平行线中的“折线”问题的教与练

合集下载

(完整版)平行线及其判定与性质练习题

(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。

(______,________)(3)如果∠2+∠1=180°,那么_____。

(________,______)(4)如果∠5=∠3,那么_______。

(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。

(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。

(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。

23.1.2平行线分线段成比例

23.1.2平行线分线段成比例

23.1.2平行线分线段成比例(难点练)一、单选题1.(2019·山东菏泽市·)如图,四边形ABCD 中,6BC =,AB BC ^,BC CD ^,E 为AD 的中点,F 为线段BE 上的点,且12FE BE =,则点F 到边CD 的距离是( )A .3B .103C .4D .1432.(2020·陕西九年级)如图,在矩形ABCD 中,∠CBN 的正弦值等于13,BN 与CD 交于点N ,∠BND 的平分线NM 与AD 交于点M ,若CD =7,DM =2AM ,则AD 的长为( )A .B .C .8D .9二、填空题3.(2020·浙江温州·九年级期中)如图,在矩形ABCD 中,6AB =,8AD =.连接BD ,DBC Ð的角平分线BE 交DC 于点E ,现把BCE V 绕点B 逆时针旋转,记旋转后的BCE V 为BC E ¢¢△.当射线BE ¢和射线BC ¢都与线段AD 相交时,设交点分别为F ,G .若BFD △为等腰三角形,则线段DG 长为______.4.(2021·黑龙江)如图,在平面直角坐标系中,直线1y x =+与x 轴交于点A 与y 轴交于点B ,点O 为坐标原点,C 1为AB 中点,过C 1作C 1A 1⊥OA 于点A 1,连接OC 1,△OA 1C 1面积记为S 1;C 2为AC 1中点,过C 2作C 2A 2⊥OA 于点A 2,连接OC 2,△OA 2C 2面积记为S 2;C 3为AC 2中点,过C 3作C 3A 3⊥OA 于点A 3,连接OC 3,△OA 3C 3面积记为S 3……以此类推,面积为S 2021为_____________.5.(2020·天津和平·九年级)如图,在正方形ABCD 中,点E 是对角线BD 上一点,连接AE ,将DE 绕D 点逆时针方向旋转90°到DF ,连接BF ,交DC 于点G ,若DG =3,CG =2,则线段AE 的长为__.6.(2020·安徽淮南·)如图,在ABC V 中,ABC Ð和ACB Ð的平分线相交于点O ,过点O 作EF BC ∥交AB 于点E ,交AC 于点F ,OD AC ^交AC 于点D ,连接AO .给出以下四个结论:①若80BAC Ð=°,120BOC Ð=°;②EO FOAE AF=;③AO 平分BAC Ð;④若8AE AF +=,3OD =,则12AEF S =△.其中正确的有________.(把所有正确结论的序号都选上)7.(2020·浙江温州·九年级期末)图1是我校闻澜阁前楼梯原设计稿的侧面图,//AD BC ,90C Ð=°,楼梯AB 的坡比为1:为了增加楼梯的舒适度,将其改造成如图2,测量得218BD AB m ==,M 为BD 的中点,过点M 分别作//BC MN 交ABD Ð的角平分线于点N ,//MP BN 交AD 于点P ,其中BN 和MP 为楼梯,MN 为平地,则平地MN 的长度为_________8.(2020·哈尔滨市第四十九中学校九年级学业考试)如图,在ABC D 中,90BAC Ð=°,AB AC =,D 是BC 上一点,E 是BA 延长线上一点,且点E 在线段DC 的垂直平分线上,连接CE ,若:3:1BD DC =,3AE =,则CD =_______.三、解答题9.(2020·吉林九年级)如图,在▱ABCD 中,∠ABD=90°,AD= 5,BD=3,点P 从点A 出发,沿折线AB- B C 以每秒个单位长度的速度向终点C 运动(点P 不与点A 、B 、C 重合).在点P 运动的过程中,过点P 作AB 所在直线的垂线.交边AD 或边CD 于点Q ,以PQ 为一边作矩形PQMN ,且QM=2.MN 与BD 在PQ 的同侧,设点P 的运动时间为t(秒),(1)当t= 5时,求线段CP 的长;(2)求线段PQ 的长(用含t 的代数式表示);(3)当点M 落在BD 上时,求t 的值;(4)当矩形PQMN 与▱ABCD 重叠部分圆形为五边形时,直接写出t 的取值范围.10.(2020·浙江)如图1,已知正方形ABCD ,AB =4,以顶点B 为直角顶点的等腰Rt △BEF 绕点B 旋转,BE =BF ,连结AE ,CF .(1)求证:△ABE≌△CBF.的值.(2)如图2,连结DE,当DE=BE时,求S△BCF(3)如图3,当Rt△BEF旋转到正方形ABCD外部,且线段AE与线段CF存在交点G时,若M是CD的中点,P是线段DG上的一个动点,当满足MP PG的值最小时,求MP的值.11.(2021·吉林延边·九年级)[感知]如图①,在▱ABCD中,点E为CD的中点,连接BE并延长交AD的延长线于点F.求证:点E是BF的中点,点D是AF的中点;[应用]如图②,在四边形ABCD中,AD//BC,∠BAD=90°,AB=4,AD=3,点E是CD的中点,BE⊥CD,BE、AD的延长线相交于点F,则AF= .[拓展]如图③,在△ABC中,点D是AC的中点,点E是AB上一点,1=2BEEA,BD,CE相交于点F,则EFFC= .12.