神经网络与智能信息处理

合集下载

智能信息处理理论与方法

智能信息处理理论与方法

武汉工业学院毕业论文论文题目:智能信息处理理论与方法姓名王斌学号 *********院(系)数理科学系专业电子信息科学与技术指导教师李相虎2011年6月10日目录第一章绪论 (1)1.1智能信息处理的产生及其发展 (1)1.1.1 计算智能的产生 (1)1.1.2 信息处理技术的应用和现状 (4)第二章智能信息处理的主要技术 (8)2.1.1 什么是模糊逻辑 (8)2.1.2 模糊逻辑控制技术 (10)2.1.3 模糊处理技术 (12)2.2 神经计算技术 (13)2.2.1 脑神经系统 (13)2.2.2 神经网络的主要特征 (14)2.3 进化计算技术 (15)2.3.1遗传算法的发展过程 (15)2.3.2 遗传算法的基本理论研究 (15)2.3.3 进化计算与遗传算法的关系 (16)2.3.4 遗传算法参数的选择 (16)2.3.5 遗传算法的应用 (17)2.4 混沌计算技术 (19)2.4.1 混沌时间序列预测和控制 (20)2.4.2 混沌神经网络 (20)2.4.3 混沌在多Agent系统中的应用 (21)2.4.4混沌同步和通信 (22)2.5 分形计算技术 (24)2.5.1分形的基本概念 (24)2.5.2 分形维数 (26)2.5.3 分形的应用 (26)第三章总结与展望 (27)致谢 (28)参考文献 (29)摘要随着信息技术在企业的日益普及,信息系统在工具手段、开发模式、软件规模、指导思想等方面的不断提升,企业在信息需求方面日趋多样化、人性化、智能化,智能信息处理成为信息系统发展的一个重要方向。

多年来,人们一直在探索新一代的信息处理技术。

自20世纪90年代以来,国际上掀起了一股强劲的研究模糊逻辑系统、神经网络、遗传算法、信息融合、混沌与分形理论与技术的热潮,推动了软计算、软处理技术的深入发展。

近年来,模糊计算、神经计算、进化计算、混沌与分形计算、小波交换、人工生命科学等新一代智能信息处理技术的研究,不仅在各自的学科领域取得了引人瞩目的发展,而且它们之间的相互渗透和有机结合必然引起智能信息处理技术的革命。

神经网络与人工智能的发展历程

神经网络与人工智能的发展历程

神经网络与人工智能的发展历程近年来,随着信息技术的快速发展,人们对于人工智能越来越感兴趣。

其中最重要的一个分支就是神经网络,它可以通过训练和学习,实现类似于人类的行为和决策能力。

本文将从神经网络的起源,基本概念,发展历程,应用等方面来介绍一下神经网络与人工智能的发展历程。

神经网络的起源神经网络的诞生可以追溯到上个世纪50年代的早期,当时,在生物学家、数学家和计算机专家之间的合作下,人们对大脑是如何处理信息的这个问题有了全新的认识。

他们开始模拟人脑的结构,以此来研究和解决计算机处理信息的问题。

1958年,一个名为Perceptron的神经网络模型被提出获得了广泛关注,这一模型具有一定的分类能力。

神经网络的基本概念神经网络,亦称为人工神经网络,简称ANN(Artificial Neural Network),是由大量集成的人工神经元(也称为节点)构成的计算模型。

它具有自学习、自适应和容错能力,可以模拟人类的认知、决策等处理过程。

神经网络模型的基本组成包括输入层、隐藏层和输出层。

输入层:神经网络模型的输入数据,例如图像、声音、文本等,是经过预处理后的、数字化的数据。

隐藏层:隐藏层是神经网络的处理核心,它是由许多人工神经元组成,可以分成多层。

每一层的神经元通过加权计算对自己的输入信号进行处理,经过学习,调整权重,不断优化处理能力。

输出层:输出层是神经网络最终得到的结果,例如数字分类、图像识别、语音识别等。

输出层通常采用Softmax函数对结果进行概率归一化,对输入数据标签进行分类输出。

神经网络的发展历程经过长时间的研究和开发,神经网络逐渐成为人工智能领域最重要的分支之一。

在过去的几十年中,神经网络经历了不断的改进和发展,从最初的单层卷积神经网络(LeNet-5)到深度学习中越来越复杂的多层卷积神经网络模型模型(例如AlexNet, GoogLeNet, ResNet, VGG等)。

