然成立,由旋转知,∠ACE=∠BCD=α,∴△ACE∽△BCD,∴==,∴的大小不变;(3)由(1)知,CE=AC=,在Rt△CBE中,BC=1,根据勾股定理得,BE===,由(2)知,=,∴BD=AE,如图3,当点落在线段AB上时,AE=AB﹣BE=2﹣=,∴BD=AE=×=;如图4,当点落在线段AB的延长线上时,AE=AB+BE=2+=∴BD=AE=×=,即:当△EDC旋转至A、B、E三点共线时,线段BD的长或.23.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)由于抛物线经过A(﹣2,0),B(﹣3,3)及原点O,待定系数法即可求出抛物线的解析式;(2)根据平行四边形的性质,对边平行且相等以及对角线互相平分,可以求出点D的坐标;(3)根据相似三角形对应边的比相等可以求出点P的坐标.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(﹣2,0),B(﹣3,3),O(0,0)可得,解得.故抛物线的解析式为y=x2+2x;(2)①当AO为边时,∵A、O、D、E为顶点的四边形是平行四边形,∴DE=AO=2,则D在x轴下方不可能,∴D在x轴上方且DE=2,则D1(1,3),D2(﹣3,3);②当AO为对角线时,则DE与AO互相平分,∵点E在对称轴上,对称轴为直线x=﹣1,由对称性知,符合条件的点D只有一个,与点C重合,即D3(﹣1,﹣1)故符合条件的点D有三个,分别是D1(1,3),D2(﹣3,3),D3(﹣1,﹣1);(3)存在,如图:∵B(﹣3,3),C(﹣1,﹣1),根据勾股定理得:BO2=18,CO2=2,BC2=20,∴BO2+CO2=BC2.∴△BOC是直角三角形.假设存在点P,使以P,M,A为顶点的三角形与△BOC相似,设P(x,y),由题意知x>0,y>0,且y=x2+2x,①若△AMP∽△BOC,则=,即x+2=3(x2+2x)得:x1=,x2=﹣2(舍去).当x=时,y=,即P(,).②若△PMA∽△BOC,则=,即:x2+2x=3(x+2)得:x1=3,x2=﹣2(舍去)当x=3时,y=15,即P(3,15).故符合条件的点P有两个,分别是P(,)和(3,15).。