(2020·上饶市广信区第七中学九年级月考)已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.13.(2019·辽宁九年级月考)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE 绕点D逆时针旋转90º,旋转后角的两边分别与射线BC交于点F和点G.(1)探究线段BE、BF和DB之间的数量关系,写出结论并给出证明;(2)当四边形ABCD为菱形,∠ADC=60º,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120º,旋转后角的两边分别与射线BC交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M.若BE=1,AB=2,直接写出线段GM的长度.14.(2020·山西)请阅读下列材料,并完成相应的任务.梅涅劳斯(Menelaus)是公元一世纪时的希腊数学家兼天文学家,著有几何学和三角学方面的许多书籍.梅涅劳斯发现,三角形各边(或其延长线)被一条不过任何一个顶点也不与任何一条边平行的直线所截,这条直线可能与三角形的两条边相交(一定还会与一条边的延长线相交),也可能与三条边都不相交(与三条边的延长线都相交).他进行了深入研究并证明了著名的梅涅劳斯定理(简称梅氏定理):设D ,E ,F 依次是△ABC 的三边AB ,BC ,CA 或其延长线上的点,且这三点共线,则满足1AD BE CFDB EC FA××=.这个定理的证明步骤如下:情况①:如图1,直线DE 交△ABC 的边AB 于点D ,交边AC 于点F ,交边BC 的延长线与点E .过点C 作CM ∥DE 交AB 于点M ,则BE BDEC DM =,AD AF DM FC=(依据),∴BE AD EC DM ×=BD AFDM FC×,∴BE •AD •FC =BD •AF •EC ,即1AD BE CF DB EC FA××=.情况②:如图2,直线DE 分别交△ABC 的边BA ,BC ,CA 的延长线于点D ,E ,F .…(1)情况①中的依据指: ;(2)请你根据情况①的证明思路完成情况②的证明;(3)如图3,D ,F 分别是△ABC 的边AB ,AC 上的点,且AD :DB =CF :FA =2:3,连接DF 并延长,交BC 的延长线于点E ,那么BE :CE = .15.(2020·安徽蚌埠市·九年级)如图(1),已知:在菱形ABCD 中,点,E F 分别在边,BC CD 上,,,BE DF AE AF =分别交BD 于点,C H(1)求证:BG DH =;(2)连接FE ,如图(2),当EF BG =时,①求证:AH DF AF AD=;②若菱形ABCD的边长为2,求CF的长.16.(2020·安徽安庆·九年级)如图(1),已知正方形ABCD中,点E、F分别在边BC、CD上,BE=DF,AE、AF分别交BD于点G、H.(1)求证:BG=DH;(2)连接FE,如图(2),当EF=BG时.①求证:AD•AH=AF•DF;②直接写出HFAH的比值.17.(2020·吉林九年级)如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.D为边BC上一点,且BD=2CD,过点D作DE//AC交AB于点E,过点E作EF//BC交AC于点F.动点P、Q分别从点A、B同时出发,均以2cm/s的速度匀速运动.点P沿折线AF﹣FE﹣ED向终点D运动,点Q沿BA向终点A运动.过点P作PM⊥AC交AB于点M,以PM与QM为边作▱PMQN.设点P的运动时间为t(s),矩形CDEF与▱PMQN重叠部分图形的面积为S(cm2)(1)DE的长为 ;(2)连结PQ,当PQ//BC时,求t的值;(3)在点Q从点B运动到点E的过程中,当四边形CDEF与▱PMQN重叠部分图形是三角形时,求S 与t之间的函数关系式;(4)设PN与边DE的交点为G,连结FG,当点E在FG的垂直平分线上时,直接写出t的值.18.(2020·海南九年级)如图,四边形ABCD是边长为10的菱形,BE⊥AD于点E,AE=6,且BE 交对角线AC于F,连接DF,点P是DC上一点,BP交AC于M.(1)求证:△ABF≌△ADF;(2)如图1,若P为CD中点,求CMMF的值;(3)如图2,若S△BFM =S△CPM,求PC,并直接判断BP与CD是否垂直(不必说明理由).19.(2020·江苏省天一中学)(1)①发现:如图1,G是V ABC的重心,连结BG,CG,并分别延长BG,CG,交AC,BA于D,E连结DE,则DE与BC的位置关系是;②证明:如图2,AF是△ABC的中线,P是AF上任一点,连结BP,CP,并分别延长交AC,BA于D,E,连结DE,①中的结论还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.(2)应用:用无刻度直尺根据要求作图:如图3,M是□ABCD边CD上一定点,(ⅰ)在AB边上作一点N,使AN=CM,(ⅱ)如图4中,BA的延长线上作一点Q,使AQ=CM.20.(2021·河南)数学课上,李老师出示了如下框中的题目.在等边三角形ABC中,点E在AB上,点D在CB的=,如图,试确定线段AE与延长线上,且ED ECDB的大小关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE_____DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:如图2,题目中,AE 与DB 的大小关系是:AE ____DB (填“>”“<”或“=”).理由如下:(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC V 的边长为1,2AE =,求CD 的长(请你直接写出结果).。