此外,还有循环神经网络、自编码器、GAN等。

人工智能专家系统与神经网络的应用与优缺点

人工智能专家系统与神经网络的应用与优缺点

人工智能专家系统与神经网络的应用与优缺点人工智能(AI)是一种模拟人类智能的技术,它通过模仿人类的思维和行为,使机器能够自主地处理复杂任务。

人工智能专家系统和神经网络是AI中两个重要的子领域,它们都在不同的领域有广泛的应用。

本文将探讨人工智能专家系统和神经网络的应用以及它们的优缺点。

一、人工智能专家系统的应用人工智能专家系统是一种基于知识的计算机系统,它模拟了领域专家解决问题的过程。

专家系统通过收集和整理专家的知识,将其编码为规则和推理机制,使系统能够模拟专家的决策过程。

以下是人工智能专家系统的应用领域:医疗诊断:专家系统可以通过收集大量的病例数据和医学知识,对疾病进行精确的诊断和治疗。

它可以帮助医生更快速、准确地做出诊断,提高医疗水平。

企业管理:专家系统可以用于企业决策制定和管理。

通过评估和分析大量的数据,它可以帮助企业领导层做出更明智的决策,提高企业的效率和竞争力。

工业控制:专家系统可以应用于工业生产中的自动控制系统,使生产过程更加自动化、高效化。

它可以根据传感器收集到的数据进行实时监测和控制,提高生产质量和效率。

二、人工神经网络的应用人工神经网络是一种仿真人脑神经元结构和工作方式的计算模型。

它由大量的人工神经元和连接它们的权重组成,通过学习和调整权重来预测结果或解决问题。

以下是人工神经网络的应用领域:图像识别:神经网络可以用于图像识别和分类。

通过训练神经网络,它可以学习到不同图像的特征和模式,并能够自动识别出不同类别的图像。

自然语言处理:神经网络可以用于自然语言处理任务,如语言翻译、情感分析等。

它可以学习语言的语法和语义规则,并能够生成准确的翻译结果或情感分析报告。

金融预测:神经网络可以用于金融市场的预测和分析。

通过学习历史数据和市场规律,它可以预测股票价格、货币兑换率等金融指标的变化趋势。

三、人工智能专家系统的优缺点人工智能专家系统的优点之一是它可以利用专家的知识和经验,进行准确、快速的决策。

神经网络与人工智能

神经网络与人工智能

神经网络与人工智能随着人工智能(Artificial Intelligence)的迅猛发展,神经网络(Neural Network)成为了人工智能的核心技术之一。

神经网络是一种模拟大脑的计算机结构,由神经元(Neuron)和突触(Synapse)构成。

神经元可看作计算单元,突触则表示神经元之间的连接和传递信息的通道。

本文将从多个角度探讨神经网络和人工智能的关系。

一、神经网络的发展历程神经网络的概念可以追溯至1943年,当时Mcculloch和Pitts 提出了一种基于二元逻辑的神经元模型。

20世纪60年代和70年代,神经网络得到了快速发展,例如Rosenblatt提出了感知器(Perceptron)模型,其被应用于模式识别和控制任务。

但是,20世纪80年代,神经网络的发展受到了挫折。

神经网络的训练算法不够成熟,模型的有效性并未得到证明,因此神经网络主要被用于科学研究而非商业产品中。

直到20世纪90年代,随着计算能力的提高和新的训练算法的开发,神经网络才得以重获新生。

其中最重要的是反向传播算法(Backpropagation algorithm),该算法可根据误差信号调整神经网络的权重,从而提高神经网络的准确性和鲁棒性。

同时,神经网络也得到了广泛的应用,例如图像和语音识别、自然语言处理、智能控制和游戏智能等领域。

二、神经网络的优缺点神经网络具有许多优点,如下所示:1.允许学习非线性和复杂模式,神经网络可以有效地处理大量数据,从中学习到复杂的关系和规律,例如通过大量的样本训练模型来实现目标检测、自然语言处理和推荐系统等。

