(仅供参考)平面应力状态分析-主应力主平面详细推导
平面问题中一点的应力状态

⑶ 它是在边界上物体保持连续性的条 件,或位移保持连续性的条件。
应力边界条件--设在 s 上给定了面力分 量
fx (s), f y (s).
通过三角形微分体的平衡条件,导出坐标面应力 与斜面应力的关系式,
p l σ m , p m σ l , x x y x y y x y
x y 2 2 xy
2
σ1+σ2=σx+σy
③任一点主应力值是过该点各截面上正应力中的极值。 2 ④最大剪应力所在平面与主 x y 1 2 平面相交45°,其值为 2
m ax
2
⑤主平面上剪应力等于零,但τmax
yx
A
y
x
x l l m p l m l l xy m xy x x x x y x l xy p xyl m m l y ym y xy m xy m l px m y xy l y
问题
§2- 5
平面问题中一点的 应力状态
空间问题有 6 个独立的应力分量,平面问题有 3 个 不为0的应力分量,可决定一点的应力状态。即, 可求出过该点任意斜截面上的正应力与剪应力。
问题的提出:
,xy 已知任一点P处坐标面上应力 σx, σy,
求经过该点的任何斜面上的应力。
问题
斜面应力表示:p ( p ,p ), p ( σ , ). x y n n 求解:取出一个三角形微分体(包含 x 面,
小结: (1)斜面上的应力
p l m yx x x p m l y y x y
(2-3) (2-4)
2 2 l m 2 l m N x y x y (2-5) 2 2 l m ( ) ( l m ) (2-6) N y x x y
材料力学:第八章 应力应变状态分析

正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相9;
斜对角线的线
应变和角应变
OB转角
应变与位移分析
3 gxy引起的
B'
斜对角线的线
B''
应变和角应变
OB转角
a
BB BO
BB BO
=
g
xydysinα dl
g
xysin2α
应变与位移分析
(1) (2) (3)
方位线应变ea的参数方程
应变与位移分析
(1) (2) (3)
OB转角(切应变) OD转角(切应变)
二向与三向应力状态,统称为复杂应力状态
纯剪切与扭转破坏
纯剪切状态的最大应力
σc,max
σ t,max
圆轴扭转破坏分析
滑移与剪断发生
在tmax的作用面
断裂发生在
smax 作用面
例题
例4-1 用解析法与图解法,确定主应力的大小与方位
解:1. 解析法
已知:
2. 图解法
先画出应力圆, 在圆上找出主应力大小与方位, 并标在截面图上
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
回顾
设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
回顾
由于tx 与 ty 数值相等,同时
2平面问题的基本理论(平面应力与应变,受力状态,圣维兰原理)

当面积 AB 无限减小而趋于 P 点时,平面 AB 上的 应力就是上述斜面上的应力。 现设斜面上的全应力p可以分解为沿坐标向的分 量( px , py ),或沿法向和切向的分量( σn , τn),如图 2-4b所示。
用n代表斜面AB的外法线方向,其方向余弦为:
cosn, x l, cosn, y m
c
0
,则有
F 0, F Mc 0
x
y
0
yx dy dy dx dx xy dy 1 ( yx dy)dx 1 yx dx 1 0 2 2 y 2 2
力矩方程化简后得到:
xy
1 xy 1 yx dx yx dy 2 x 2 y
x yx fx 0 y x xy y f 0 y x y
4.平衡微分方程适用的条件是,只要求符合连 续性和小变形假定。 5.对于平面应力问题和平面应变问题,平衡微 分方程相同。 6.由于τxy =τyx,以后只作为一个独立未知函数 处理。因此,2个独立的平衡微分方程(2-2) 中含有 3个应力未知函数。
由式(2-4)及(2-5)就可以求得经过P点的任意 斜面上的正应力 n 及切应力 n 。
3.然后,再求出主应力和应力主向
设经过P点的某一斜面上的切应力等于零,则该斜 面上的正应力称为在P点的一个主应力,而该斜面 称为在P点的一个应力主平面,该斜面的法线方向 称为在P点的一个应力主向。
(2)只在侧边上受有平行于板面且不沿厚度变化 的面力和体力,且不沿厚度变化,体力 f x , f y , o 和面 力 f x , f y , o ,只是x,y的函数,并构成平衡力系;
工程力学-应力状态与应力状态分析

8 应力状态与应变状态分析1、应力状态的概念,2、平面应力状态下的应力分析,3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。
(1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为:321σσσ≥≥最大切应力为132max σστ-=(2)任斜截面上的应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=(3) 主应力的大小22minmax )2(2xyyx yx τσσσσσ+-±+=主平面的方位y x xytg σστα--=2204、主应变122122x y x y xy xyx y()()tg εεεεεεγγϕεε⎡=+±-+⎣=-5、广义胡克定律)]([1z y x x E σσμσε+-=)]([1x z y y E σσμσε+-=)]([1y x z z E σσμσε+-=G zxzx τγ=G yzyz τγ=,G xyxy τγ=6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。
”8.1 试画出下图8.1(a)所示简支梁A 点处的原始单元体。
图8.1[解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。
再取A 点偏上和偏下的一对与xz 平行的平面。
截取出的单元体如图8.1(d)所示。
(2)分析单元体各面上的应力:A 点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为:z M y I σ=bI QS z z*=τ由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。
平面应力状态理论分析