平行线间的“拐点”问题

平行线间的“拐点”问题

平行线间的“拐点”问题福建省仙游县第二中学(351200) 陈国权[摘 要]平行线间的“拐点”问题,可以分为“猪脚”模型、“铅笔头”模型、“锯齿”模型、“臭脚”模型等,文章结合几则典例,探讨平行线间的“拐点”问题的求解方法,以提高学生灵活运用几何定理的能力,发展学生的核心素养。

[关键词]平行线;拐点;模型[中图分类号]G633.6[文献标识码]A[文章编号] 1674-6058(2023)23-0022-03平行线间的“拐点”问题,可以分为以下几个类型:“猪脚”模型、“铅笔头”模型、“锯齿”模型、“臭脚”模型,下面笔者结合几则典例,逐一分析探讨。

类型一、平行线间的“猪脚”模型如图1乙所示,这个几何图形因为与猪脚相像,我们形象地称之为“猪脚”模型。

“猪脚”模型中蕴含着角之间的特殊关系,即∠AEC=∠A+∠C。

如何证明呢?因为在两条平行线间是折线相连,不是直线连接,所以不能直接应用平行线的性质解答,它们之间需要一个“桥梁”将两者联系起来,常用的联系方式就是在“拐点”处作平行线,如图2所示,作EG∥AB。

因为AB∥CD,所以EG∥AB∥CD,根据“两直线平行,内错角相等”得∠A=∠AEG,∠C=∠CEG,因为∠AEC=∠AEG+∠CEG,所以∠AEC=∠A+∠C(等量代换)。