2.容错性强和稳定,神经网络可以容忍数据的噪声和缺失,从而提高模型的准确性和鲁棒性。

3.自适应性强,神经网络的学习过程是逐步调整权重和阈值的,因此其可以适应数据的动态变化和模型结构的变化。

然而,神经网络也有一些缺点,如下所示:1.需要大量的训练数据,神经网络的学习过程需要足够的样本支持,否则模型容易出现过拟合和欠拟合问题。

神经网络的应用及原理

神经网络的应用及原理

神经网络的应用及原理1. 神经网络简介神经网络是一种模拟生物神经网络的人工智能技术,通过模拟大脑神经元之间的连接来实现信息处理和学习。

神经网络由多个节点(神经元)组成,每个节点通过带权重的连接与其他节点相连,并通过激活函数对输入信号进行处理。

神经网络的学习过程主要包括前向传播和反向传播两个阶段。

2. 神经网络的应用领域神经网络在各个领域都有广泛的应用,以下列举了其中的几个主要应用领域:•图像识别:神经网络可以通过训练学习图像的特征,用于图像识别、人脸识别、目标检测等任务。

•自然语言处理:神经网络可以用于机器翻译、语音识别、情感分析等自然语言处理任务。

•推荐系统:神经网络可以通过分析用户的行为数据,进行个性化推荐,提高用户体验。

•金融市场预测:神经网络可以分析历史数据,预测股票市场、汇率变动等金融市场的趋势。

•医疗诊断:神经网络可以辅助医生进行疾病诊断、影像分析等医疗任务。

3. 神经网络的原理神经网络的原理主要包括节点之间的连接方式、激活函数以及学习算法。

3.1 节点之间的连接方式神经网络的节点之间通过带权重的连接进行信息传递。

连接可以是前向的也可以是反向的,前向连接将信息从输入层传递到输出层,反向连接用于误差的反向传播。

连接的权重表示了节点之间信息传递的强弱关系。

3.2 激活函数神经网络的节点通过激活函数对输入信号进行处理,通常采用非线性的激活函数,常见的激活函数包括Sigmoid函数、ReLU函数等。

激活函数的作用是引入非线性因素,使得神经网络可以拟合非线性的复杂函数关系。

3.3 学习算法神经网络的学习主要通过训练数据进行,通常采用反向传播算法进行参数的更新。

反向传播算法通过计算误差梯度,将误差从输出层传递到输入层,然后根据梯度更新各个参数的值,以使得神经网络输出的结果与实际结果更接近。

4. 神经网络的优缺点神经网络有一些优点和缺点,下面是对其优缺点的详细阐述。

4.1 优点•适应性强:神经网络可以自动提取特征,适应不同任务和数据的特点。

控制系统中的神经网络与智能控制技术

控制系统中的神经网络与智能控制技术

控制系统中的神经网络与智能控制技术在现代科技的发展中,控制系统扮演着重要的角色,它用于监测和管理各种工业和非工业过程。

随着技术的不断进步,控制系统也在不断提升。

神经网络和智能控制技术作为现代控制系统中的关键组成部分,正在被广泛研究和应用。

本文将重点探讨控制系统中神经网络和智能控制技术的应用和发展。

一、神经网络与控制系统神经网络是模拟人脑神经元网络结构和功能的数学模型,它能够通过学习和训练来逼近和模拟人脑的决策过程。

在控制系统中,神经网络可以用于处理和解决复杂的非线性控制问题。

通过神经网络的学习和适应能力,控制系统可以更好地应对不确定性和非线性特性。

1.1 神经网络在控制系统中的基本原理神经网络模型由多个神经元组成,这些神经元通过连接权重相互连接。

每个神经元将输入信号经过激活函数进行处理,产生输出信号,并传递给其他神经元。

通过调整连接权重和激活函数参数,神经网络可以逐步地优化输出结果,实现更精确的控制。

1.2 神经网络在控制系统中的应用神经网络在控制系统中有广泛的应用,例如在机器人控制、电力系统控制和交通管理等领域。