称此圆为应力圆。
R x y xy 2 2
2
由于应力圆最早由德 国工程师莫尔 (otto.mohr,18351918)提出,故又称 为莫尔圆。
R
B
O
x y
2
A
O1
工程力学系
二、应力圆作法 (1)在坐标系内画出A1( x , xy) (2)在坐标系内画出B1( y , yx)
2 0 21
2
即:剪应力极值平面和主平面夹角为45°
工程力学系
第九章 应力状态分析
§9-3 平面应力状态分析的图解法
一、应力圆方程
x y x y cos 2 xy sin 2 2 2 斜截面应力解析表达式 x y sin 2 xy cos 2 2
y yx
zx
yz
xz
z
zy
xy
x
工程力学系
三、应力状态分类
第九章 应力状态分析
三向应力状态(空间应力状态):三个方向的主应力 都不等于0;
二向应力状态(平面应力状态):两个方向的主应力 都不等于0;
单向应力状态:只有一个方向的主应力都不等于0
y yx
zx
y yx
o
25
30
30
o
30 40
o
x y
2
x y
2
cos 60o xy sin 60o 49.7MPa
30
o
x y
2
cos 60o xy sin 60o 13.1 MPa
max
(推荐)平面应力问题

l
yx
m yx l y
yx P xy
x
y A
fx px
x
为 l2、m2,则
y
B fy py
n
tan 2
cos(90 2 ) cos 2
m2 l2
2 x xy
(或 xy ) 2 y
22
应力主向的计算公式:
tan
1
x
(x
dx,
y)
x
(
x,
y)
x (x, x
y)
dx
1 2!
2 x (x,
x2
y)
(dx)2
1 n!
n x (
x
x,
n
y
)
(dx)n
10
略去二阶及二阶以上的微量后便得
x
(
x,
y)
x (x, x
y)
dx
同样 y 、 xy 、 yx 都一样处理,得到图示应力状
l x m yx l
m y l xy m
19
求解得:
m l
x yx
o
m yx
l y
y
2
(
x
y )
(
x
y
2 xy
)
0
yx y
x
P
A
xy
x B
px
n
n
py p
n
p x l x m yx
应力与应力状态分析
应力与应力状态分析拉伸模量拉伸模量是指材料在拉伸时的弹性,其计算公式如下:拉伸模量(㎏/c ㎡)=△f/△h(㎏/c ㎡)其中,△f 表示单位面积两点之间的力变化,△h 表示以上两点之间的应变化。
更具体地说,△h =(L-L0)/L0,其中L0表示拉伸长前的长度,L 表示拉伸长后的长度。
§4-1 几组基本术语与概念一、变形固体的基本假设1、均匀连续性假设:假设在变形固体的整个体积内均匀地、毫无空隙地充满着物质,并且各点处的力学性质完全相同。
根据这一假设,可从变形固体内任意一点取出微小单元体进行研究,且各点处的力学性质完全相同,因而固体内部各质点的位移、各点处的内力都将是连续分布的,可以表示为各点坐标的连续函数。
2、各向同性假设:假设变形固体在所有方向上均具有相同的力学性质。
3、小变形假设:认为构件的变形与构件的原始尺寸相比及其微小。
根据小变形假设,在研究构件上力系的简化、研究构件及其局部的平衡时,均可忽略构件的变形而按构件的原始形状、尺寸进行计算。
二、应力的概念1、正应力的概念分布内力的大小(或称分布集度),用单位面积上的内力大小来度量,称为应力。
由于内力是矢量,因而应力也是矢量,其方向就是分布内力的方向。
沿截面法线方向的应力称为正应力,用希腊字母σ表示。
应力的常用单位有牛/米2 (2/m N ,12/m N 称为1帕,代号a P )、千米/米2(2/m KN ,12/m KN 称为1千帕,代号Ka P ),此外还有更大的单位兆帕(M a P )、吉帕(G a P )。
几种单位的换算关系为:1 K a P =310a P 1 M a P =310K a P 1 G a P =310M a P =610K a P =910a P2、切应力与全应力的概念与截面相切的应力分量称为切应力,用希腊字母τ表示。
K 点处某截面上的全应力K p 等于该点处同一截面上的正应力K σ与切应力K τ的矢量和。
第三讲 平面应力状态分析
f
y
§3.3 平面应力状态分析
3、求解过程
(3) 任意斜截面的应力
e
x xy α
α n
α
α
e
dA
dAcos α
ayx
f
y
a dAsin f
设斜截面的面积为dA, ae的面积为dAcos,af的面积为dAsin。
对研究对象列n和t方向的平衡方程得
Fn = 0
σαdA + (τxydAcos α)sin α − (σxdAcos α)cos α + (τ yxdAsin α)cos α − (σ ydAsin α)sin α = 0
dσα dα
=
−2[ σ x
−σy 2
sin 2α + τxy
cos 2α] = 0
tan
2α0
=
−
2τ xy σx −σy
α0
α0
+
90
0和0+90º确定两个互相垂直的平面,一个是最大正应力所
在的平面,另一个是最小正应力所在的平面。
§3.3 平面应力状态分析
3、求解过程
(4) 斜截面的最大正应力及方位
σα
=
σx
+σy 2
+
σx
−σy 2
cos 2α
− τ xy
sin 2α
最大正应力
将0和0+90º代入公式
得到max和min(主应力)
σσmmainx
=
σx
+σy 2
(
σx
−σy 2
)2
+
τ
2 xy