甲乙图1 图2实际上对于“猪脚”模型,还可以进一步扩展,如图3所示,AB∥CD,在AB与CD之间有P1、P2、P3三点,顺次连接B、P1、P2、P3、D。

如图4所示,分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,∵AB∥CD,∴AB∥P1E∥P2F∥P3G。

由平行线的性质可得 ∠1=∠B①,∠2+∠3=180°②,∠4+∠5=180°③,∠6=∠D④,①+②+③+④得,∠BP1P2+∠P1P2P3+∠P2P3D=180°+180°+∠B+∠D=360°+∠B+∠D。

七年级下册数学第五章第3节《平行线的性质》提高训练题 (25)(含答案解析)

七年级下册数学第五章第3节《平行线的性质》提高训练题 (25)(含答案解析)
9.见解析
【解析】
由平行线的性质可得∠A=∠3,由∠1=∠2可得AC∥DE,进而可得∠3=∠E,进一步即可得出结论.
解:∵AD∥BE(已知),
∴∠A=∠3(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴AC∥DE(内错角相等,两直线平行),
∴∠3=∠E(两直线平行,内错角相等),
∴∠A=∠E(等量代换).
七年级下册数学第五章第3节《平行线的性质》提高训练题 (25)
一、单选题
1.如图,将三角板的直角顶点放在直尺的一边上,若∠1=25°,则∠2的度数为()
A.55°B.60°C.65°D.75°
2.如图,已知CB∥DF,则下列结论成立的是()
A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠1+∠2=180º
2.B
【解析】
根据两条直线平行,同位角相等,即可判断.
解:∵CB∥DF,
∴∠2=∠3(两条直线平行,同位角相等).
故选:B.
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
3.C
【解析】
根据两条直线平行,同位角相等得∠1的同位角是40°,再根据平角的定义和垂直定义即可求得∠2.
解:∵a∥b,
26.如图 ∥ , ____________
27.如图,若a//b,则图中x的度数是______________度.
28.一副直角三角尺按如图1所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,当两块三角尺至少有一组边互相平行,则∠BAD(0°<∠BAD<90°)所有符合条件的度数为_____.
∵FG⊥AB,CD⊥AB(已知).
∴∠GFB=90°,∠CDB=90°(垂直的定义).