在这些应用中,神经网络能够通过学习和自适应的方式,提高系统的鲁棒性和稳定性,使得系统能够更好地适应不确定性和变动性。

二、智能控制技术智能控制技术是指结合人工智能和控制理论,用于设计和实现智能化的控制系统。

智能控制技术通过引入模糊逻辑、遗传算法和专家系统等,能够更好地适应动态和非线性控制问题。

2.1 智能控制技术的基本原理智能控制技术的核心思想是将人类专家的经验和知识转化为计算机程序,使得系统能够进行智能化的决策和控制。

通过建立模糊规则和使用遗传算法进行参数优化,智能控制系统能够自主学习和适应环境的变化,对于复杂的动态系统具有较好的控制性能。

2.2 智能控制技术的应用智能控制技术在工业自动化、机器人控制和交通管理等领域有着广泛的应用。

例如,在工业生产中,智能控制系统可以根据实时数据和模糊规则,自主地进行生产调度和质量控制;在交通管理中,智能控制系统可以根据交通流量和路况信息,优化信号配时和路线选择,提高交通效率和安全性。

神经网络在人工智能中的应用

神经网络在人工智能中的应用

神经网络在人工智能中的应用人工智能(Artificial Intelligence,简称AI)是计算机科学的一个重要分支,旨在使计算机能够模拟和执行人类智能活动。

神经网络(Neural Network)作为人工智能的核心技术之一,通过模拟人脑神经元之间的连接和信息传递方式,实现了对复杂问题的学习和处理能力。

本文将探讨神经网络在人工智能中的应用,并分析其在不同领域中的优势和挑战。

神经网络的基本原理神经网络是由大量相互连接的人工神经元构成的计算模型。

每个神经元接收来自其他神经元的输入,并通过激活函数对这些输入进行加权求和,然后将结果传递给下一层神经元。

通过多层次的连接和反馈机制,神经网络可以从输入数据中提取特征,并根据这些特征进行分类、预测或决策。

图像识别与处理图像识别是人工智能领域中一个重要的研究方向,而神经网络在图像识别与处理方面具有显著优势。

通过训练大量的图像数据,神经网络可以学习到图像中的特征,并能够准确地识别出物体、人脸、文字等。

例如,深度学习模型中的卷积神经网络(Convolutional Neural Network,简称CNN)在图像分类、目标检测和图像生成等任务中取得了重大突破。

自然语言处理自然语言处理(Natural Language Processing,简称NLP)是人工智能领域中另一个重要的研究方向,旨在使计算机能够理解和处理人类语言。

神经网络在自然语言处理中的应用也取得了显著进展。

通过训练大量的文本数据,神经网络可以学习到语言的语法规则和语义信息,并能够进行文本分类、情感分析、机器翻译等任务。

例如,循环神经网络(Recurrent Neural Network,简称RNN)在机器翻译和语音识别等任务中取得了重要成果。

数据挖掘与预测数据挖掘是从大量数据中发现有价值的信息和模式的过程,而神经网络在数据挖掘与预测方面具有很强的能力。

通过训练大量的数据样本,神经网络可以学习到数据之间的关联性和规律,并能够进行数据分类、回归分析、异常检测等任务。

智能信息处理技术

智能信息处理技术

智能信息处理技术人工智能有三大研究学派:符号主义、联结主义和行为主义。

前面的章节已经讨论了符号主义的典型技术与应用,下面将对联结主义的主要观点与技术作讨论。

联结主义又称为仿生学派或生理学派,其原理为神经网络及神经网络间的连接机制和学习算法。

联结主义主要进行结构模拟,认为人的思维基元是神经元,而不是符号处理过程,认为大脑是智能活动的物质基础,要揭示人类的智能奥秘,就必须弄清大脑的结构,弄清大脑信息处理过程的机理。