下面还必须进一步判断0是x与哪一个主应力间的夹角
材料力学72平面应力状态应力分析主应力
一、公式推导:
a x
y
y
c
x
a
x
x
b
y
n
c
y
Fn 0 F 0
cos2 1 cos 2
2
sin 2 1 cos 2
2
x y
dA x dAcoscosx 2x dyAcosxs2inycoysd2Asin cxossin 2y dAsin sin 0
sin 2
max
x y sin 2
2
x cos 2
cos 2
450
450
max
450
max
450 0
铸铁圆试样扭转试验时,正是沿着最大拉 应力作用面(即450螺旋面)断开的。因此, 可以认为这种脆性破坏是由最大拉应力引起 的。
应力圆
一、应力圆的方程式
x y
300 600 x y 40MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
分析轴向拉伸杆件的最大切应力的作用面,说明低碳钢 拉伸时发生屈服的主要原因。
低碳钢拉伸时,其上任意一点都是单向应力状态。
450
x y
2
x y cos 2
2
x sin 2
x
x
2
y
2
x y cos 2
2
x sin 2
x y sin 2
2
x cos 2
轴向拉伸压缩
x (1 cos 2)
1
x
y
2
x
2
y
2
2 x
2
切应力等于零的截面为主平面 主平面上的正应力称为主应力
2
12第二章应力状态分析一、内容介...
第二章应力状态分析一、内容介绍弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。
应力状态是本章讨论的首要问题。
由于应力矢量与内力和作用截面方位均有关。
因此,一点各个截面的应力是不同的。
确定一点不同截面的应力变化规律称为应力状态分析。
首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。
应力状态分析表明应力分量为二阶对称张量。
本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。
本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。
二、重点1、应力状态的定义:应力矢量;正应力与切应力;应力分量;2、平衡微分方程与切应力互等定理;3、面力边界条件;4、应力分量的转轴公式;5、应力状态特征方程和应力不变量;知识点:体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质;截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量;切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态特征方程;应力不变量;最大切应力;球应力张量和偏应力张量§2.1 体力和面力学习思路:本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。
应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。
体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面应力状态分析--主应力主平面详细推导
老和尚小方丈(storylee_dut@)大连理工大学+哈尔滨电机厂有限责任公司
平面应力状态有一个主应力为0,全部应力分量假设位于一个平面,鉴于市场上材料力学教材关于平面应力状态分析公式推导不尽详细,在此进行详细推导,为广大力学人士提供参考,敬请批评指正。
任意斜截面上的应力公式为:
α
τασσσσσα2sin 2cos 2
2xy y
x y x --++=(1)
ατασστα2cos 2sin 2
xy y
x +-=
(2)
式中,α为斜截面外法线n 与x 轴正向的夹角。
对于主平面方位的确定,根据主平面定义可知,主平面上的切应力为0,由(2)式得:
02cos 2sin 2
000
=+-=
ατασσταxy y
x (3)
即
y
x xy
σστα--
=22tan 0(4)
方程(4)有两个解,主平面方位角0α与 900+α,说明两个主平面互为垂直关系。
将公式(3)的解回代公式(1),可得另外两个主应力,代数值较大的记为max σ,较小的记为min σ,则
2
2
max 22xy y x y x τσσσσσ+⎪⎪⎭⎫ ⎝⎛-++=(5)
22
min
22xy
y x y x τσσσσσ+⎪⎪⎭
⎫ ⎝⎛--+=(6)
关于公式(3)的解诸多材力教材没有此部分推导,本文列如下:
对于方程y
x xy
σστα--
=22tan 0更改等效形式0
02cos 22sin ασσταy
x xy
--
=(7)添加方程
1
2cos 2sin 0202=+αα(8)
联立(7)、(8)求得:
222
0222cos xy y x y x τσσσσα+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫
⎝⎛-±=(9)
22
2
022sin xy y x xy
τσστα+⎪⎪⎭
⎫ ⎝
⎛-=
(10)
注意(9)、(10)公式正负号的对应,再将(9)、(10)代入公式(3)推得主应力计算公式(5)、(6),至此,详细推导完成!。