初中数学中折叠问题

初中数学中折叠问题

初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后 BG和 BH在同一条直线上,∠ CBD=度.2.如下图,一张矩形纸片沿BC折叠,极点 A 落在点 A′处,再过点 A′折叠使折痕DE∥BC,若 AB=4,AC=3,则△ ADE的面积是.3.如图,矩形纸片 ABCD 中, AB=4 ,AD=3 ,折叠纸片使 AD 边与对角线 BD 重合,得折痕DG,求 AG 的长.D CA'根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可 A G B 4.把矩形纸片 ABCD 沿 BE 折叠,使得 BA 边与 BC 重合,然后再沿着 BF 折叠,使得折痕BE 也与 BC 边重合,展开后如下图,则∠ DFB 等于()注意折叠前后角的对应关系5.如图,沿矩形 ABCD的对角线 BD折叠,点 C落在点 E 的位置,已知 BC=8cm,AB=6cm,求折叠后重合部分的面积.EF DA3重合部分是以折痕为底边的等腰三角形21BC6.将一张矩形纸条ABCD按如下图折叠,若折叠角∠的形状三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△ GEF FEC=64°,则∠ 1=度;△ EFGD‘C‘A1G F D5432B E C7.如图,将矩形纸片ABCD 按如下的次序进行折叠:对折,展平,得折痕EF(如图①);延 CG 折叠,使点 B 落在 EF 上的点 B ′处,(如图②);展平,得折痕 GC(如图③);沿 GH 折叠,使点 C 落在 DH 上的点 C′处,(如图④);沿 GC′折叠(如图⑤);展平,得折痕 GC′,GH(如图⑥).(1)求图②中∠ BCB ′的大小;(2)图⑥中的△ GCC′是正三角形吗?请说明原因.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为 8,将其沿 EF折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为 4 的正方形 ABCD沿着折痕 EF 折叠,使点 B落在边 AD的中点 G处,求四边形 BCFE的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为 1 的正方形纸片ABCD 折叠,使点 B 落在边 AD 上不与A、D重合.MN 为折痕,折叠后 B ’C’与 DN 交于 P.(1)连结 BB ’,那么 BB ’与 MN 的长度相等吗?为什么?(2)设 BM=y, AB ’=x,求 y 与 x 的函数关系式;(3)猜想当 B 点落在什么位置上时,折叠起来的梯形MNC ’B’面积最小?并考证你的猜想.二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()CD30° BF E a21A题考察的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为 180度的性质,注意△ EAB 是以折痕 AB 为底的等腰三角形12.如图,将一宽为2cm 的纸条,沿 BC,使∠ CAB=45 °,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线 +角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽 2cm的长方形纸条成如下图的形状,那么折痕PQ的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线 +角平分线”的基本结构图形,即有以折痕为底边的等腰三角形 APQ14.如图 a 是长方形纸带,∠ DEF=20°,将纸带沿EF 折叠成图 b,再沿 BF 折叠成图 c,则图 c 中的∠ CFE 的度数是()AE D A E E DACFB FC B G B G FC 图c图 a 图 bD本题考察图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠ DEF= ∠EFB=20°图 b∠GFC=140°,图 c 中的∠ CFE=∠GFC-∠ EFG 15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴 EF 折叠成如图的形状,若折叠后,AB 与 CD 间的距离为 60cm,则原纸片的宽AB 是()DCFG60cmEA FDBE C B A16.一根 30cm、宽 3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了雅观,希望折叠达成后纸条两头高出点P 的长度相等,则最初折叠时,求MA 的长三、三角形中的折叠17.如图,把 Rt△ABC(∠ C=90°),使 A, B两点重合,得到折痕 ED,再沿 BE折叠, C点恰巧与 D点重合,则 CE:AE=18.在△ ABC中,已知 AB=2a,∠ A=30°, CD是 AB边的中线,若将△ ABC沿 CD对折起来,1折叠后两个小△ ACD与△ BCD重叠部分的面积恰巧等于折叠前△ABC的面积的4.(1)中间线 CD等于 a 时,重叠部分的面积等于;(2)有如下结论(不在“ CD等于 a”的限制条件下):① AC边的长能够等于a;②折叠前的3 2△ABC的面积能够等于 2 a ;③折叠后,以A、B为端点的线段AB与中线CD平行且相等.其中,结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).C CB'12A E 3 D BAD BB'注意“角平分线 +等腰三角形”的基本构图,折叠前后图形之间的对照,找出相等的对应角和对应边19.在△ ABC 中,已知∠ A=80°,∠ C=30°,现把△ CDE 沿 DE 进行不同的折叠得△DE,对折叠后产生的夹角进行探究:(1)如图( 1)把△ CDE 沿 DE 折叠在四边形 ADEB 内,则求∠ 1+∠2 的和;(2)如图( 2)把△ CDE 沿 DE 折叠覆盖∠ A ,则求∠ 1+∠2 的和;(3)如图( 3)把△ CDE 沿 DE 斜向上折叠,探究∠ 1、∠ 2、∠ C 的关系.(1)根据折叠前后的图象全等可知,∠ 1=180° -2∠CDE,∠2=180°-2∠CED,再根据三角形内角和定理比 A 可求出答案;(2)连结 DG,将∠ ADG+ ∠AGD 作为一个整体,根据D 1C'三角形内角和定理来求;(3)将∠ 2 看作 180° -2∠CED,∠ 1 看作 2∠C2CDE-180°,再根据三角形内角和定理来求. E 图 (1)C'C' AA12D1G D2 C′B由于等腰三角形是轴对称图形,所以在折叠三角形时经常会出现等腰三角形20.察看与发现:将三角形纸片ABC(AB >AC )沿过点 A 的直线折叠,使得 AC 落在 AB 边上,折痕为 AD ,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点 A 和点 D 重合,折痕为EF,展平纸片后得到△ AEF (如图②).小明认为△ AEF 是等腰三角形,你同意吗?请说明原因.实践与运用:(1)将矩形纸片 ABCD 沿过点 B 的直线折叠,使点 A 落在 BC 边上的点 F 处,折痕为 BE(如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠往常都与角平分线相关。