6.1 神经网络神经网络是借鉴人脑的结构和特点,通过大量简单处理单元互联组成的大规模并行分布式信息处理和非线性动力学系统。

神经网络由具有可调节权值的阈值逻辑单元组成,通过不断调节权值,直至动作计算表现令人满意来完成学习。

人工神经网络的发展可以追溯到1890年,美国生物学家阐明了有关人脑的结构及其功能。

1943年,美国心理学家W.Mcculloch和数学家W.Pitts提出了神经元网络对信息进行处理的数学模型(即M- P模型),揭开了神经网络研究的序幕。

1949年,Hebb提出了神经元之间连接强度变化的学习规则,即Hebb 规则,开创了神经元网络研究的新局面。

1987年6月在美国召开的第一次神经网络国际会议(ICNN)宣告了神经网络计算机学科的诞生。

目前神经网络应用于各行各业。

6.1.1 神经网络的模型和学习算法1.神经网络的模型神经网络由神经元来模仿单个的神经细胞。

其中,x表示外部输入,f为输i表式连接权植。

图6-1为一个神经出,圆表示神经元的细胞体,θ为阈值,ωi元的结构。

图6-1 一个神经元的结构输出f取决于转移函数φ,常用的转移函数有三种,根据具体的应用和网络模型进行选择。

神经网络具有以下优点:(1)可以充分逼近任意复杂的非线性关系。

(2)具有很强的鲁棒性和容错性。

(3)并行处理方法,使得计算快速。

(4)可以处理不确定或不知道的系统,因神经网络具有自学习和自适应能力,可根据一定的学习算法自动地从训练实例中学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经网络与智能信息处理概率搜索和最优化方法。

是模拟自然淘汰和遗传现象的工程模型。

GA的历史可追溯到1960年,明确提出遗传算法的是1975年美国Michigan大学的Holland博士,他根据生物进化过程的适应现象,提出如下的GA模型方案:1.将多个生物的染色体(Chromosmoe)组成的符号集合,按文字进行编码,称为个体。

2.定义评价函数,表示个体对外部环境的适应性。

其数值大的个体表示对外部环境的适应性高,它的生存(子孙的延续)的概率也高。

3.每个个体由多个“部分”组合而成,每个部分随机进行交叉及突然变异等变化,并由此产生子孙(遗传现象)。

4.个体的集合通过遗传,由选择淘汰产生下一代。

遗传算法提出之后,很快得到人工智能、计算机、生物学等领域科学家的高度重视,并在各方面广泛应用。

1989年美国Goldberg博士发表一本专著:“Genetic Algorithms in Search,Optimization and Machine Learning”。

出版后产生较大影响,该书对GA的数学基础理论,GA的基本定理、数理分析以及在搜索法、最优化、机器学习等GA应用方面进行了深入浅出的介绍,并附有Pascal模拟程序。

1985年7月在美国召开第一届“遗传算法国际会议”(ICGA)。

以后每隔两年召开一次。

近年来,遗传算法发展很快,并广泛应用于信息技术的各个领域,例如:智能控制:机器人控制。

机器人路径规划。

工程设计:微电子芯片的布局、布线;通信网络设计、滤波器设计、喷气发动机设计。

图象处理:图象恢复、图象识别、特征抽取。

调度规划:生产规划、调度问题、并行机任务分配。

优化理论:TSP问题、背包问题、图划分问题。

人工生命:生命的遗传进化以及自增殖、自适应;免疫系统、生态系统等方面的研究。

神经网络、模糊集理论和以遗传算法为代表的进化算法都是仿效生物信息处理模式以获得智能信息处理功能的理论。

三者目标相近而方法各异;将它们相互结合,必能达到取长补短、各显优势的效果。

例如,遗传算法与神经网络和模糊计算相结合方面就有:☆神经网络连续权的进化。

传统神经网络如BP网络是通过学习,并按一定规则来改变数值分布。

这种方法有训练时间过长和容易陷入局部优化的问题。

采用遗传算法优化神经网络可以克服这个缺点。

☆神经网络结构的进化。

目前神经网络结构的设计全靠设计者的经验,由人事先确定,还没有一种系统的方法来确定网络结构,采用遗传算法可用来优化神经网络结构。

☆神经网络学习规则的进化。

采用遗传算法可使神经网络的学习过程能够适应不同问题和环境的要求。

☆基于遗传算法的模糊推理规则的优化,以及隶属度函数的自适应调整也都取得很好效果。

☆传统计算机要求有准确的输入条件,才能给出精确解。

神经网络只要求部分条件,甚至对于包含有部分错误的输入,也能得出较好的解答,具有容错性。

☆神经网络在处理自然语言理解、图象模式识别、景物理解、不完整信息的处理、智能机器人控制等方面有优势。

符号主义和联接主义两者各有特色,学术界目前有一种看法:认为基于符号主义得传统人工智能和基于联接主义得神经网络是分别描述人脑左、右半脑的功能,反映了人类智能的两重性:精确处理和非精确处理,分别面向认识的理性和感性两个方面,两者的关系应该是互补而非互相代替。