平行线中的折线角问题

平行线中的折线角问题

平行线中的折线角问题
如果有两条平行线,则它们之间的任何一条线段或者折线都将与这两条平行线形成对应角,并且这些对应角非常有规律,具有如下性质:
1. 对应角相等
如果有一条线段或者折线与两条平行线相交,它将形成两对对应角,这些对应角的度数相等。

2. 内角与外角的和为180度
如果有一条线段或者折线穿过两条平行线,则它将形成一对内角和一对外角。

两个内角的度数之和等于180度,两个外角之和也是如此。

3. 同位角相等
如果两条平行线被一条横线切割,则对于同一个内部角或者同一个外部角,它们所对应的角相等,这些角被称为同位角。

4. 对顶角相等
如果两条平行线被一条横线切割,并且在其中一条直线上还有一条线段或者折线垂直于横线,则这两条线段或者折线所形成的对顶角相等。

七年级下册数学同步练习题库:平行线的性质(简答题:较难)

七年级下册数学同步练习题库:平行线的性质(简答题:较难)

平行线的性质(简答题:较难)1、阅读:如图1所示,因为CE∥AB,所以∠1=∠A,∠2=∠B,所以∠ACD=∠1+∠2=∠A+∠B,这是一个有用的事实.请用这个结论在如图2所示的四边形ABCD内过点D引一条和边AB平行的直线,求∠A+∠B+∠C+∠ADC的度数.2、如图所示,把一张长方形纸片ABCD沿EF折叠后,ED与BC的交点为G,D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1与∠2的度数.3、平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E的度数.4、如图所示,已知∠1+∠2=180°,∠B=∠3,求证:∠ACB=∠AED.5、如图,若AB∥CD,在下列三种情况下探究∠APC与∠PAB,∠PCD的数量关系.(1)图①中,∠APC+∠PAB+∠PCD=;(2)图②中,;(3)图③中,写出∠APC与∠PAB,∠PCD的三者数量关系,并说明理由6、如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.7、(本题12分)如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?直接写出猜想结论,不需说明理由.8、课上教师呈现一个问题甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如下图:甲同学辅助线的做法和分析思路如下:(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.辅助线:___________________;分析思路:(2)请你根据丙同学所画的图形,求∠EFG的度数.9、如图所示,在△ABC中,AB =AC,E为AB上一点,F为AC延长线上一点,且BE=CF,EF交BC于D,求证:DE=DF.10、如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).11、(1)问题发现如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.请把下面的证明过程补充完整:证明:过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC∴∠C= .∵EF∥AB,∴∠B= ,∴∠B+∠C= .即∠B+∠C=∠BEC.(2)拓展探究如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.(3)解决问题如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A=.(直接写出结论,不用写计算过程)12、如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD平分∠ABC;(2)若∠DAC=45°,OA=1,求OC的长.13、如图是小明设计的智力拼图玩具,现在小明遇到了下面两个问题,请你帮助解决.(1)如图⑴,∠D=,∠ACD=.为保证AB∥DE,∠A应等于多少度?(2)如图⑵,若GP∥HQ,则∠G,∠F, ∠H之间有什么样的关系?14、(8分)如图1,直线AB∥CD,直线l与直线AB、CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.⑴若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.⑵若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.15、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.16、(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?17、如图所示,已知∠1+∠2=180°,∠B=∠3,求证:∠ACB=∠AED.18、如图1,已知:AB∥CD,点E,F分别在AB,CD上,且OE⊥OF.(1)求证:∠1+∠2=90°;(2)如图2,分别在OE,CD上取点G,H,使FO平分∠CFG,EO平分∠AEH,求证:FG∥EH.19、(1)如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.证明过程如下:证明:过点E作EF∥AB,∵AB∥DC,EF∥AB(辅助线的作法),∴EF∥DC∴∠C=∠CEF.∵EF∥AB,∴∠B=∠BEF∴∠B+∠C=∠CEF+∠BEF即∠B+∠C=∠BEC.(2)如果点E运动到图②所示的位置,其他条件不变,∠B,∠C,∠BEC又有什么关系?并证明你的结论;(3)如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A=.(写出结论,不用写计算过程)。

第3讲 平行线辅助线(学生版)

第3讲 平行线辅助线(学生版)

第3讲平行线辅助线一、知识回顾:在解决平行线的问题时,当无法直接得到角的关系或两条线之间的位置关系时,通常借助辅助线来帮助解答,如何作辅助线需根据已知条件确定,辅助线的添加既可以产生新的条件,又能将题目中原有的条件联系在一起.一、加截线(连接两点或延长线段)1.如图,已知AB∥CD,∠ABF=∠DCE.∠BFE与∠FEC有何关系?并说明理由.(第1题)【解析】:∠BFE=∠FEC.理由一:连接BC,如图①.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABC-∠ABF=∠BCD-∠DCE,即∠FBC=∠ECB.∴BF∥CE(内错角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).(第1题)理由二:延长AB,CE相交于点G,如图②.∵AB∥CD,∴AG∥CD.∴∠DCE=∠G(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABF=∠G.∴BF∥CG(同位角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).二、过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.(第2题)【解析】:方法一:过点P作射线PN∥AB,如图①.∵AB∥CD,∴PN∥CD.∴∠4=∠2=25°.∵PN∥AB,∴∠3=∠1=32°.∴∠BPC=∠3+∠4=57°.(第2题)方法二:过点P作射线PM∥AB,如图②.∵AB∥CD,∴PM∥CD.∴∠4=180°-∠2=180°-25°=155°.∵AB∥PM,∴∠3=180°-∠1=180°-32°=148°.∴∠BPC=360°-∠3-∠4=360°-148°-155°=57°. 方法三:连接BC,略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线中的“折线”问题的教与练
一、准确把握教材容,明确教学目的
平行线是最简单、最基本的几何图形之一,它是研究其他图形的基础,且在实际中也有着广泛的应用。

依据新课标标准,可将教学目标分为三部分:1.让学生掌握平行线的性质,并能运用平行线的判定与性质进行角的计算与证明;2.在平行线中的“折线”问题的探究过程中,让学生仔细观察、比较、联想、分析、归纳、大胆猜想和概括;3最后,通过平行线中的“折线”在变化过程中的探究,使学生学会识别基本图形、构建基本图形、理清解题思路,体会图形之间变化及联系,激发学生兴趣,从而增强学生的识图和逻辑推理能力。

二、全面分析课程标准,直指教学的重点和难点
学生在前面的课程中已经学习了平行线的性质与判定,对相应的知识有了一定的了解,但初一的学生刚接触几何,识图能力比较差,缺乏严谨的逻辑推理能力,空间想象能力及规的几何表述能力,所以在讲授平行线中“折线”问题时,重在引导学生先从已知条件出发,带着问题,去认识和分析图形,然后再鼓励学生运用自己的语言说明理由,最后教师用规的格式写出完整的解题过程,从而在与学生教与学的双方互动过程中培养学生良好的几何表达习惯。

三、精心设计例题类型,激发学生求知欲
教师通过对已学知识的复习和梳理,把学生引到本节课的思路上来,为新课学习做好知识铺垫。

并在教学过程中,通过设计
不同的题目类型,层层设疑,引起学生的好奇心,激发学生的求知欲和学习兴趣。

(一)复习旧知,导入新课
1.运用多媒体展示问题:
(1)平行线判定的方法有哪几种?
(2)平行线有哪些特殊的性质呢?
(3)它们之间有什么区别与联系?
2.引入例题:如图1,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()
(A)180°(B)270°(C)360°(D)540°
分析:由AB∥CD,可得∠BAC+∠ACD=180°(两直线平行,同旁角互补)
又由CD∥EF,可得∠ECD+∠CEF=180°(两直线平行,同旁角互补)
所以∠BAC+∠ACD+∠ECD+∠CEF=360°
即∠BAC+∠ACE+∠CEF=360°。