理想的智能系统及其表现的智能行为应是两者相互结合的结果。

接下去的问题是,符号AI和联接AI具体如何结合,两者在智能系统中相互关系如何?分别扮演什么角色?目前这方面发表的文献很多,大致有如下几种类型:1.松耦合模型:符号机制的专家系统与联接机制的神经网络通过一个中间媒介(例如数据文件)进行通讯。

2.紧耦合模型:与松耦合模型相比较,其通讯不是通过外部数据进行,而是直接通过内部数据完成,具有较高的效率。

其主要类型有嵌入式系统和黑板结构等。

3.转换模型:将专家系统的知识转换成神经网络,或把神经网络转换成专家系统的知识,转换前的系统称为源系统,转换后的系统称为目标系统,由一种机制转成另一种机制。

如果源系统是专家系统,目标系统是神经网络,则可获得学习能力及自适应性;反之,可获得单步推理能力、解释能力及知识的显式表示。

当然,转换需要在两种的机制之间,确定结构上的一致性,目前主要问题是还没有一种完备而精确的转换方法实现两者的转换。

有待进一步研究。

4.综合模型:综合模型共享数据结构和知识表示,这时联接机制和符号机制不再分开,两者相互结合成为一个整体,既具有符号机制的逻辑功能,又有联接机制的自适应和容错性的优点和特点。

例如联接主义的专家系统等。

近年来神经网络研究的另一个趋势,是将它与模糊逻辑、混沌理论、遗传进化算法等相结合,即所谓“混合神经网络”方法。

由于这些理论和算法都是属于仿效生物体信息处理的方法,人们希望通过她们之间的相互结合,能够获得具有有柔性信息处理功能的系统。

下面分别介绍。

二.混沌理论与智能信息处理混沌理论是对貌似无序而实际有序,表面上看来是杂乱无章的现象中,找出其规律,并予以处理的一门学科。

早在七十年代,美国和欧洲的一些物理学家、生物学家、数学家就致力于寻求在许许多多不同种类的不规则性之间的联系。

生物学家发现在人类的心脏中有混沌现象存在,血管在显微镜下交叉缠绕,其中也有惊人的有序性。

在生物脑神经系统中从微观的神经膜电位到宏观的脑电波,都可以观察到混沌的性态,证明混沌也是神经系统的正常特性。

九十年代开始,则更进一步将混沌和神经网络结合起来,提出多种混沌神经网络模型,并探索应用混沌理论的各种信息处理方法。

例如,在神经元模型中,引入神经膜的不应性,研究神经元模型的混沌响应,研究在神经网络的方程中,不应性项的定标参数,不定性时间衰减常数等参数的性质,以及这些参数于神经网络混沌响应的关系,并确定混沌---神经网络模型具有混沌解的参数空间。

经过试验,由这种混沌神经网络模型所绘出的输出图形和脑电图极为相似。

现代脑科学把人脑的工作过程看成为复杂的多层次的混沌动力学系统。

脑功能的物理基础是混沌性质的过程,脑的工作包含有混沌的性质。

通过混沌动力学,研究、分析脑模型的信息处理能力,可进一步探索动态联想记忆、动态学习并应用到模式识别等工程领域。

例如:☆对混沌的随机不规则现象,可利用混沌理论进行非线性预测和决策。

☆对被噪声所掩盖的微弱信号,如果噪声是一种混沌现象,则可通过非线性辨识,有效进行滤波。

☆利用混沌现象对初始值的敏锐依赖性,构成模式识别系统。

☆研究基于混沌---神经网络自适应存储检索算法。

该算法主要包括三个步骤,即:特征提取、自适应学习和检索。

模式特征提取采用从简单的吸引子到混沌的层次分支结构来描述,这种分支结构有可能通过少数几个系统参数的变化来加以控制,使复杂问题简单化。

自适应学习采用神经网络的误差反传学习法。

检索过程是通过一个具有稳定吸引子的动力学系统来完成,即利用输入的初始条件与某个吸引子(输出)之间的存在直接对应关系的方法进行检索。

利用这种方法可应用于模式识别。

例如黑白图象的人脸识别。

三.模糊集理论与模糊工程八十年代以来在模糊集理论和应用方面,也有很大进展。

1983年美国西海岸AI研究所发表了称为REVEAL的模糊辅助决策系统并投入市场,1986年美国将模糊逻辑导入OPS---5,并研究成功模糊专家系统外壳FLOPS,1987年英国发表采用模糊PROLOG的智能系统FRIL等。