这道题目直接给出了平行线,学生很容易发现所求的角恰好是已知平行线被第三条直线所截产生的同旁角,从而联想到利用平行线的性质3:“两直线平行,同旁角互补”来解决问题。

在该例题的讲解过程中,教师应教师要先引导,后鼓励学生自己发挥,最后教师再进行纠错,让学生在“犯错”中学习,从而快而准确地掌握本节课的容。

(二)引申思考,探索新知
教师要善于利用初一学生的学习积极性,激发学生探究几何图形的兴趣,培养学生勤于动脑、乐于探索的良好学习习惯。

教师在例题的设计上,应力争环环相扣,逐层深入,使学生易于接受。

探究一:如图2,已知,AB∥CD,
请说明:(1)∠B+∠BED+∠D=360°
(2)如图3,当点E 在直线BD 的左侧时,AB∥CD,则∠BED 与∠B、∠D 的数量关系又如何?请说明理由。

分析:直接观察,问题中的三个角与已知条件中的平行线没有直接联系,但我们可以通过作辅助线构造平行线解决问题。

解:(1)证明:过点E 作EF∥AB。

∴∠B+∠BEF=180°(两直线平行,同旁角互补)
又∵AB∥CD(已知)
∴EF∥CD(平行于同一直线的两条直线互相平行)
∴∠FED+∠D=180°(两直线平行,同旁角互补)
∴∠B+∠BED+∠D=360°。

(2)它们的关系为:∠BED=∠B+∠D。

证明:过点E 作EF∥AB。

∴∠B=∠BEF(两直线平行,错角相等)
∵AB∥CD(已知)
∴EF∥CD(平行于同一直线的两条直线互相平行)
∴∠D=∠DEF(两直线平行,错角相等)
∴∠B+∠D=∠BEF+∠DEF(等量代换)
∴∠B+∠D=∠BED。

分析:本题第(1)问与引例其实是同一道题,意在引导学生仿照引例作辅助线,再解决问题,进而挖掘其深层次的知识,将思路迁移至第(2)问,让学生体会到在图形变化过程中不变的处理方法。

教师应及时引导,遇到类似这类问题有平行线却无法直接利用平行线来求角的关系时,要考虑到添加辅助线,即过“折点”做平行线,这样就产生了同位角、错角及同旁角,从而达到利用平行线的相关性质解决问题的目的。

探究二:当点E 在直线AB 的上方或直线CD 的下方时(如图4、5、6、7),已知AB∥CD,那么∠BED 与∠B、∠D的数量关系又当如何?请说明理由。

分析:这是一道开放性的题目,需要根据位置的不断改变探究角之间的关系,题中所涉及的三个角与已知条件没有直接联系,但根据上题的解题经验,我们可以尝试用同样的办法处理,即过“折点”作平行线,使问题中的角与平行线建立联系,从解决问题。

教师引导抓住问题实质,以不变应万变。

(三)拓展思维
1.如图8,∠AB∥DE,∠ABC =80°,∠CDE =140°,求∠BCD 的度数。

分析:本题可直接利用本节课的基本方法来解决,即过“折点”作平行线,再用平行的性质逐步求出∠BCD 的度数。

2.如图9,AB∥CD,∠A=105°,∠C=140°,求∠FEC 的度数。

分析:同前面题目一样,过“折点”作平行线,再用平行的性质逐步求出∠FEC的度数。

但完成之后还可利用本节课第一个基本图形的结论来检验结果,即由AB∥CD 知∠A+∠AEC+∠
C=360°,而∠A=105°,∠C=140°,故∠AEC=360°-∠A-∠
C=360°-105°-140°=115°,又由邻补角定义知∠FEC=180°-∠AEC=180°-115°=65°。

教师通过精心设计各种类型的例题,引导学生逐层深入探索,使学生的思维方法和思维能力逐步得以提升。

学生就能利用本节课的基本方法即过“折点”作辅助线构造平行线来顺利解决问题。

总之,数学课教学要注重知识教学与思维教学的统一,既要重视课堂的效率,又要注意对学生思维的培养,力求使学生主动学习,教师只在引导,且注重对学生思维的逻辑性与知识性的统一,让学生会举一反三。

相关文档
最新文档