除此通用工具的研制以外,各国还开发一系列用于专用目的的智能信息处理系统并实际应用于智能控制、模式识别、医疗诊断、故障检测等方面。

模糊集理论和神经网络虽然都属于仿效生物体信息处理机制以获得柔性信息处理功能的理论,但两者所用的研究方法却大不相同,神经网络着眼于脑的微观网络结构,通过学习、自组织化和非线性动力学理论形成的并行分析方法,可处理无法语言化的模式信息。

而模糊集理论则着眼于可用语言和概念作为代表的脑的宏观功能,按照人为引入的隶属度函数,逻辑的处理包含有模糊性的语言信息。

神经网络和模糊集理论目标相近而方法各异。

因此如果两者相互结合,必能达到取长补短的作用。

将模糊和神经网络相结合的研究,约在15年前便已在神经网络领域开始,为了描述神经细胞模型,开始采用模糊语言,把模糊集合及其运算用于神经元模型和描述神经网络系统。

目前,有关模糊---神经网络模型的研究大体上可分为两类:一类是以神经网络为主,结合模糊集理论。

例如,将神经网络参数模糊化,采用模糊集合进行模糊运算。

另一类以模糊集、模糊逻辑为主,结合神经网络方法,利用神经网络的自组织特性,达到柔性信息处理的目的。

与神经网络相比,模糊集理论和模糊计算是更接近实用化的理论,特别近年来美国和日本的各大公司都纷纷推出各种模糊芯片,研制了型号繁多的模糊推理板,并实际应用于智能控制等各个应用领域,建立“模糊工程”这样一个新领域。

日本更首先在模糊家电方面打开市场,带有模糊控制,甚至标以神经---模糊智能控制的洗衣机、电冰箱、空调器、摄象机等已成为新一代家电的时髦产品。

我国目前市场上也有许多洗衣机,例如荣事达洗衣机就是采用模糊神经网络智能控制方式的洗衣机。

四.遗传算法遗传算法(Genetic Algorithm:GA)是模拟生物的进化现象(自然、淘汰、交叉、突然变异)的一种概率搜索和最优化方法。

是模拟自然淘汰和遗传现象的工程模型。

GA的历史可追溯到1960年,明确提出遗传算法的是1975年美国Michigan大学的Holland博士,他根据生物进化过程的适应现象,提出如下的GA模型方案:1.将多个生物的染色体(Chromosmoe)组成的符号集合,按文字进行编码,称为个体。

2.定义评价函数,表示个体对外部环境的适应性。

其数值大的个体表示对外部环境的适应性高,它的生存(子孙的延续)的概率也高。

3.每个个体由多个“部分”组合而成,每个部分随机进行交叉及突然变异等变化,并由此产生子孙(遗传现象)。

4.个体的集合通过遗传,由选择淘汰产生下一代。

遗传算法提出之后,很快得到人工智能、计算机、生物学等领域科学家的高度重视,并在各方面广泛应用。

1989年美国Goldberg博士发表一本专著:“Genetic Algorithms in Search,Optimization and Machine Learning”。

出版后产生较大影响,该书对GA的数学基础理论,GA的基本定理、数理分析以及在搜索法、最优化、机器学习等GA应用方面进行了深入浅出的介绍,并附有Pascal模拟程序。

1985年7月在美国召开第一届“遗传算法国际会议”(ICGA)。

以后每隔两年召开一次。

近年来,遗传算法发展很快,并广泛应用于信息技术的各个领域,例如:智能控制:机器人控制。

机器人路径规划。

工程设计:微电子芯片的布局、布线;通信网络设计、滤波器设计、喷气发动机设计。

相关文档
最新文档